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 One of the most important aspects of the effective functioning of wireless 

sensor network (WSN) is their security. Despite significant progress in WSN 

security, there are still several unresolved issues. Many review studies have 

been published on the problems of possible attacks on WSN and their 

identification. However, due to the lack of their systematic analysis, it is not 

possible to fully substantiate practical recommendations for the effective 

application of the proposed solutions in the field of WSN security. In 

particular, the creation of methods that provide a high degree of security 

while minimizing computational effort and costs, and the development of 

effective methods for detecting and preventing attacks on WSN. The 

purpose of this document is to fill this gap. The article presents the results of 

the study in the form of a systematic analysis of the literature with a targeted 

selection of sources to identify the most effective methods for detecting and 

preventing attacks on WSN. By identifying the security of WSN, which has 

not yet been addressed in research works, the review aims to reduce its 

impact. As a result, our extended taxonomy is presented, including attack 

types, datasets, effective WSN attack detection methods, countermeasures, 

and intrusion detection systems (IDS). 
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1. INTRODUCTION 

Wireless sensor networks (WSNs)are used for many purposes, primarily as the communication 

backbone of the internet of things (IoT). A sensor network also creates access to the physical world. WSN are 

networks that embed a large number of sensor nodes in the environment. The use of WSN is increasing 

significantly day by day [1], [2]. The rapid development of WSN and the IoT is responsible for generating 

huge amounts of data in various forms that require careful authentication and security. At the same time, 

there continue to be limitations in the form of security issues and limited performance due to insufficient 

memory resources or computational power. These circumstances are risk factors that reduce the positive 

effects of WSN and IoT technologies. In this regard, the challenges of effectively addressing these issues are 

significantly actualized. 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Towards robust security in WSN: a comprehensive analytical … (Tamara Zhukabayeva) 

319 

Application areas of WSN include medical, industrial, agricultural, military applications, monitoring 

systems, transportation tracking, home automation, security and surveillance [3]-[5] as shown in Figure 1. 

Depending on how sensor nodes are deployed, WSN are categorized into five groups: terrestrial, 

underground, multimedia, underwater and mobile [6]. However, this diversity of usage poses serious 

limitations to address specific security and reliability challenges in WSN, which may face a multitude of 

failure and failure-related problems. The consequences of security breaches and attacks on WSN can be 

particularly severe in government, military, medical or industrial organizations, where important information 

can be damaged or stolen [7]. One of the main risks is the possibility of unauthorized access to the WSN 

system [8]. In addition, WSN can be the target of a denial-of-service (DoS) attack [5]. Attackers can overload 

the network with a large number of requests or create a botnet to attack the system. This can lead to network 

resource overload, DoS and disruption of facilities. To protect WSN from such threats, WSN security 

measures should be implemented. This may include encrypting data transmitted, installing authentication and 

access control mechanisms, and monitoring the network for anomalies. In addition, regular software updates 

and training of personnel on WSN security measures are also important aspects [9]. Understanding these 

risks and applying appropriate security measures are integral to the successful operation of WSN. In this 

regard, it is relevant to solve the problem of identifying attacks on WSN. 

 

 

 
 

Figure 1. WSN applications 

 

 

Cybersecurity attacks have increased rapidly in various fields such as building management, 

healthcare, energy, agriculture, automation and industrial processes [10]. Different techniques and protocols 

are used to achieve authentication, encryption and data integrity [11]. The application of various techniques 

to detect WSN attacks is gaining popularity [12]-[14]. The security challenges of WSN include: 

− Lack of security standards and uniform data protection principles for WSN can lead to incorrect or 

incomplete implementation of security measures, and make it difficult to assess the security level of the 

overall system. Different devices may have different levels of security, and their dynamic nature, such as 

relocation or addition and removal from the network, can create difficulties in establishing and 

maintaining data protection. WSN are at risk of cyberattacks due to the deployment of sensor nodes 

without a defined wireless communication structure and the lack of robust network security protocols. 

− Limited computing resources, memory and energy efficiency of sensor nodes do not allow for the 

implementation of high-performance data processing algorithms and sophisticated analytics, complex 

data protection and encryption mechanisms. Due to inadequate cybersecurity and the failure to apply 

appropriate data protection measures both directly in the sensor nodes and in the wireless network 

infrastructure, there is the potential for cyber threats such as data interception, spoofing, or discrediting, 

as well as attacks on communication protocols or the network infrastructure. Sensor nodes in WSN are 

limited by their computational capabilities, memory capacity, battery life, communication range, 

bandwidth and security. These limitations make them vulnerable to various threats and compromises. 
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− Intrusion detection problem is very important in the case of WSN. Traditional approaches that analyze 

network anomalies at multiple points of concentration are costly in terms of network memory and power 

consumption. Therefore, there is a need for decentralized intrusion detection. 

− Traditional security protocols are not well suited for WSN due to the limited network resources and the 

isolated, uncontrolled nature of sensor node placement. Different devices may have different levels of 

security, and their dynamic nature, such as moving or adding and removing them from the network, can 

create difficulties in establishing and maintaining data protection. WSN may be vulnerable to attacks on 

the physical parameters of the environment in which they operate. 

The current state of research in approaches, methods, techniques and models, algorithms for attack 

identification and security assessment of WSN is an actively developing field. This paper analyzes recent 

research and advances with the identification of WSN security gaps. Solutions to these identified gaps are 

detailed in section 3, and recommendations of security measures are proposed, and recommendations of 

security measures are proposed for WSN. 

The study aims to develop a systematic literature review on WSN insecurity and to identify the most 

effective methods for detecting attacks on WSN, and to analyze effective methods and tools for preventing 

such attacks. The main contribution of this research is:  

− Performing a systematized literature review to assess the current state of the problem of WSN safety and 

security in the last 5 years. 

− Categorizing the research, according to the types of algorithms used methods of attack identification, IDS 

and types of threats. 

− Analyzing known methods, models, algorithms for identifying attacks on WSN in order to identify their 

effectiveness. 

− Compilation of a comprehensive taxonomy on classifications of attack types, datasets, controllers, 

recommendations, effective methods for detecting attacks on WSN and on intrusion detection system 

(IDS) architectures in the context of WSN. 

Figure 2 shows how the article is organized, which consists of four sections. The introduction is 

described in section 1, which includes the main problems and relevance of the study, the purpose and main 

contribution of the article. Section 2 is devoted to the research methodology, which includes research 

questions and strategies for finding related work. Section 3 describes the result, which compiles the empirical 

analysis and proposes our extended WSN security taxonomy and discussion. Finally, section 4 describes the 

conclusion. 
 

 

 
 

Figure 2. Paper organization 
 

 

2. RESEARCH METHOD 

This section demonstrates the methodology for conducting a systematic review of the article.  

The focus was on research related to WSN security. This section is composed of the following parts: research 

questions and hypotheses, search strategy, keywords and paper selection criteria. 
 

2.1.  Research questions and hypotheses 

These research questions and hypotheses in Table 1 can guide further investigation into the security 

measures of WSN, contributing to the development of more secure and resilient WSN systems.  

This paragraph consists of research questions and hypotheses aimed at improving the security of WSNs. 

Additionally, the study compares various IDS, examines different attack datasets, and reviews vulnerability 

databases to develop robust security models for WSNs. 
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Table 1. Research questions and hypotheses 
No Research questions Hypotheses 

1 How effective are machine learning (ML) and deep 
learning techniques in detecting intrusions in WSN? 

ML, deep learning and artificial intelligence techniques 
significantly improve the accuracy of intrusion detection in 

WSN compared to traditional methods. 

2 What are the comparative advantages and disadvantages 
of anomaly-based IDS versus signature-based IDS in 

the context of WSN security? 

Anomaly-based IDS are more effective in detecting novel 
attacks in WSN, whereas signature-based IDS are faster and 

more efficient in identifying known attacks. 

3 How do different attack datasets contribute to the 
development of more robust security measures in 

WSN? 

Utilizing a combination of different attack datasets for training 
IDS models leads to a more comprehensive and adaptable 

security system in WSN. 

4 What role do vulnerabilities datasets play in enhancing 
the security framework of WSN? 

Regular updates and integration of vulnerabilities databases 
into WSN security frameworks significantly reduce the risk of 

successful cyber-attacks. 

5 How can the principles of confidentiality, integrity, and 
availability be best implemented in WSN to ensure 

maximum security? 

Implementing a multi-layered security approach that addresses 
confidentiality, integrity, and availability can significantly 

enhance the overall security of WSN. 

6 What are the most significant privacy concerns in WSN, 
and how can they be addressed effectively? 

Addressing privacy concerns such as identification, 
localization, and profiling through advanced encryption and 

anonymization techniques can significantly enhance user trust 

in WSN applications. 
7 Which types of attacks on WSN are most prevalent at 

each layer of the network, and what are the most 

effective countermeasures? 

Layer-specific security measures tailored to the unique 

vulnerabilities of each network layer are the most effective 

strategy for mitigating attacks on WSN. 

 

 

2.2.  Search strategy, keywords 

A search strategy was developed for this study to search and identify relevant literature sources. The 

selected keywords searched include “WSN”, “wireless sensor networks”, “WSN security”, “WSN attacks”, 

“intrusion detection systems”, “intrusion detection methods”. They were linked using the logical operators 

“AND”, “OR” as shown in Table 2. Relationships in the form of: (TITLE (“WSN”) OR TITLE-ABS-KEY 

(“Wireless Sensor Networks”) AND TITLE-ABS-KEY (“WSN security”) OR TITLE-ABS-KEY (“Wireless 

Sensor Networks security”) AND TITLE-ABS- KEY (“attack”) OR TITLE-ABS-KEY (“cyberattacks”) OR 

TITLE-ABS-KEY (“IDS”) OR TITLE-ABS-KEY (“Intrusion Detection Systems”) OR TITLE-ABS-KEY 

(“Intrusion Detection Methods”)). 

SCOPUS, Google scholar, Crossref, Semantic scholar databases are selected for this research study 

using the study of the last five years from 2019-2023 as shown in Table 3. Scientific databases from the 

sources listed above, are summarized in Table 3, and keywords are summarized in Table 2. Specific search 

strategies were also used. In particular, research articles were analyzed for inclusion and exclusion criteria as 

shown in Figure 3. 
 

 

Table 2. List of keywords 
Strings Watchwords 

WSN OR 
Wireless sensor networks AND 

WSN security OR 

WSN attacks OR 
Intrusion detection systems OR 

Intrusion detection methods OR 

 
 

Table 3. Databases 
Publisher URL 

Scopus https//www.scopus.com 
Web of Science https://www.webofscience.com 

Google Scholar https://scholar.google.com 

Crossref https://www.crossref.org 
Semantic Scholar https://www.semanticscholar.org 

 
 

The criterion for selecting articles for further review and analysis was defined, i.e., the method of 

searching and selecting articles using specialized keys and PRISMA meta-analysis [15], [16], as shown in 

Figure 3. The PRISMA flowchart, describes the process of identifying studies in scientific databases for 

systematic review. The flowchart is divided into four main steps: identification, screening, selection and 

inclusion. The algorithm results in the selection of 100 articles according to given requirements for further 

research. 
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Figure 3. PRISMA flow diagram on selection and screening of the papers 
 

 

2.3.  Paper selection criteria 

The selection criterion was based on the PRISMA flow diagram. The search first focused on 

existing research on WSN attack detection methods and algorithms, WSN security, and WSN attack 

detection methods. The search covered the period from 2019 to 2023. First, all articles published before 2019 

were excluded from the search. Then, all articles written in languages other than English were excluded.  

The search was mainly focused on matching research on the defense of wireless sensor networks. In order to 

identify studies through scientific databases using PRISMA scheme, first, 1,038 articles from different 

database from Table 3 were effectively collected and imported. After importing the collected studies, a 

screening process follows. In the screening process, firstly, duplicates are removed and then 230 articles are 

selected for further screening. Articles in the field of computer science, engineering were selected.  

The duplicate 44 articles were eliminated. Next, articles with high h index were selected. After screening, 

another 20 articles from own database were added to the study list. Screening result of included and excluded 

articles is shown in Figure 4. After that, 100 articles were selected and included as shown in Figure 4(a) for 

further analysis of papers. 130 articles were excluded as shown in Figure 4(b). Table 4 shows the inclusion 

and exclusion criteria for research articles. 

 

 

  
(a) (b) 

 

Figure 4. Screening result of (a) included and (b) excluded articles 
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Table 4. Criteria for inclusion and exclusion of research articles 
Parameters Inclusion Exclusion 

Source  Published works in different journals or conferences  - 
Year of publication  2019-2023 to 2019 

Language  English Other languages 

Field of science  Computer science, engineering Other fields 
Citation and Index  More citations  Less citation 

 High h index Without h index 

Duplication  
Own database 

- 
+ 20 databases 

Duplicates 
- 

 

 

The study involved extensive data collection, which was stored in a spreadsheet with the addition of 

an in-house database. This data included information on the title of the articles, authors, year of publication, 

dataset, IDS, algorithm or method used, model performance, types of attacks on WSN, annotations, and data 

sources. This approach allowed us to organize and organize the information, which further facilitated the 

work. Several interesting findings emerged from this study. First, it was found that the use of different types 

of artificial intelligence algorithms can significantly affect the performance of models. 

 

2.4.  Quality assessment 

Articles, review articles and conference proceedings were used in the quality assessment process of 

this review. To ensure the quality of the review, all repeated entries were carefully checked. Each study was 

carefully evaluated. Article abstracts were screened in depth to analyze and clean the articles to ensure the 

quality and relevance of the research article included in the review process. 

The study selection criteria showed high relevance and reliability of information. It is important to 

note that this assessment is a result of the analysis, thus giving credence to the findings and 

recommendations. This review is a reliable and relevant source of information on the topic. 

Our study emphasized the need for an extended study of this topic. The findings suggest that the 

complexities inherent in this topic are far-reaching and require more in-depth study. We can hope to show the 

intricacies of the field, thereby contributing to a more complete understanding that can potentially inform 

future academic discussions and practical applications. It is important to note that this assessment results 

from an analysis, which allows you to trust the conclusions and recommendations obtained. This review 

provides a reliable and up-to-date source of information on the topic. 

 

 

3. RESULTS 

This section presents a comprehensive analytical review and empirical analysis of WSN security, 

covering classifications by attack type, IDSs, attack identification techniques, algorithms, models, and 

existing security taxonomies. The proposed extended taxonomy of WSN security measures reflects the 

evolving landscape of cybersecurity threats and defense mechanisms, offering a forward-looking perspective 

on WSN security. This section has provided a comprehensive analytical review and empirical analysis of 

WSN security, covering classifications based on attack types, IDSs, attack identification methods, 

algorithms, models, and existing security taxonomies. The proposed extended taxonomy of WSN security 

measures reflects the evolving landscape of cybersecurity threats and defense mechanisms, offering a 

forward-looking perspective on securing wireless sensor networks. 

 

3.1.  Analysis of selected articles by publisher and by year 

Figure 5 shows the structured number of articles that were selected for analysis from those 

published by reputed scientific publishers between 2019 and 2023. Including ‘IEEE Xplore’ with 17.9%, 

‘Springer’ with 20.2%, sources include ‘Elsevier’ with 13.1%, ‘Other’ with 10.7% and ‘Academia.edu’ with 

6.0%. Smaller segments are represented by sources such as ‘Wiley Online Library’ with 4.8%, ‘Taylor and 

Francis’ with 2.1%, ‘ACM’ with 2.4%, ‘Science Direct’ and ‘Scholar.archive.org’ with 2.4%, 'ResearchGate' 

with 7.1%, ‘MDPI’ with 6.0%, and ‘IJETT’ with 1.2%. 

Figure 5 provides a visualization of the variety of sources used to access research papers and 

shows that there is a range of preferred sources on the research topic within the research community. 

Figure 6 shows the annual distribution of research from 2019 to 2023. It has been observed that the 

number of studies has not decreased over the years, which means that the areas of attack identification and 

security assessment of WSN are gaining popularity and attracting more attention from various scholars as 

the security of WSN is relevant. 
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Figure 5. Articles selected for review publisher 

 

 

 
 

Figure 6. Distribution of studies by year of publication 

 

 

3.2.  Classification of studies on types of WSN attacks 

Attacks on WSN can be classified based on their purpose, type and methods used. By purpose, 

attacks can target data availability, integrity or confidentiality. By type, attacks can be passive or active. 

Passive attacks involve intercepting and analyzing traffic, while active attacks involve altering or destroying 

data [17]. According to the methods used, attacks can be based on physical vulnerabilities, software 

vulnerabilities or protocol vulnerabilities. 

When WSN are used in different domains, a variety of attack scenarios are possible. The articles 

[18] classify attacks into 6 main categories: physical attacks, network attacks, software attacks, encryption 

attacks, data privacy attacks, encryption attacks. And common attacks on wireless sensor networks include:  

− Network availability attacks, such as DoS attacks, which can overload a network and make it unavailable 

to legitimate users [19]. 

− Data integrity attacks, such as message spoofing attacks, which can alter or delete data on the network [20]. 

− Data privacy attacks, such as traffic hijacking attacks, which could lead to the disclosure of sensitive 

data [21]. 

− Software attacks, such as buffer overflow attacks, which can lead to the execution of arbitrary code on the 

network. 

− Protocol attacks such as routing attacks that can lead to network disruption or traffic redirection. 

The classification of WSN attacks is presented in Figure 7 and the types of attacks and defense techniques are 

described in Table 5. 
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Table 5. Comprehensive analysis of classification by attack type 
Authors Year Threat/attack types 

Chen et al. [17] 2023 DoS, GPU side channel 
Chen et al. [18] 2019 LDoS  

Godala et al. [19] 2020 DoS  

Subbiah et.al. [20] 2022 DDoS, black hole, wormhole, and gray hole  
Faris et.al. [1] 2023 Dos, black hole, wormhole, sinkhole, sybil, jamming, node tampering, collision, 

exhaustion, unfairness, routing, flooding, deluge, selective forwarding, misdirection, 

byzantine, packet replay, TCP SYN flooding, session hijacking, and deluge 
Chauhan and Sharma [21] 2019 DoS 

Gupta et al. [22] 2023 DoS  

Otoum et al. [23] 2019 Wormhole  
Xie et al. [24] 2019 Wormhole  

Boubiche et al. [25] 2020 Sinkhole  

Dener et al. [26] 2023 Black hole, flooding, and selective forwarding  
Hanif et al. [27] 2022 Wormhole  

Alqahtani et al. [28] 2019 Black hole, flooding, scheduling, and gray hole  

Angappan et al. [29] 2021 Sybil  

Hajiheidari et al. [30] 2019 DoS, wormhole, sinkhole, sybil, replay, selective forwarding, jamming, and black 

hole  

Bel and Sabeen [31] 2021 Black hole, wormhole, sinkhole, sybil, hello flooding, selective forwarding, and 
fragmentation 

Liang and Kim [32] 2021 ARP 

 

 

Figure 7 presents the different types of network attacks, which can be useful for analyzing 

cybersecurity and prioritizing defense strategies. Attacks involving the software layer are among the most 

common. This type of attacks can exploit vulnerabilities in WSN software to gain control over the network 

[32]. To protect WSN from attacks, various security measures such as: i) data encryption: encryption protects 

the data from unauthorized access; ii) authentication and authorization: authentication and authorization 

make sure that only authorized users can access the network and its resources; and iii) attack detection and 

response: attack detection and response systems can help detect and remediate attacks in real time. Following 

these security measures can help protect the WSN from attacks and ensure safe and secure network 

operations. Figure 8 illustrates the variety of attacks that can occur in WSN and the different strategies used 

to control measures WSN from these threats. 
 

 

 
 

Figure 7. Classification of studies by attack type 
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Figure 8. WSN attacks and countermeasures 

 

 

3.3.  Classification of IDS-based studies 

The section is dedicated on the classification of research on IDS-based WSN IDS. An IDS 

sometimes known as an intrusion prevention system (IPS) is an active defense mechanism deployed by the 

IoT that can recognize intrusion activity and initiate alerts [33]. However, as the number of hazards increases, 

questions arise about the long-term viability and practicality of current methods. These considerations are 

particularly relevant in light of the increasing level of adaptive performance and the lack of detection 

accuracy. Intrusion detection capabilities include: monitoring and analyzing user and system activities; 

analyzing system configuration and vulnerabilities; assessing system and file integrity; the ability to identify 

attack patterns; analyzing anomalous activity patterns; and tracking users for policy violations [34]. 

Research analysis has shown that there are four main methods to build an IDS: signature-based and 

data-based, behavior analysis-based IDS, and artificial intelligence-based IDS. Each type of IDS has its own 

advantages and disadvantages [35]. The selection of the most appropriate system depends on the specific 

requirements of a particular organization. In some cases, it may be necessary to deploy multiple IDS types to 

ensure comprehensive coverage [36]. Table 6 shows the classification of selected studies on IDS, detection 

categories and detection methods, attacks and threats [37]. According to the selected studies, most of the 

researchers used WSN based IDS, distribution-based IDS, anomaly-based IDS, DL based IDS, and ML based 

IDS and that the proposed IDS improves security, detection accuracy. 

Existing IDSs for WSN have several shortcomings. First, they often do not take into account the 

specific characteristics of WSN, such as limited computational resources and low bandwidth. Second, they 

are often unable to detect sophisticated attacks that can be disguised as legitimate traffic. Figure 9 shows that 

the application efficiency is more in WSN-based IDSs, ML-based IDSs, and DL-based IDSs. The literature 

review of IDS for WSN identified the following problems that need to be addressed: 

− Lack of attention to privacy. Most existing IDSs do not consider privacy issues that may arise when using 

WSN. 

− Lack of comprehensive approach. Most existing IDSs focus on detecting attacks on one layer of WSN 

while ignoring attacks on other layers. This leads to the fact that IDSs cannot provide a complete defense 

of WSN against all possible attacks. 

− Insufficient research on some types of attacks. Some types of attacks, such as attacks on the physical layer 

of WSN, are not sufficiently studied. This makes it difficult to develop effective methods to defend 

against such attacks. 

It is necessary to develop new IDSs that will take into account the specific characteristics of WSN, provide a 

comprehensive approach to attack detection and will be able to detect complex attacks. 
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Table 6. Comprehensive analysis of classification by IDS 
Authors Year Detection category Detection method/algorithm 

Salmi and Oughdir [34] 2023 Efficient and lightweight IDSs DNN, CNN, RNN и CNN + RNN 
Albelwi [35] 2022 Anomaly-based IDS Multi-task learning (MTL) model for  

Smys et al. [36] 2020 Anomaly-based IDS Network attack 

Almiani et al. [37] 2020 Fog computing-based IDS DoS, Probe, R2L, U2R 
Larriva-Novo et al. [38] 2021 Anomaly-based IDS Network traffic categorization 

Lyu et al. [39] 2019 Anomaly-based IDS Distributed DNS attacks  

Shafiq et al. [40] 2020 IoT anomaly and intrusion traffic identification 
system 

Bot-IoT attacks 

Korzhuk et al. [41] 2019 IDS DL 

Kilincer et al. [42] 2023 SPA-IDS: an intelligent IDS KNN, SVM, DT, and BT classifiers  
Yang et al. [43] 2023 Аnomaly-based IDS ML models 

Selvakumar et al. [44] 2022 Intelligent IDS  

Elsayed et al. [45] 2022 IoT and SDN systems DL 
Safaldin et al. [46] 2020 GWOSVM-IDS GWOSVM-ID 

Almomani and Alromi [47] 2020 IDS: scheduling, broadcast и watchdog  

Umarani and Kannan [48] 2020 Artificial immune system Hybrid tissue growing algorithm  

Sinha and Paul [49] 2022 Anomaly-based IDS NN  

Gite et al. [50] 2023 ML-based intrusion detection scheme C4.5 and CART classifiers 

Otoum et al. [51] 2019 DL-based IDS Restricted boltzmann machine-based 
clustered IDS (RBC-IDS) 

Sinha and Tripathi [52] 2023 ML and DL based IDS ML/DL 
Rajasoundaran et al. [53] 2022 DPFES, DCNN, DL-MCDS DL 

Zhang et al. [54] 2020 WSN IDS  

Karthikeyan et al. [55] 2023 QoS based hybrid swarm intelligent IDS  Artificial bee colony (ABC) with the 
genetic algorithm (GA) 

Asharf et al. [56] 2020 Machine and deep learning-based IDS ML/DL 

Zhao et al. [57] 2019 An effective exponential-based trust and 
reputation evaluation system 

ETRES  

Yang and Wang [58] 2019 ICNN Stochastic gradient descent algorithm 

LeNet-5 and DBN, LeNet-5, and RNN 
Davahli et al. [59] 2020 IoTIDS GA–GWO 

Subramani and Selvi [60] 2023 Classification algorithms-based IDS Proposed fuzzy CNN 

Abhale and Reddy [61] 2023 Network IDS (NIDS) DL 
Raveendranadh and 

Tamilselvan [62] 

2023 WSN based IDS EPK-DNN 

Li et al. [63] 2023 WSN based IDS ESVM 
Gupta and Gupta [64] 2023 MWSN SDFA 

Hemanand et al. [65] 2022 CSGO CSGO и LSVM 

Godala and Vaddella [19] 2020 Suitable IDS CSGO-LSVM model  

 
 

 
 

Figure 9. Distribution of studies by IDS 
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3.4.  Classification of studies based on attack identification methods, algorithms and models 

This section describes studies based on attack identification methods and algorithms. Some studies 

[66]-[75] use data-driven approach because signature-based methods cannot detect zero-day attack.  

To identify WSN attacks, several data-driven approaches based on ML or DL methods have been proposed in 

the articles. The fundamental limitations of these approaches include the use of raw features to build an 

intrusion detection model, which may result in low detection accuracy. There are studies that implement 

entity embedding for the sake of transforming raw features, to provide accurate detection. Table 7 in 

Appendix shows the studies classified based on attack identification methods and algorithms. 

Figure 10 shows the categorization of studies on attack detection methods, algorithms, and 

technologies that have investigated the implementation of various AI algorithms. These algorithms include 

XGBoost, extreme learning machine (ELM) algorithm, Naive Bayes (NB), decision tree (DT), random forest 

(RF), support vector machine (SVM), probability support vector machine (LSVM), long short term memory 

(LSTM), recurrent neural network (RNN), convolutional neural network (CNN) deep neural network (DNN), 

K-nearest neighbors (K-NN) algorithm, fuzzy pattern tree (FPT), fuzzy logic algorithm, C-means, logistic 

regression (LR), deep learning (DL), and artificial neural network (ANN), CNN+RNN. The results of the 

analysis show that most of the studies utilized DL algorithms and various ML algorithms, while other studies 

focused on current issues related to WSN and IoT security. 
 

 

 
 

Figure 10. Classification of research by methods, algorithms and technologies for detecting attacks 

 

 

3.5.  Taxonomy classification of studies 

This section presents the taxonomy of security attacks, different IDS mechanisms to detect the 

attacks and performance metrics used to evaluate the IDS algorithm for WSN. The taxonomy of security 

threats for each layer and different algorithmic solutions that have been studied by numerous researchers aim 

to counter this attack and will allow more accurate reflection of network threats in new datasets. According to 

the presented taxonomies of modern IDSs, a comprehensive review of recent works, it can be concluded that 

WSN are becoming more secure. Table 8 and Figure 10 summarize the studies classified by taxonomy.  
 

 

Table 8. Comprehensive analysis of classification by taxonomy 
Authors Year Taxonomy 

Farooq et al. [110] 2020 A taxonomy of advanced IDSs, a comprehensive litany of popular recent cases, 
and a litany of datasets typically used for evaluation 

Sasi et al. [111] 2023 IoT attack taxonomy 

Hassija et al. [112] 2019 A taxonomy of security threats at different layers of an IoT application 
Kavitha et al. [113] 2023 Taxonomy of security threats for each layer and ML algorithmic solutions 

Krishna et al. [114] 2021 The comprehensive taxonomy of security and threats within the IoT paradigm 

Amanullah et al. [115] 2020 Taxonomy of IoT attacks 
Liang and Kim [32] 2021 Taxonomy of IoT attacks 

Atzori et al. [33] 2021 Taxonomy of IoT attacks 
Shah and Sengupta [116] 2020 Taxonomy of cyber-attacks on IoT and IoT devices 

Makhdoom et al. [117] 2018 Taxonomy of threats to the IoT  

Adamova et al. [2] 2023 Taxonomy of different types of failures in WSN 
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From Table 8, we can summarize that improving anomaly detection techniques is of great 

importance in combating cyberattacks. It can identify typical attacks and detect potential threats at early 

stages, which helps to better protect information systems and reduce risks and for better performance 

evaluation [115], [116]. ML and DL are becoming more and more widely used in the field of WSN and IoT 

security. This is due to its ability to analyze large amounts of data and detect anomalies in the performance of 

systems. ML algorithms learn from the data provided to them and can predict possible vulnerabilities and 

attacks. Thus, they can be an effective tool in combating cyber threats related to WSN and IoT [117], [118]. 

All these aspects are widely discussed in academia and practitioners to develop more reliable and secure 

WSN and IoT systems. However, it is necessary to continuously develop technical tools and strategies to 

maximize the effectiveness and protection against possible cyber threats in WSN and IoT. 
 

3.6.  Result of the taxonomy of security measures in WSN and discussion 

Thus, our extended taxonomy of security measures in WSN is proposed based on the results of the 

study. This taxonomy can be characterized as containing elements of a systematic approach to analyzing and 

addressing WSN security issues. Our extended taxonomy is presented in Figure 11, which includes attack 

types, datasets, effective methods for detecting attacks on WSN, countermeasures, and IDS. In addition, the 

presented taxonomy exhausts the gaps in building an IDS in WSN, and the shortcomings of the approaches 

proposed by researchers are identified. The detailed taxonomy of security measures in WSN aligns well with 

the initial hypotheses, providing a comprehensive framework that supports the effectiveness of ML, DL, and 

AI, the importance of IDS types, the role of attack and vulnerabilities databases, the implementation of 

security principles, the need to address privacy concerns, and the efficacy of layer-specific security measures. 

This comparison highlights the depth and relevance of the taxonomy in guiding research and development 

efforts in securing WSN. 

Figure 12 illustrates future WSN security research directions and their relative importance based on 

a hypothetical assessment. These areas include advanced encryption techniques, AI and ML for threat 

detection, energy-efficient security protocols, blockchain applications, and more. Each area is critical to 

improving the security and efficiency of WSN. Future WSN security research directions can make a 

meaningful contribution to the development of more secure, efficient, and resilient WSN that can meet the 

cybersecurity challenges of the future. 

Security in WSN and IoT is a challenging task not only due to the limited resources of end devices 

along with link losses but also due to new communication and networking technologies. Analyzing recent 

research studies on different types of attacks shows varying levels of attention and study. Some attacks attract 

significant research interest while others are relatively ignored. Researchers need to focus on understanding 

and mitigating all forms of attacks to improve network performance and security in the future. 

Currently, many strategies only consider specific types of attacks on individual layers of WSN, 

ignoring attacks on other layers. However, there is a need to develop a cross-layer IDS capable of detecting 

multiple attacks at different layers of WSN. In conclusion, securing WSN is a multifaceted task that requires 

an integrated approach. The proposed recommendations and our taxonomy together form a sound framework 

for enhancing WSN security. By applying these measures in real-world applications, WSN can significantly 

reduce the risks associated with cyber threats, unauthorized access, and data leakage in the WSN 

environment. 
 

 

 
 

Figure 11. Taxonomy of WSN security 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 318-337 

330 

 
 

Figure 12. Future research directions 

 

 

4. CONCLUSION 

In this paper, we performed an analytical review of WSN security article selected using specialized 

procedures to highlight the most informative and relevant scientific publications. As a result, we found a lack 

of comprehensive reviews on WSN. Existing reviews either provide minimal information on attacks or focus 

on network security and its impact on energy dissipation. To address this gap, we propose a new taxonomy to 

categorize WSN security measures. 

Based on the results of this study, we performed a systematic literature review to assess the current 

state of the WSN security and protection problem in the last 5 years. We categorized the research, according 

to the types of algorithms and methods used to identify attacks, and types of threats and the results of the 

classification revealed that the improvement of anomaly detection methods is of great importance in the fight 

against cyberattacks. We analyzed the IDS identification of attacks on WSN to identify their effectiveness. 

Furthermore, Research on ML, DL, and AI techniques for effective detection of different types of attacks, 

which are key actions in combating cyberattacks and securing WSN and IoT, is categorized. Lastly, a 

taxonomy of WSN security measures is proposed, based on analytical and empirical analysis. 

To successfully deploy and operate fault-tolerant and fault-tolerant WSN, several challenges related 

to their reliability, energy efficiency, management and security need to be addressed. Implementing modern 

authentication and authorization mechanisms, using data encryption, monitoring and detecting incidents, and 

regular security testing, creating standards and using new technologies such as blockchain, creating a security 

culture can significantly improve the security of WSN and ensure their safe and secure operation. Further 

research and development in this area is essential to ensure the resilience and security of WSN. Further work 

is also needed to improve the accuracy of attack detection with real applications and on real datasets to detect 

new types of threats. 

 

 

APPENDIX 
 

 

Table 7. Comprehensive analysis of classification by type of methods and algorithms of identification attacks  
Authors Year Dataset Threat/attack types Detection method/algorithm/model 

Alzahrani and Alzahrani 

[66] 

2020 CICDDoS2019 DDoS K-nearest neighbors, and decision tree 

Nedeljković and 
Jakovljević [67] 

2021 SWaT Cyber-attack CNN  

Kumari and Mrunalini [68] 2022 CAIDA 2007 DoS attack ML 

Su et al. [69] 2020 NSL-KDD  BLSTM (bidirectional long short-

term memory) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Towards robust security in WSN: a comprehensive analytical … (Tamara Zhukabayeva) 

331 

Table 7. Comprehensive analysis of classification by type of methods and algorithms of identification attacks 

(Continued) 
Authors Year Dataset Threat/attack types Detection method/algorithm/model 

Dasari and Devarakonda 

[70] 

2022 CICDDoS2019 DDoS Logistic regression, decision tree, 

random forest, Adaboost KNN и 

Naive Bayes 
Alsahli et al. [71] 2021 KDD99 IPS Random forest, Naïve Bayes, IBK 

Kovač et al. [72] 2022  phishing attacks and spam Regression and classification 

algorithms 
Singh et al. [73] 2020 WSN-DS Malicious attacks  Fuzzified method 

Avcı and Koca [74] 2023 CIC IoT dataset 

2022 

DDoS KNN, ANN, and SVM 

Almiani et al. [37] 2020 NSL-KDD Cyber-attack RNN 

Zhang et al. [75] 2023 DBN SF attack DBN 

Alotaibi [76] 2019  Malicious attacks Hamming residue method (HRM) 
Nancy et al. [77] 2020 KDD cup data set 

and network trace 

data set 

Known type of attacks Dynamic recursive feature selection 

algorithm 

Jahromi et al. [78] 2021 ICS datasets Known type of attacks DNN 

Doiba et al. [79] 2023 NSL-KDD, IoT-23, 

BoT-IoT, and 
Edge-IIoT 

IDS Gradient boosting, decision tree 

Mounica et al. [80] 2021 Datasets of DDOs, 

R2L, Probe, Sybil, 
and Norma 

Sybil attack SVM 

Lakshmi et al. [81] 2019  RREQ flooding DOS 

attacks 

NS2-based WSN model 

Asad et al. [82] 2023 CIC IDS 2017  DDOS attack DNN 

Pan et al. [83] 2021 NSL-KDD and 

UNSW-NB15 data 
sets 

Cyber-attack kNN, PM-CSCA algorithms 

Devi et al. [84] 2023 CIC-IDS2017 DDoS attack RF 

Chinnaraju and 
Nithyanandam [85] 

2022  GHA Neighbor based 

Wazirali and Ahmad [86] 2022 WSN-dataset in 

different sizes 

DOS attack, DDOS attack LSTM, MLP, KNN, LR, SVM, DT, 

and Naïve Bayes 

Elsaid and N. S. lbatati [87] 2020   ML algorithm BS 

Al-Tashi et al. [88] 2020 15 standard 

benchmark datasets 
from the UCI 

repository 

 BMOGWO-S  

Jiang et al. [89] 2020 WSN-DS Blackhole, grayhole, 
flooding, and scheduling 

TDMA attack 

SLGBM 

Otoum et al. [90] 2021  DoS, user‐to‐root (U2R) 
attack, probe attack, and 

remote‐to‐local (R2L) 

attack 

Restricted boltzmann machine-based 
clustered IDS (RBC-IDS) 

Rajasoundaran et al. [53] 2022  Sinkhole DL 

Karthikeyan et al. [55] 2023   ABC with the GA  
Asharf et al. [56] 2020   ML/DL 

Ferrag et al. [91] 2019 Bot-IoT, MQTTset, 

TON_IoT 

Cyber-attacks RNN, CNN и DNN. 

Yang and Wang [58] 2019 KDDTest  Stochastic gradient descent algorithm 

LeNet-5 and DBN, LeNet-5, and 

RNN 
Davahli et al. [92] 2020   GA–GWO 

Lutfi and Ahmed [93] 2020   HNF--ACA 

Kumar et al. [94] 2021  Malicious nodes IDCNN 
Zhang et al. [54] 2020  FDI attacks DL 

Raveendranadh and 

Tamilselvan [62] 

2023 BC, MC dataset  EPK-DNN, DL 

Amaran and Mohan [95] 2023 NSL KDDCup 99  OSVM 

Shelar et al. [96] 2023   EBB84  

Li et al. [63] 2023   SDFA 
Saif et al. [97] 2022  Blackhole, grayhole, 

flooding attacks 

RF, kNN, SVM, J48, and NB 

Hemanand et al. [65] 2022 CSGO  CSGO и LSVM 
Godala and Vaddella [19] 2020   CSGO-LSVM model 

Embarak and Abu Zitar 

[98] 

2023  DoS attack ML 
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Table 7. Comprehensive analysis of classification by type of methods and algorithms of identification attacks 

(Continued) 
Authors Year Dataset Threat/attack types Detection method/algorithm/model 

Dener et al. [26] 2023 WSN-BFSF Blackhole, flooding, and 
selective forwarding 

attacks 

ML: RF, DT, NB, LR, and DL 

Sadineni et al. [99] 2022   Fuzzy-related feature selection 
technique 

Kushwaha and Pandey 

[100] 

2023   SACC-AHP 

Jing et al. [101] 2019 Open-source 

datasets 

DDoS flooding attacks Modified multi-chart cumulative sum  

Cai et al. [102] 2020  types of network attacks 
in CPSs 

ADA, AGV 

Khraisat et al. [103] 2019 DARPA, KDD98 

datasets 

 ML 

Shakya [104] 2021 NSL KDD’99  MLGWO 

Selvakumar et al. [105] 2019   FRNN 

Tekerek [106] 2021  Web attack CNN 
Farooq et al. [107] 2020 IDS  Four common evasion techniques 

IDSs 

Tahsien et al. [108] 2020   ML 
Kumari and Jain [109] 2023  DDoS attack DDoS defense methodologies 
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