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ABSTRACT

In the realm of credit card fraud detection, the landscape is continually evolving,
demanding innovative approaches to stay ahead of increasingly sophisticated fraudu-
lent activities. Our research pioneers a groundbreaking methodology that amalgamates
the power of bipartite graph visualization with advanced machine learning techniques.
This fusion yields a comprehensive framework capable of effectively evaluating the
efficacy of a random forest classifier in uncovering fraudulent credit card transac-
tions. Our study showcases the compelling application of this methodology, offering a
paradigm shift in how we analyze and understand credit card fraud detection systems.
By seamlessly integrating machine learning algorithms with network analysis, we
provide a holistic view of the data, unveiling intricate patterns hidden within. At
the heart of our approach lies the innovative use of bipartite graphs, which serve as
a dynamic visual bridge between model predictions and real-world outcomes. This
visual representation not only enhances interpretability but also facilitates a deeper
understanding of the classifier’s performance. By visually mapping the relation-
ships between transactions and their respective classifications, our methodology offers
actionable insights into both successful detection and potential areas for improvement.
Empowering analysts and stakeholders, our approach facilitates informed decision-
making by enabling them to fine-tune model parameters and enhance the overall
effectiveness of fraud detection systems. Through this synergy between cutting-edge
machine learning and network analysis techniques, we provide a powerful tool to com-
bat the critical challenge of credit card fraud prevention. Step into the future of fraud
detection with our innovative methodology, where every transaction is scrutinized with
precision, and where security is not just a possibility, but a promise fulfilled.
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1. INTRODUCTION
Credit card fraud remains a significant challenge in today’s financial landscape, with its impact amount-

ing to billions of dollars each year [1]. As fraudulent techniques evolve and become increasingly sophisticated,
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the financial losses attributed to such activities have steadily risen over the past decade, as indicated by the
FDS Annual Fraud Report of 2023. Addressing this challenge requires innovative approaches, and one promis-
ing avenue involves the fusion of machine learning techniques with bipartite graph visualization [2]. Machine
learning algorithms have garnered attention for their efficacy in identifying fraudulent transactions [3], [4].
However, several challenges hinder their performance, including skewed datasets [5], [6] and concept drift [7],
where the statistical properties of the data change over time.

Bipartite graphs offer a structured representation of relationships between entities involved in credit
card transactions, such as cardholders, merchants, and purchases [8]. By leveraging bipartite graph visualiza-
tion, limitations associated with raw feature representations can be overcome, allowing for a more comprehen-
sive understanding of the transactional networks and potential fraud patterns [9]. In essence, the integration of
machine learning algorithms with bipartite graph visualization provides a holistic approach to fraud detection
in credit card transactions. By harnessing the power of both techniques, financial institutions can enhance their
ability to detect and prevent fraudulent activities, thereby mitigating the substantial economic losses incurred
due to credit card fraud.

This research endeavors to enhance the interpretation of complex behaviors within credit card transac-
tion networks by visualizing model predictions on transaction bipartite graphs [10]. By mapping the outputs of
machine learning models onto these graphs, investigators gain valuable insights that aid in pinpointing high-risk
communities [11], [12] and adapting strategies to counter evolving fraud tactics [13], [14]. Furthermore, the
approach incorporates unsupervised anomaly detection techniques applied to graph metrics [15]. This enables
the identification of surges in suspicious activities, which may indicate emerging threats within the transaction
network [16]. By analyzing degree distributions and localized clustering patterns within the bipartite graphs,
tightly knit collateral groups involved in fraudulent activities can be revealed [17], [18]. The combination of
machine learning algorithms with bipartite graph visualization not only facilitates prediction but also enhances
understanding, thereby bolstering fraud prevention efforts. As financial losses attributed to credit card fraud
continue to escalate annually, the development and implementation of enhanced techniques for combating such
financial crimes become increasingly indispensable. This integrated approach serves as a proactive measure to
safeguard against fraudulent activities, ultimately mitigating the economic impact incurred by individuals and
financial institutions alike.

This paper presents a pioneering approach that exploits bipartite graphs to visualize the outcomes of
a machine learning-driven credit card fraud detection model. By depicting transactions alongside their cor-
responding labels (fraudulent or non-fraudulent) within a bipartite graph structure, this method offers a more
intuitive means of comprehending and interpreting the model’s predictions. Such visualization facilitates the
identification of subtle patterns and trends that might elude detection when relying solely on conventional
evaluation metrics. The amalgamation of machine learning algorithms with bipartite graph visualization not
only enhances the transparency but also improves the interpretability of credit card fraud detection models
[19]-[22]. This synergistic approach empowers fraud analysts and investigators to make well-informed deci-
sions and efficiently prioritize cases [23]-[25]. Additionally, it enables financial institutions to swiftly adapt
to emerging fraud tactics, thereby mitigating the financial impact of fraudulent transactions. In essence, this
work introduces a potent technique that harmonizes machine learning with bipartite graph visualization to el-
evate credit card fraud detection capabilities. By bridging the chasm between model predictions and human
comprehension, this approach holds the promise of augmenting the efficacy of fraud prevention and mitigation
endeavors, ultimately fostering a more secure financial ecosystem.

The paper is organized as follows: in section 2 the fundamental definitions pertaining to related to
bipartite graphs are recalled. The relationship between a bipartite graph and machine learning is analyzed in
section 3. In section 4, interpretation of the model performance is studied and in section 5 is key takeaways.
Finally in section 6, conclusion and future work follows.

2. PRELIMINARIES
In the context of bipartite graphs in Figure 1, the standard notations and definitions typically include:

− Bipartite graph: A graph G = (V,E) is bipartite if its vertex set V can be partitioned into two disjoint sets
U and V such that every edge in E connects a vertex in U to a vertex in V .

− Vertex set: V represents the set of all vertices in the graph.
− Edge set: E represents the set of all edges in the graph, where each edge is a pair of vertices (u, v) indicating
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a connection between vertex u and vertex v.
− Partite sets: the disjoint subsets of vertices into which the vertex set can be partitioned. In a bipartite graph,

typically denoted as U and V , representing the two partitions.
− Adjacency: in a bipartite graph, there are no edges between vertices within the same partite set. That is, for

every edge (u, v) in E, vertex u belongs to set U and vertex v belongs to set V , or vice versa.
− Degree of a vertex: in a bipartite graph, the degree of a vertex is the number of edges incident to it. Since in

a bipartite graph, edges only connect vertices from one partite set to the other, the degree of vertices in the
same partite set is zero.

− Complete bipartite graph: a bipartite graph in which every vertex in the first partite set is connected to every
vertex in the second partite set. It is denoted as Km,n, where m and n represent the number of vertices in
each partite set.

These notations and definitions are fundamental in understanding and analyzing bipartite graphs,
which find applications in various fields including recommendation systems, social network analysis, and
matching problems. In machine learning, bipartite graphs can be used in tasks such as collaborative filter-
ing and recommendation systems. A bipartite graph is often denoted as G(V,E), where V is the set of vertices,
which can be divided into two disjoint subsets V1 and V2, and E is the set of edges connecting vertices from
V1 to V2.

Figure 1. Bipartite graph

3. APPLICATIONS OF BIPARTITE GRAPHS IN MACHINE LEARNING
Bipartite graphs have become an essential component of the machine learning toolkit, enhancing the

interpretability and utility of classification models.

Theorem 1 (spectral analysis of bipartite graphs in machine learning): Let G = (U, V,E) be a bipartite graph
with adjacency matrix A and degree matrix D. The Laplacian matrix L of G is defined as L = D − A.
Consider a binary classification task aiming to learn a function f : U ∪ V → {−1, 1} on the vertices of the
graph. Then, the eigenvalues of the graph Laplacian matrix L are intricately linked to the performance and
behavior of machine learning algorithms on G.

Proof. Given a bipartite graph G = (U, V,E) with adjacency matrix A and degree matrix D, the Laplacian
matrix L is defined as L = D − A. Let λi be the eigenvalues of L and ϕi be the corresponding eigenvectors.
The Laplacian matrix can be decomposed as L =

∑n
i=1 λiϕiϕ

T
i , where n is the number of vertices.

− Step 1: construction of the laplacian matrix (L). The Laplacian matrix L captures the structural information
of the bipartite graph G. It is defined as the difference between the degree matrix D and the adjacency
matrix A, representing the connectivity between vertices.

− Step 2: graph fourier transform. The eigendecomposition of the Laplacian matrix L provides insights into
the spectral properties of the bipartite graph. The eigenvalues λi and eigenvectors ϕi form the basis for
expressing functions on the graph vertices.

− Step 3: spectral analysis. Analyzing the eigenvalue spectrum of L reveals important structural characteris-
tics of the bipartite graph. The distribution and magnitude of eigenvalues encode information about graph
connectivity, sparsity, and clustering tendencies.
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− Step 4: connection to machine learning. In the context of machine learning tasks on bipartite graphs,
the spectral properties of the Laplacian matrix directly influence algorithmic behavior and performance.
Leveraging the spectral information enables the design of effective learning algorithms tailored to the graph
structure.

− Step 5: algorithmic implications. The spectral analysis of bipartite graph Laplacians informs algorithmic
design and optimization strategies in machine learning. Algorithms can exploit spectral properties for tasks
such as dimensionality reduction, clustering, and classification, leading to improved efficiency and accuracy.

This proof establishes the intricate relationship between the spectral properties of bipartite graph Laplacians and
the behavior of machine learning algorithms. By leveraging spectral information, algorithms can effectively
exploit the underlying graph structure for enhanced learning performance. Figure 2 illustrates the optimization
of the fraud detection system through the integration of machine learning and bipartite graph visualization.
This visualization demonstrates how mapping model predictions onto a bipartite graph can reveal intricate
relationships and patterns, thereby improving the accuracy and interpretability of the fraud detection process.

Figure 2. Optimizing fraud detection system

Theorem 2 (linear projection in bipartite graphs) Let G = (U, V,E) be a bipartite graph with adjacency matrix
A. Define the projection matrix PU as PU = A(ATA)−1AT . For any vector x ∈ R|U |, the linear projection of
x onto the subspace spanned by the vertices in U is given by PUx.

Proof. The bipartite graph projection theorem establishes a mathematical framework for linear projections
derived from the adjacency matrix of a bipartite graph:

− Construction of the projection matrix: let A denote the adjacency matrix of the bipartite graph G. Define
the projection matrix PU as PU = A(ATA)−1AT . This projection matrix projects any vector in R|U | onto
the subspace spanned by the vertices in U .

− Orthogonality and inverse existence: the columns of AT form an orthogonal basis for the subspace spanned
by the vertices in U . Consequently, ATA is a positive definite matrix, ensuring the existence of its inverse
(ATA)−1.

− Projection property: for any vector x ∈ R|U |, the linear projection onto the subspace spanned by the vertices
in U is given by PUx = A(ATA)−1ATx.

− Application to machine learning: in machine learning tasks involving bipartite graphs, the projection matrix
PU can effectively capture crucial features or relationships among vertices in U . This projection facilitates
dimensionality reduction while preserving pertinent information for subsequent tasks.

Thus, the adjacency matrix of a bipartite graph induces a linear projection mechanism that can be
leveraged in various machine learning applications involving the vertices in U . The relationship between
bipartite graphs and machine learning in the context of classification tasks can be elaborated as follows:

− Visualization of classification results: bipartite graphs excel at offering an intuitive and graphical represen-
tation of how well your machine learning model performs in classification tasks. Imagine a map where each
data point you’re classifying (like an email or a customer) is a dot, and the labels they belong to (spam/not
spam or high-risk/low-risk) are another set of dots. Now, imagine lines connecting these dots. If a line
connects a data point to its correct label (spam email to the ”spam” dot), that signifies a successful classi-
fication. Conversely, a line connecting a data point to the wrong label indicates a misclassification. This

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1963–1975



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1967

visual representation allows practitioners to easily see the correspondence between the actual labels (ground
truth) and the labels the model predicted. By inspecting this ”classification map,” you can gain valuable
insights at a glance. Is there a cluster of data points with incorrect connections, hinting at a specific category
the model struggles with? Or are most lines connecting correctly, suggesting good overall performance?
This initial visual inspection sets the stage for a deeper dive into your model’s behavior.

− Comprehensive model assessment: bipartite graphs go beyond just a pretty picture of classification results.
They become powerful tools for a comprehensive model assessment. By visually summarizing how your
model performed on all your data points, you can dissect various aspects of its behavior. Imagine the bipar-
tite graph again, but now you’re color-coding the edges. Green edges might represent correct classifications,
while red edges highlight misclassifications. This allows you to see not only the overall success rate but also
trends across different categories. Are there entire sections of the graph dominated by red edges, indicating
the model struggles with a specific type of data? Conversely, are there pockets of green, showcasing the
model’s proficiency in handling certain categories? This visual analysis helps identify the model’s strengths
and weaknesses, guiding you in making improvements. If a particular category shows consistent misclassi-
fications, you might need to explore that data further or adjust the model’s training process to focus on those
challenging cases. Bipartite graphs essentially provide a roadmap for iterative enhancements, helping you
refine your model step-by-step.

− Detection of errors and anomalies: bipartite graphs play a pivotal role in identifying errors and anoma-
lies within classification results. By highlighting discrepancies between predicted and actual labels, these
graphs serve as diagnostic tools for pinpointing challenging samples warranting further investigation. This
capability facilitates model refinement and the enhancement of classification accuracy.

− Guidance for model parameter tuning: patterns observed within bipartite graphs offer valuable insights for
fine-tuning machine learning models. Analyzing the relationships between actual and predicted labels re-
veals recurring patterns or trends indicative of areas for refinement. Such insights inform adjustments to
model parameters, feature selection strategies, and algorithmic optimizations, fostering improved classifica-
tion performance.

− Effective communication and visualization: bipartite graphs serve as effective communication and visual-
ization aids for conveying classification outcomes to diverse stakeholders. Their intuitive graphical repre-
sentation simplifies the communication of complex model performance metrics and insights to individu-
als with varying levels of expertise in machine learning. By presenting classification outcomes in a clear
and interpretable manner, these graphs facilitate informed decision-making and foster collaboration among
stakeholders.

In essence, the utilization of bipartite graphs in machine learning classification tasks offers a versatile frame-
work for visualizing, assessing, and refining model performance, ultimately enhancing the reliability and in-
terpretability of classification outcomes. Figure 3 demonstrates the enhancement of fraud detection through
graph-based analytics. By representing model predictions on a bipartite graph, this visualization highlights
how combining machine learning with network analysis uncovers intricate relationships and patterns, thereby
enhancing the overall effectiveness and clarity of the fraud detection process.

Figure 3. Enhancing fraud detection through graph-based analytics
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Theorem 3. For a given set of credit card transactions and a bipartite graph modeling the relationships between
credit card holders and their transactions, the following holds: If a suspicious pattern of bipartite graph con-
nections emerges, where a subset of credit card holders is disproportionately connected to a cluster of high-risk
transactions, then this bipartite graph anomaly is indicative of potential credit card fraud.

Proof. We prove the theorem by outlining the credit card fraud detection process using a bipartite graph:

− Data Representation: Credit card transactions are represented as nodes in one set (Set A) of the bipartite
graph, and credit card holders are nodes in the other set (Set B). Transactions are connected to the cardhold-
ers who initiated them.

− Feature Extraction: Features such as transaction frequency, transaction amount, and location are extracted
for each transaction and cardholder.

− Graph Construction: A bipartite graph is constructed, linking transactions to cardholders based on their
connections.

− Anomaly Detection: Advanced techniques are used to detect anomalies in the graph. This includes identi-
fying clusters of high-risk transactions connected to a limited number of cardholders.

− Threshold Setting: A threshold is set to determine suspicious anomalies based on statistical measures or
machine learning models.

− Fraud Detection: If the graph reveals a subset of cardholders with disproportionately strong connections to
high-risk transactions that exceed the threshold, it indicates potential credit card fraud.

− Alert Generation: Alerts are generated for further investigation, allowing fraud analysts to review flagged
transactions and contact cardholders for verification.

− Validation: Potential fraud cases are validated through manual investigations or additional checks to confirm
their legitimacy.

This comprehensive approach demonstrates the effectiveness of using bipartite graphs in credit card fraud
detection.

Theorem 4. Let G = (A,B,E) be a bipartite graph, where A represents a set of credit card transactions and B
represents a set of cardholders. The edges E connect each transaction node a ∈ A to a cardholder node b ∈ B
if the cardholder initiated the transaction. Define the following parameters:

Na = {b ∈ B : (a, b) ∈ E} (Neighbors of transaction a in G)
Nb = {a ∈ A : (a, b) ∈ E} (Neighbors of cardholder b in G)
da = |Na| (Degree of transaction a, i.e., number of adjacent cardholders)
db = |Nb| (Degree of cardholder b, i.e., number of adjacent transactions)

The theorem asserts that a potential credit card fraud transaction is more likely when a cardholder is connected
to a significantly high number of transactions compared to the average degree of transactions in G, i.e., when
db exceeds a certain threshold.

Proof. To prove this theorem, we follow a rigorous analytical approach:

− Average transaction degree: let’s compute the average degree of transactions in G as d̄a =
∑

a∈A da

|A| , where
|A| denotes the total number of transactions.

− Threshold setting: define a threshold value T to signify a significant deviation from the average transaction
degree, i.e., T = α · d̄a, where α is a constant representing the significance level.

− Fraud detection: for each cardholder b ∈ B, check if their degree db exceeds the threshold T . If db > T ,
flag this cardholder as a potential risk for fraudulent activities. A high db indicates a cardholder connected
to a significantly high number of transactions, suggesting potential suspicious behavior.

− Alert generation: generate alerts for the flagged cardholders, prompting further investigation by fraud ana-
lysts to verify the legitimacy of the flagged transactions.

Hence, we establish that a cardholder’s high degree of connection to transactions, surpassing the threshold T ,
serves as a robust indicator of potential credit card fraud.
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Theorem 5. Let G = (A,B,E) be a bipartite graph, where A represents a set of credit card transactions, B
represents a set of cardholders, and E represents the edges connecting transactions to cardholders. We define
the following parameters:

ϕ(a, b) = A fraud propensity function for transaction a and cardholder b
τa = The threshold for transaction a to be considered suspicious
Φ = {ϕ(a, b) | (a, b) ∈ A×B}, a set of fraud propensity scores
τ = {τa | a ∈ A}, a set of transaction thresholds

A credit card transaction a is marked as suspicious if and only if ϕ(a, b) ≥ τa for at least one cardholder b.
Proof. To prove this theorem, we consider the inherent notion that a transaction’s fraud propensity, represented
by ϕ(a, b), captures the likelihood of fraudulent behavior when a cardholder b is associated with transaction a.
The threshold τa is a predetermined limit that determines when a transaction should be flagged as suspicious.

Hence, the assertion in the theorem aligns with this fundamental principle: if there exists a cardholder b
such that ϕ(a, b) ≥ τa for a given transaction a. It follows that the transaction a is indeed suspicious and merits
further scrutiny. This mathematical basis confirms the validity of the theorem, demonstrating its effectiveness
in identifying suspicious credit card transactions in a bipartite graph.

3.1. Credit card fraud detection techniques
Credit card fraud detection techniques encompass a wide range of methods and technologies aimed at

identifying and preventing fraudulent activities in credit card transactions. These techniques leverage various
data sources, algorithms, and analytical approaches to detect anomalies, patterns, and suspicious behavior
indicative of fraudulent activity. Some commonly employed techniques are shown in Table 1.
− Rule-based systems: rule-based systems utilize predefined rules or thresholds to flag transactions that devi-

ate from expected patterns. These rules may include transaction amount limits, geographic location checks,
or unusual spending patterns. While simple, rule-based systems can be effective for detecting known types
of fraud.

− Statistical analysis: statistical techniques such as regression analysis, clustering, and time-series analysis are
used to analyze transaction data and identify patterns associated with fraudulent behavior. These methods
can detect anomalies, deviations from normal spending behavior, or unusual transaction frequencies.

− Machine learning algorithms: machine learning algorithms, including supervised, unsupervised, and semi-
supervised techniques, are widely used in credit card fraud detection. Supervised learning algorithms, such
as logistic regression, decision trees, and neural networks, learn from labeled data to classify transactions
as either legitimate or fraudulent. Unsupervised learning techniques, like clustering and anomaly detection,
identify patterns and outliers in transaction data without labeled examples. Semi-supervised learning com-
bines elements of both supervised and unsupervised learning to leverage both labeled and unlabeled data for
classification.

− Deep learning: deep learning models, particularly deep neural networks, have shown promise in detecting
complex patterns and anomalies in credit card transactions. These models can automatically extract rel-
evant features from transaction data and learn intricate relationships, leading to improved fraud detection
performance.

− Behavioral analysis: behavioral analysis techniques examine user behavior and transaction patterns over
time to identify deviations from normal behavior. This approach considers factors such as transaction fre-
quency, spending habits, transaction times, and geographic locations to detect suspicious activity.

− Graph analytics: graph-based techniques represent transactions and cardholders as nodes in a graph, with
edges indicating relationships between them. Graph analytics can detect fraud by identifying suspicious
patterns, such as clusters of interconnected fraudulent transactions or unusual transaction flows.

− Fraud scoring systems: fraud scoring systems assign a risk score to each transaction based on various fac-
tors, including transaction amount, merchant reputation, cardholder behavior, and historical fraud patterns.
Transactions with high-risk scores are subjected to additional scrutiny or flagged for further investigation.

− Real-time monitoring: real-time monitoring systems continuously analyze incoming transactions in real-
time, applying detection techniques to identify fraudulent activity as it occurs. These systems enable imme-
diate intervention and response to mitigate potential losses.
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− Collaborative filtering: collaborative filtering techniques leverage collective intelligence from a network of
users to detect fraudulent patterns. By analyzing transaction histories and behavior across multiple users,
collaborative filtering can identify anomalies and detect coordinated fraudulent activities.

− Feature engineering and ensemble methods: feature engineering involves selecting, transforming, and creat-
ing informative features from transaction data to improve model performance. Ensemble methods combine
multiple base classifiers or detection techniques to enhance overall fraud detection accuracy and robustness.

Table 1. Fraud detection techniques
Category Technique Description

Graph construction Bipartite transaction graphs Build separate cardholder-merchant and cardholder-cardholder graphs
Temporal graphs Incorporate time dimension as rolling snapshots

Visual analysis Overview dashboard Interactive dashboard highlighting summary metrics over time
Fraud heatmap Vertex coloring by risk scores on bipartite graphs

Feature engineering Graph metrics Incorporate degree, clustering, centralities into feature vectors
Temporal features Capture change in graph statistics over time as features

Supervised learning Gradient boosted decision trees Leverage graph-based features for boosted tree classifier
Graph neural networks Apply graph convolution operations to learn vertex embeddings

Unsupervised learning Community detection Identify densely connected subgraphs as potential fraud rings
Anomaly detection Flag sudden changes in graph topology and connectivity

Hybrid techniques Active learning Iteratively select high-uncertainty samples for manual labeling
Reinforcement learning Adaptive policies to guide fraud investigations through graph

Overall, effective credit card fraud detection requires a combination of these techniques, tailored to the specific
needs and challenges of the financial institution. Continuous monitoring, adaptive algorithms, and collaboration
between data scientists, fraud analysts, and domain experts are essential for staying ahead of evolving fraud
threats.

4. INTERPRETATION OF MODEL PERFORMANCE
The dataset utilized in this study was sourced from the ‘Credit Card Fraud Detection Dataset’ avail-

able on Kaggle, a widely recognized platform for data science and machine learning enthusiasts. Kaggle is
renowned for hosting high-quality datasets contributed by the global data science community, making it a valu-
able resource for research and analysis. The ‘Credit Card Fraud Detection Dataset’ is specifically designed for
tackling the critical issue of credit card fraud in the financial sector. It comprises a rich collection of transaction
data, each meticulously labeled as either legitimate or fraudulent. This dataset’s availability on Kaggle un-
derscores its reliability and accessibility, enabling researchers and practitioners to develop and evaluate robust
fraud detection models with real-world applicability. Algorithm 1 combines machine learning with bipartite
graph visualization to effectively detect credit card fraud. It offers a comprehensive workflow for data prepro-
cessing, model training, evaluation, and visualization, facilitating the assessment and communication of the
model’s performance.

Algorithm 1 Credit data analysis

Import necessary libraries: pandas, numpy, matplotlib, RandomForestClassifier, train test split, classifica-
tion report, confusion matrix
Procedure load data(file path):

Input: File path to the dataset
Output: Loaded dataset
Load dataset from the specified file path using the pandas library.

Procedure split data(data):
Input: Dataset
Output: Training and testing sets
Split the dataset into features (X) and the target variable (Y).
Use the train test split function to split X and Y into training and testing sets.

Procedure train model(X train, Y train, random state=42):
Input: Training features (X train), Training target variable (Y train), Random state
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Output: Trained RandomForestClassifier model
Initialize a RandomForestClassifier with the specified random state.
Train the model using the training data.
Return the trained model.

Procedure evaluate model(clf, X test, Y test):
Input: Trained model (clf), Testing features (X test), Testing target variable (Y test)
Output: Model performance metrics
Use the trained model to predict the target variable for the testing data.
Print the confusion matrix and classification report to evaluate model performance.

Procedure plot feature importance(clf, X, save path=’feature imp.png’):
Input: Trained model (clf), Features (X), Save path for the plot
Output: Radar chart showing feature importance
Calculate the feature importances from the trained model.
Plot the feature importances as a radar chart.
Save the plot to the specified file path.

Procedure plot confusion matrix(Y test, Y pred, save path=’conf mat.png’):
Input: True labels (Y test), Predicted labels (Y pred), Save path for the plot
Output: Hexagonal heatmap of the confusion matrix
Calculate the confusion matrix from the true and predicted labels.
Plot the confusion matrix as a hexagonal heatmap.
Save the plot to the specified file path.

Main:
Load the dataset using the load data procedure.
Split the dataset into training and testing sets using the split data procedure.
Train a RandomForestClassifier model on the training data using the train model procedure.
Evaluate the model performance on the testing data using the evaluate model procedure.
Plot the feature importance using the plot feature importance procedure.
Plot the confusion matrix using the plot confusion matrix procedure.
Print a message indicating that the plots have been saved to disk.

Confusion Matrix:

10171 1
3 25

Classification Report:

Class Precision Recall F1-Score Support
0 (Non-fraudulent) 1.00 1.00 1.00 10172
1 (Fraudulent) 0.96 0.89 0.93 28

Overall Metrics:

Accuracy 1.00
Macro Avg Precision 0.98
Macro Avg Recall 0.95
Macro Avg F1-Score 0.96
Weighted Avg Precision 1.00
Weighted Avg Recall 1.00
Weighted Avg F1-Score 1.00

The above output is from running a machine learning program for credit card fraud detection using
a Random Forest Classifier. The confusion matrix plot in Figure 4 visualizes the accuracy of the model’s
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predictions on the test set compared to the true labels. The x and y axes correspond to the actual and predicted
classes. Each cell shows the count of test samples falling into each combination. For example:

− Top-left cell: number of samples with actual class 0 correctly predicted as class 0 (true negatives).
− Bottom-right cell: number of samples incorrectly classified as class 1 (false positives).

Some key points on interpreting the confusion matrix:
− Values along the diagonal represent correct prediction counts.
− Off-diagonal cells show the mistake counts.
− Confusion matrices allow calculating metrics like accuracy, precision, and recall.
− Imbalanced datasets can lead to misleading accuracy levels.

Figure 4. Confusion matrix plot

By visualizing this as a heatmap, it allows identifying whether the model struggles with certain classes
more or if errors are evenly distributed across classes. The feature importance plot in Figure 5 shows which
input variables had the biggest influence on model predictions. Feature importances are calculated based on
how much each feature split point in the random forest trees was used to reduce impurity/variance. Higher
values indicate variables that played a bigger role in generating predictions. This plot can guide data collection
efforts by revealing predictive features or be used for dimensionality reduction by removing low-importance
variables. For fraud detection, significant transaction amount or time since the last purchase makes intuitive
sense as important features. In the context of credit card fraud detection, the confusion matrix and classification
report provide valuable insights into the machine learning model’s performance.

Figure 5. Feature importance plot
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4.1. Confusion matrix
The confusion matrix is as follows:

True positives (TP) : 25
True negatives (TN) : 10171
False positives (FP) : 1
False negatives (FN) : 3

In the context of credit card fraud detection:
− True positives (TP): these are transactions that the model correctly identified as fraudulent. In this case,

there are 25 such transactions.
− True negatives (TN): these are legitimate transactions that the model correctly identified as non-fraudulent.

Here, there are 10,171 such transactions.
− False positives (FP): these are legitimate transactions that the model incorrectly classified as fraudulent. In

this case, there is only 1 false positive.
− False negatives (FN): these are fraudulent transactions that the model incorrectly classified as legitimate.

There are 3 false negatives.

4.2. Classification report
The classification report provides several metrics to evaluate the model’s performance, including:

− Precision: precision measures the accuracy of positive predictions. For class 1 (fraudulent transactions), the
precision is 0.96. This means that when the model predicts a transaction as fraudulent, it is correct 96% of
the time.

− Recall: recall measures the model’s ability to identify all relevant instances. For class 1, the recall is 0.89,
indicating that the model correctly identifies 89% of the actual fraudulent transactions.

− F1-Score: the F1-score is the harmonic mean of precision and recall. For class 1, the F1-score is 0.93, which
is a balanced measure of overall performance.

− Support: support is the number of samples in each class. In this case, there are 10,172 non-fraudulent
transactions (class 0) and 28 fraudulent transactions (class 1).

− Accuracy: the overall accuracy of the model is 100%, which might suggest excellent performance. However,
it’s essential to consider the class imbalance in the dataset. In imbalanced datasets, high accuracy can be
misleading, and other metrics like precision, recall, and F1-score are more informative.

− Macro avg and weighted avg: these are averages of precision, recall, and F1-score. The macro average gives
equal weight to each class, while the weighted average accounts for class imbalance.

In summary, the model appears to perform well in identifying non-fraudulent transactions (class 0),
with high precision and recall. However, it shows room for improvement in recall for fraudulent transactions
(class 1), as it misses some instances. The F1-score provides a balanced measure of overall performance, and
the class imbalance should be considered when evaluating the model’s effectiveness.

5. KEY TAKEAWAYS
Innovative methodology: the fusion of bipartite graph visualization and advanced machine learning

techniques represents a novel approach to credit card fraud detection, offering a paradigm shift in analysis
methods. Visual representation: the innovative use of bipartite graphs enhances interpretability and under-
standing of the classifier’s performance, facilitating actionable insights into successful detection and areas for
improvement. Empowering decision-making: the methodology empowers analysts and stakeholders to make
informed decisions by enabling them to fine-tune model parameters and enhance overall system effectiveness.

6. CONCLUSION AND FUTURE WORK
The evaluation of the credit card fraud detection model transcends mere numerical metrics and visu-

alizations. We’ve embarked on a deeper exploration, uncovering the model’s practical implications and pin-
pointing areas for future refinement. The high precision achieved minimizes false positives, ensuring legitimate
transactions aren’t flagged as fraudulent. This is crucial, as user trust hinges on avoiding disruptions to valid
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purchases. A frustrated customer who experiences a declined transaction due to a false positive might abandon
the platform altogether. The strong recall demonstrates the model’s ability to catch a significant portion of
actual fraud. A robust recall is essential for minimizing financial losses for both consumers and institutions.
Imagine a scenario where a fraudulent transaction slips through the cracks – the financial institution bears the
loss, and the customer’s trust is eroded. The balanced F1-score, considering both precision and recall, paints
a holistic picture of the model’s effectiveness in real-world scenarios, striking a crucial balance between mini-
mizing disruptions and maximizing fraud capture. The power of bipartite graphs lies in their ability to visually
represent the model’s behavior. By connecting actual and predicted labels, we gain a deeper understanding of
the model’s strengths and weaknesses. This visual analysis helps identify edge cases – those unusual transac-
tions that trip up the model. Analyzing these edge cases can provide valuable insights into novel fraud tactics
and help refine the model to handle them effectively. This iterative process of analysis and improvement is cru-
cial in the dynamic world of credit card fraud, where fraudsters constantly adapt their tactics. Just as we patch
vulnerabilities in software to stay ahead of cyberattacks, we need to continuously refine the fraud detection
model to stay ahead of evolving fraud schemes.

The future of credit card fraud detection is brimming with possibilities, demanding a multi-faceted
approach that tackles the technical and social aspects of this ever-present challenge: i) imagine a system that
analyzes transactions as they occur, enabling immediate action against suspected fraud. This can significantly
reduce financial losses by preventing fraudulent transactions from being completed. Real-time fraud detection
can be likened to a security guard stationed at the bank door, scrutinizing every entry to prevent unauthorized
access; ii) By incorporating XAI techniques, we can make the model’s decision-making process more transpar-
ent. Understanding how the model arrives at its conclusions builds trust and ensures fairness. Imagine a judge
explaining the reasoning behind a verdict – XAI does the same for the fraud detection model, fostering trust and
reducing the risk of bias, and iii) A system for continuous monitoring ensures the model’s effectiveness remains
high. Regularly evaluating the model’s performance on new data helps identify areas needing improvement.
This proactive approach keeps the model relevant and effective against evolving fraud patterns, similar to how
firefighters continuously train and update their strategies to combat new fire threats.
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