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ABSTRACT

Augmented reality (AR) technology is revolutionizing traditional assembly
processes, offering intuitive and interactive guidance that significantly enhances
operational efficiency and accuracy. This study investigates the impact of
AR on the assembly of Turtlebots, a complex task representative of industrial
applications. Through a comparative analysis involving traditional paper
manuals, modified paper manuals, and AR-based manuals, the benefits of
AR integration are quantitatively assessed. Participants utilizing AR-based
manuals completed the Turtlebot assembly 21.72% faster than those using
traditional paper manuals, with a notable reduction in assembly time from an
average of 03:00:40 to 02:21:26. Furthermore, the incidence of assembly errors
significantly decreased, with AR manual users making an average of 2.25 errors
compared to 5 by paper manual users. These findings underscore the potential
of AR to expedite complex assembly tasks and enhance the accuracy of these
processes. The study highlights the novel application of AR in improving both
the speed and quality of assembly in an industrial context, demonstrating AR’s
role as a pivotal technology for the future of manufacturing.
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1. INTRODUCTION
Augmented reality (AR), an innovative technology blending digital information with the physical

world, has significantly impacted various sectors, including medical [1], [2], manufacturing [3]–[6], education
[7]–[10], tourism [11], and aviation [12], [13]. This technology enhances human perception and interaction by
overlaying digital content onto the real world, a capability that is pivotal across diverse applications [14]–[16].

In the realm of industrial operations, AR’s application extends to maintenance assistance, notably
in assembly and disassembly tasks, offering unprecedented precision and efficiency [17]. While previous
research has affirmed AR’s utility in assembly operations, these studies predominantly focus on short-term
tasks or employ simplified models, limiting the exploration of AR’s full potential in complex industrial settings
[18]–[26]. This research gap underscores the necessity for in-depth investigations into AR’s application in
prolonged, intricate assembly processes that more accurately mirror industrial complexities.
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This study employs the TurtleBot as a testbench, given its relevance to industrial applications in
mapping, service, and environmental sensing [27]–[29]. The choice of Turtlebot facilitates a comprehensive
examination of AR’s effectiveness in enhancing assembly efficiency and accuracy, aligning with the broader
objective of optimizing manufacturing processes. Through detailed analysis, this research evaluates AR’s
impact on assembly operations using established performance metrics, including task completion times,
error rates, and subjective workload assessments [18], [26], [30], [31]. These metrics provide a robust
framework for assessing the advantages of integrating AR into industrial assembly tasks, contributing
valuable insights into operational efficiency and the potential for energy optimization in autonomous mobile
robots (AMRs) [32]. Table 1 lists the performance metrics used by other research to determine the efficiency
of AR.

Table 1. List of performance metrics by other research to determine efficiency of AR
Author Test subjects Performance metrics

Erkoyuncu et al. [33] − 8 (4 person in 2 groups)
− No age range specified
− Participant background - unspecified

− Total task completion duration

Funk et al. [34] − 6 (3 person per group)
− Age range specified as 43.34 ± 4.49 and 45.67 ± 12.65
− Participant background - unspecified

− Total task completion duration

Gattullo et al. [30] − 22 (Groups unspecified)
− Age range specified as 36.5 ± 13.7 years old
− Participant background - workers and undergraduates

− Questionnaire with Likert scale
− Questionnaire about perceived missing

information
− Questionnaire regarding improvements,

criticalities, and remarks

Aschenbrenner et al.
[31]

− 50 (Groups unspecified)
− Age range between 19 to 26 years old
− Participant background - higher education entrance

qualification, vocational school, and secondary school

− Total task completion duration
− Number of task errors
− QUESI
− NASA-TLX
− SART
− ISONORM

Mourtzis et al. [18] − Unspecified
− Age range between 19 to 29 years old
− Participant background - operators from automotive in-

dustry

− Total task completion duration
− Number of task errors
− NASA-TLX
− Questionnaire with Likert scale

Wang et al. [19] − 25 (groups unspecified)
− Age range specified as mean of 24.5
− Participant background - engineering

− Total task completion duration
− Questionnaire with Likert scale

Hietanen et al. [35] − 20 (groups unspecified)
− No age range specified
− Participant background - university students

− Total task completion duration
− Questionnaire with Likert scale

Alves et al. [26] − 30 (10 person in three groups)
− Age range specified between 19 to 51 years old
− Participant background - faculty members, researchers,

from different fields but do not have prior experience
with case study

− Total task completion duration
− Questionnaire with Likert scale
− NASA-TLX
− Number of task errors

2. METHOD
This study evaluates the effectiveness of different instructional methods on the assembly performance

of Turtlebots, focusing on traditional paper manuals, modified paper manuals, and AR-based manuals. The
primary objectives include assessing assembly time efficiency and error rate reduction. To achieve these objec-
tives, the study employs a structured approach to compare and analyze the impact of each instructional method
on the participants’ performance.

2.1. Participants
Twelve volunteers, aged between 12 to 45 years and without prior TurtleBot assembly experience,

were recruited. The participants were equally divided among the three instructional methods. All participants
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received a standardized briefing on the assembly tasks and tools to ensure a consistent knowledge base and
minimize pre-existing knowledge effects.

2.2. Experimental setup
The assembly workbench was arranged to ensure all necessary components, tools, and instructional

materials were within easy reach. This setup aimed to mimic an optimized industrial workstation to facilitate
an efficient assembly process. Figure 1 illustrates the organized workbench layout, providing a conducive
environment for participants to focus on assembly without unnecessary disruptions. As shown in Figure 2,
each assembly component and tool was labeled and grouped accordingly to facilitate easy identification and
access, further optimizing the assembly process.

Figure 1. Top view of assembly workbench layout (left) and setup of assembly workbench (right)

Figure 2. Assembly components on workbench

2.3. Assembly task and data collection
Participants assembled a TurtleBot using the assigned manual type. The assembly was untimed, prior-

itizing accuracy and participant interaction with the instructional method over speed. Data collected included:
− Total assembly time: duration from the start to the completion of the assembly.
− Number of errors: identified post-assembly, including any missing or incorrectly assembled parts.
− Participant feedback: assessed using a Likert scale and NASA-TLX questionnaire, focusing on mental

demand, effort, and frustration levels.

2.4. AR-based manual setup
Participants using the AR-based manual interacted with an augmented reality application that overlaid

step-by-step assembly instructions directly onto their field of view. This setup was intended to make the as-
sembly process more intuitive and engaging, helping participants follow the instructions with greater ease and
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accuracy. Figure 3 illustrates the AR-based manual interface, demonstrating how the augmented reality appli-
cation provided real-time, interactive guidance. This integration aimed to improve the efficiency and precision
of the assembly tasks.

Figure 3. AR view for participants to perform assembly tasks

2.5. Experimental workflow
The methodology followed a structured process, starting with the setup of the assembly workbench.

This was followed by a briefing session to prepare participants, the actual assembly task, and finally, data
collection and analysis. Figure 4 outlines the complete methodology flow, ensuring a systematic approach
from the initial setup to the final analysis. This structured workflow ensured consistency and reliability in the
study’s execution and results.

Figure 4. Flowchart of methodology

2.6. Statistical analysis
Performance metrics, including assembly time and error rates, were analyzed to compare the

effectiveness of traditional, modified paper, and AR-based manuals. Statistical tests, such as Mann-Whitney
tests, were employed to evaluate differences in performance metrics across the instructional methods. This
methodology was designed for a detailed comparison of instructional methods on TurtleBot assembly
performance. The comprehensive setup and structured experimental design ensure reproducibility and the
applicability of findings to similar industrial assembly tasks.
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3. RESULTS AND DISCUSSION
The evaluation of AR’s impact on TurtleBot assembly provided detailed insights into its effectiveness.

It compared the performance outcomes across three different instructional methods: traditional paper manuals,
modified paper manuals, and AR-based manuals. This comparison highlighted the varying degrees of efficiency
and accuracy achieved with each method.

3.1. Assembly time efficiency
The statistical analysis revealed a significant reduction in assembly time when participants used AR-

based manuals. The average completion time was 02:21:26, representing a 21.72% improvement over tra-
ditional paper manuals and a 7.5% improvement over modified paper manuals, as shown in Table 2. This
improvement highlights AR’s potential to streamline complex assembly operations through interactive and in-
tuitive guidance.

Table 2. Mean total assembly time by manual type
Manual type Average total assembly duration (hh:mm:ss)
Paper manual 03:00:40

Modified paper manual 02:47:07
AR-based manual 02:21:26

3.2. Error rate reduction
The reduction in the number of assembly errors further validates AR’s efficacy. Participants using

AR-based manuals made an average of 2.25 errors, compared to 5 by those using paper manuals as shown in
Figure 5. This finding highlights AR’s role in enhancing precision and reducing oversight in assembly tasks,
likely due to the more engaging and detailed instructions AR provides.

Figure 5. Bar chart of mean number of errors by manual type

3.3. Participant satisfaction and workload
User satisfaction and NASA-TLX scores offer insights into the subjective experience of using AR for

assembly tasks. While AR-based manuals scored higher in satisfaction as shown in Figure 6, they also resulted
in higher perceived mental workload as shown in Figure 7. This dichotomy suggests that while AR improves
task efficiency and satisfaction, it may also increase cognitive demands on users.
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Figure 6. User satisfaction score using Likert scale with score range between 1-7

Figure 7. NASA-TLX scoring from user survey (lower score is better)

3.4. Critical analysis and future directions
The superiority of AR in enhancing assembly performance and reducing errors aligns with the

technology’s promise to revolutionize manufacturing processes. However, the increased mental workload
reported highlights a crucial area for future research: optimizing AR interfaces to minimize cognitive strain
without compromising efficiency. The study’s limitations, including the small sample size and the specific
context of TurtleBot assembly, suggest caution in generalizing the findings. Future research should explore
the scalability of AR applications in manufacturing, potentially incorporating machine learning algorithms to
personalize and streamline the AR experience based on user feedback and performance metrics. Moreover,
investigating the long-term impacts of AR on learning curves and skill retention in assembly tasks can offer
deeper insights into its educational and training potentials, alongside its immediate benefits in operational
efficiency.

4. CONCLUSION
The study demonstrated significant benefits of utilizing AR-based manuals for the assembly of

TurtleBots, showing a 21.72% improvement in assembly time compared to traditional paper manuals, and
a 7.5% improvement over modified paper manuals. Moreover, the error rates for users of AR-based and
modified paper manuals were considerably lower, averaging 2.25 and 2 errors respectively, versus an average
of 5 errors with traditional paper manual users. These findings underscore the effectiveness of AR-based and
modified paper manuals in enhancing assembly efficiency and accuracy. Additionally, the incorporation of
animated 3D graphics in AR-based manuals was found to notably improve assembly times for a wide range of
tasks. However, for simpler tasks such as snap-fit operations, the advantages over modified paper manuals were
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not significant. This indicates that the efficacy of AR instruction may vary depending on the complexity of the
task at hand. It is important to note that AR-based manuals, while associated with improved performance,
also led to a higher perceived mental workload among users, as reflected by NASA-TLX scores. This suggests
a potential trade-off between the immersive, intuitive experience provided by AR and the cognitive load it in-
troduces. The study presents compelling evidence of the effectiveness of AR-based manuals in assembly tasks
within the scope of its investigation. Future research could focus on extending the application of these findings
to broader contexts and exploring the impact of AR manuals on individuals with specific technical expertise
in fields such as robotics engineering. Examining the long-term effects of AR on learning and skill retention
through repeated assembly tasks could also provide further insights into its educational benefits.
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