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 This work presents a novel model to recognize spoken digits in the Arabic 

language. Due to the transformer-based models' tremendous success in 

natural language processing (NLP), several attempts have been made to 
extend transformer-based designs to other domains, such as vision and 

audio. However, our approach consists of extracting and inputting Mel-

spectrogram features into our model of the proposed audio Mel-spectrogram 

vision transformer (AMSVT) for training. The signal processing community 
has been interested in these models due to the successful use of vision 

transformers (ViT) in several computer vision applications. This is because 

signals are frequently recorded as spectrograms (using the Mel-spectrogram, 

for example), which may be given directly as input to vision transformers. 
Our model outperformed a group of models in terms of accuracy and time, 

such as convolutional neural network (CNN)-based and recurrent neural 

network (RNN)-based. 
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1. INTRODUCTION  

Vision transformers (ViT) [1]-[4] has quickly emerged as the most popular area of research in 

computer vision to date, demonstrating promising results for a variety of applications, including recognizing 

objects [5], [6], detection [7], [8], and generation [9], [10] in addition to segmentation and production of 

medical images. These models have also caught the interest of the signal-processing community as a result of 

the undisputed performance of ViT in handling a variety of computer vision applications [11], [12]. For 

instance, Gong et al. [12] used ViT to process signals by simply feeding the model with spectrograms, which 

are essentially visual representations of signals. Transformers use mechanisms for self-attention (SA) [13] to 

efficiently collect long-range relationships and extract contextual data from the input sequence. As a result, 

ViT is better suited for jobs that call for the modeling of intricate dependencies and interactions between the 

input characteristics. 

In this investigation, we delve into the converse task, specifically scrutinizing the suitability of 

techniques originally formulated for 2D image analysis to a 1D signal domain. Our focus is on evaluating the 

suitability of transformer-based approaches designed for image classification to tackle the challenges of 

audio classification. Despite audio being inherently a 1D signal, working with its spectral representation 

partially bridges the gap between 1D and 2D domains. Nevertheless, the frequency/time characteristics of a 

spectrogram differ significantly from those of a conventional image, where pixel relationships and their 

https://creativecommons.org/licenses/by-sa/4.0/
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physical significance maintain consistency in any arbitrary direction. This discrepancy is notable in a 

spectrogram, where the axes of the image signify different physical occurrences.  

Additionally, within a spectrogram, classes intersect, while in a scene image with multiple objects, 

the classes are adjacent. These distinctions prompt concerns regarding the direct transferability of image 

processing techniques for the audio classification challenge. While uncertainty has been resolved regarding 

convolutional neural networks (CNNs), the suitability of attention-based models remains a matter that 

remains unanswered. Several studies [14]-[16] substantiate the potential applicability of our model, audio 

Mel-spectrogram vision transformer (AMSVT), to audio classification. 

We chose a database consisting of audio recordings, which are numbers spoken in Arabic from 0 to 

9, to test the efficiency of our proposed model. This choice is justified by simplicity and clarity reasons: 

spoken digits are finite and well-defined, making them easier to study and analyze. Practical applications: 

Many real-world applications, such as automated telephone systems or voice-controlled devices, often 

require the recognition of spoken digits. Focusing on this area can directly contribute to improving these 

technologies. 

Transformer used in audio processing is the primary topic of this article. By presenting a novel 

straightforward yet efficient technique for training transformers using spectrograms, where we address 

current audio transformers' computational complexity and memory needs. To summarize, the following are 

the primary contributions of our work: 

 We suggest AMSVT, which considerably lowers the memory and computing requirements for training 

transformers in the audio domain.  

 We decompose the positional encoding of the transformer [17] into time and frequency positional 

encoding, enabling simple inference on audio clips of varying duration without the requirement for fine-

tuning or interpolating positional encodings. 

 An evaluation of this model across several tasks using a spoking Arabic digit dataset, studying various 

techniques for simplifying training and showing how they impact performance on proposed audio SET. 

 The model AMSVT beat RNN-based regarding training performance, memory needs, and generalization. 

According to our results presented at the end of this work. 

Atito et al. [18], present ASiT, a groundbreaking self-supervised transformer designed for creating 

versatile audio representations. ASiT incorporates self-distillation and group-masked model learning to 

adeptly capture both local and global contextual information. The researchers assessed their pre-trained 

models across a range of audio and speech classification tasks, encompassing audio event classification, 

keyword detection, and speaker identification. Additionally, they conducted thorough ablation investigations, 

including analyses of diverse pretraining methods. The proposed ASiT framework outperforms existing 

techniques, even those leveraging supplementary datasets for pretraining, setting a new standard for 

performance in five audio and speech classification tasks. Remarkably, it substantially improves performance 

across all evaluated tasks. The code and pre-trained weights will be shared openly with the scientific 

community. 

Gong et al. [19], introduce the audio spectrogram transformer (AST), a novel audio categorization 

model that relies solely on attention mechanisms, eliminating the need for convolutions. The performance 

of AST was evaluated on various audio classification benchmarks, achieving remarkable state-of-the-art 

scores, including a 0.485 mAP on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on speech 

commands V2. Ristea et al. [20] propose the separable transformer (SepTr), a configuration that employs 

two transformer blocks consecutively. The initial block attends to tokens within the same time interval, while 

the second focuses on tokens within the same frequency bin. Through an examination of three benchmark 

datasets, they illustrated that the separable architecture surpasses both traditional ViT and state-of-the-art 

techniques. SepTr exhibits a reduced memory footprint compared to conventional transformers by scaling the 

number of trainable parameters linearly with the input size. 

In this study, part 2 will focus on our distinctive contribution, namely the design of the suggested 

audio Mel-spectrogram vision transformer. Section 3 will next thoroughly assess the dataset chosen and the 

performance improvements resulting from the AMSVT proposed. This will be followed by a conclusion that 

summarizes the key results and lessons from the study. 

 

 

2. THE PROPOSED AUDIO MEL-SPECTROGRAM VISION TRANSFORMER (AMSVT) 

The suggested AMSVT framework primarily involves two steps, depicted in Figure 1. Initially, we 

input the mel-spectrogram extracted from the audio and then pass it through the pre-trained AMSVT to 

extract frame-level spatial features. These spatial features are concatenated to form a feature vector derived 

from 30 consecutive frames. 
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2.1.  Features extraction using ViT 

In contrast to models based on RNN approaches for image classification tasks, the AMSVT 

architecture, built entirely upon the conventional transformer design [21], achieved exceptionally high 

accuracy. This architecture effectively captures long-range dependencies within input sequences through a 

self-attention mechanism. Notably, ViT represents an endeavor to classify images using the transformer 

model. It dissects the input image into linearly projected patches, employs trainable positional embeddings to 

determine the patch sequence, and utilizes a transformer encoder and a multilayer perceptron to achieve the 

final classification. 

Since a normal transformer only accepts a 1D sequence of tokens as input, the input picture of the 

spectrogram in the first section is split into nonoverlapping patches. A sequence of flattened 2D patches 

called 𝑥𝑝 ∈ ℝ𝑁×(𝑃2.𝐶) is created from an image called 𝑥 ∈ ℝ𝐻×𝑊×𝐶 in order to handle 2D images, which are 

typically in 2D format. Here, (𝐻, 𝑊, 𝐶) stands for the picture's height, width, and the resolution of each 

image patch is denoted by (𝑃, 𝑃), with the total number of patches represented as (𝑁 = 𝐻𝑊/𝑃2). The patch 

size P is often set to 16 × 16 or 32 × 32, with the smaller P size being able to record longer sequences and 

the larger P size being able to capture shorter sequences. The 16 × 16 𝑃 has been employed in our situation 

to extract features. 

 

 

 
 

Figure 1. The proposed framework for arabic digit recognition using AMSVT 

 

 

2.2.  Linear embedding layer 

The linear projection of sequence patches into a vector of dimension d is accomplished through a 

learned embedding matrix 𝐸. Subsequently, these embedded representations are combined with a trainable 

classification token 𝑣class . Since the embedded patches lack a specific order, positional information    𝐸𝑝𝑜𝑠 is 

employed to rearrange the spatial information to match that of the original image. The mathematical 

representation of the embedded patches with token 𝑍0 is presented in (1). 

 

2.3.  Mel-spectrogram ViT encoder 

The transformer encoder layer comprises L identical layers, as depicted in Figure 2. receives the 

embedded 𝑍0 patches as a consequence of (1). Each layer also consists of two parts, such as a multilayer 

perceptron (MLP) and a multihead self-attention (MSA) block. Two thick layers make up the last block of 

MLP. The MSA and MLP are respectively represented mathematically in (2) and (3). 

 

𝑍0 = [𝑣class ; 𝑥1𝐸; 𝑥2𝐸; . . 𝑥𝑛𝐸] + 𝐸𝑝𝑜𝑠 , 𝐸 ∈ ℝ(𝑃2.𝐶)×𝑑, 𝐸 ∈ ℝ(𝑛+1)×𝑑 (1) 

 

𝑧𝑙
′ = MSA(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1, 𝑙 = 1 … 𝐿 (2) 

 

𝑧𝑙 = MLP(𝐿𝑁(𝑧𝑙
′)) + 𝑧𝑙

′, 𝑙 = 1 … 𝐿 (3) 
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The initial element in the sequence, 𝑧𝐿
0, is supplied to the external head classifier in the encoder's final layer 

so it can forecast the class label. 

 

𝑦 = 𝐿𝑁(𝑧𝐿
0). (4) 

 

Figure 2(a) present the architecture general of our proposed model, and Figure 2(b) determines the 

composition of the transformer encoder layer in detail. The pivotal component of the transformer model is 

the MSA, responsible for identifying the most and least significant patches and excluding the latter from the 

input sequence. As illustrated in Figure 2(c), the MSA is segmented into four layers, including linear, self-

attention, and concatenation layers, to consolidate the output from various heads. Essentially, the attention 

process can be visualized using attention weights, calculated by summing all values in a sequence z. By 

multiplying components (Q, K) with the three learning matrices UQKV, three values 𝑄 (query), 𝐾 (key), and 𝑉 

(value) are obtained from the input sequence. A single self-attention (SA) is visually depicted in Figure 2(d), 

and its mathematical formulation is provided in (5). 

 

[𝑄, 𝐾, 𝑉] = 𝑧𝑈Q𝐾𝑉 , 𝑈QKV ∈ ℝ𝑑×3𝐷𝐾 . (5) 

 

The 𝑄 vector's value undergoes multiplication by the dot product with the 𝐾 vectors in a specific input 

sequence, determining the relative significance of each element about others. The resulting output is then 

scaled and passed through the SoftMax activation function to ascertain the significance of the patch with the 

highest attention score, as formally expressed in (6). 
 

𝐴 = SoftMax (
𝑄𝐾𝑇

√𝐷𝐾
) , 𝐴 ∈ ℝ𝑛×𝑛 . (6) 

 

Instead of using only one value for 𝑄, 𝐾, and 𝑉, the MSA combines the numerous attention heads ℎ. As 

shown in (7), the outputs from each SA are combined to choose robust and optimum features, which are then 

projected to the required dimensions using a feedforward layer with learnable weights 𝑊. 
 

𝑀𝑆𝐴(𝑧) =  Concat (𝑆𝐴1(𝑧); 𝑆𝐴2(𝑧); … 𝑆𝐴ℎ(𝑧))𝑊, 𝑊 ∈ ℝℎ⋅𝐷𝐾×𝐷 (7) 

 

 

 
(a) (b) (c) (d) 

 

Figure 2. The AMSVT architecture: (a) the model's primary architecture, (b) the encoder layer of the 

transformer model, (c) the MSA head, and (d) the SA head 
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3. METHOD 

Performance metrics. In each of our trials, we use classification accuracy as a metric for assessment. 

This is done by calculating the accuracy and loss for each model of RNNs-based like long short term memory 

network (LSTM), Bidirectional-LSTM (BiLSTM), RNN, and gated recurrent unit (GRU) and compared with 

our model AMSVT data preprocessing. For our dataset, we apply the Mel-spectrogram with Nx=1,024, 

R=32, and a window size of 200. The magnitude's square root is then calculated for each Mel-spectrogram, 

and the results are then mapped to 128 Mel bins. A single-channel output matrix is created by converting the 

result to a logarithmic scale (decibels) and normalizing it to the range [0, 1]. 

Training details and hyperparameter tuning, we discovered common ideal hyperparameters when 

tuning the AMSVT and RNN-based hyperparameters utilizing the validation sets. As a result, Adam 

optimizes each model while employing the cross-entropy loss function. After every 10 epochs, we apply a 

decay factor of 0.5 and begin with an initial learning rate of 10-4. On batches of 64, we train each model for 

100 iterations. For AMSVT, we configured the number of blocks to L=3 and the token size to d=2,048, 

AMSVT was created with 8 attention heads. For the RNN-based architecture, the accuracy and training 

duration of the suggested model might be impacted by the learning rate and training iterations. To attain 

optimal performance, both parameters were changed to different values. Given that the learning rate ought to 

be regarded as the most important hyperparameter, it can be critical to comprehend how to alter it correctly to 

get the best results. The network weight changes are governed by the learning rate. The model initially 

learned at a rate of 10−3. 

The training iteration follows, with a starting value of=1,000 iters. To create the training steps, the 

training iterations were multiplied by the epoch size. Between 1,000 and 2,000 training steps were used, with 

10 epochs of batch size 64/64. The training steps were augmented, and this resulted in high accuracy. 

The networks were trained using the softmax activation function and the cross-entropy loss. With a 

10−2 initial learning rate, the model learned swiftly but eventually began to overfit. When the model was 

overfitted, it was seen that the accuracy decreased. The model was trained slowly and the network accuracy 

increased by changing the learning rate to 10−3. 

Instead of using a multi-core central processing unit (CPU), the proposed architecture was 

implemented on a single machine's graphics processing unit (GPU). The decision to utilize a GPU was made 

due to the GPU's ease of implementation and speedy debugging. Performance evaluation: Python (version 3.6) 

and the Jupyter integrated development environment have been used to accomplish the suggested solution. 

Where Table 1 summarizes the environment used in this study. 

 

 

Table 1. Deep-learning system environment 
 DL Toolkit PyTorch 12 

Edge 

Computing 

Language Python 3.6 

OS Windows 

RAM 32 GB 

GPU One NVIDIA GTX 3080, 11GB 

CPU AMD Ryzen 9 5000 Quad-Core Processor 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Data sets 

The Arabic SC Dataset (v1.0) [22] is comprised of spoken words and is designed for training and 

evaluating keyword-spotting systems. The dataset includes 12,000 1-second recordings featuring 40 common 

speech commands. Each audio file is one second in duration, sampled at 16 kHz, with contributions from  

30 participants, each recording 10 utterances for each keyword. Consequently, there are 300 audio files for 

each keyword. 

For our study, we specifically extracted, for the reasons mentioned earlier, recordings that articulate 

the digits from 0 to 9. Resulting in the utilization of 10 audio files that encompass digits in total 

(10×10×40=4,000), as shown in Table 2. The division of these audio samples involves allocating 70% for 

training, 15% for validation, and 15% for testing. 

Figure 3 present the extraction of features from the audio, which depicts the primary steps in the 

Mel-spectrogram extraction of features method. We used a window of 25 ms length with 10 ms length in the 

framing step. Then, we extracted 13 Mel-frequency cepstral coefficients (MFCC) features using the discrete 

cosine transform (DCT) on these values. The first feature was then deleted because it had no useful 

information, leaving only the next 12 features. 
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Table 2. The chosen keywords with their translations 
Translation Keyword 

Zero صفر 

One واحد 

Two اثنان 

Three ثلاثة 

Four اربعة 

Five خمسة 

Six ستة 

Seven سبعة 

Eight ثمانية 

Nine تسعة 

 

 

 
 

Figure 3. Presentation of waveforms and features using a (zero) instance from our dataset 

 

 

4.2.  Results 

The tests we carried out led to the accuracies results that we obtained for the data set related to 

numbers spoken in Arabic [23]. Where we calculated the accuracy and training time for each of the following 

model’s LSTM [24], GRU [25], RNN [26], BiLSTM [27], and compared them to our proposed model 

AMSVT as shown in Table 3. As our model was ahead of the previous models by a difference of 12%. As far 

as we know, no research has been conducted on Arabic-spoken digits using such methods. 

 

 

Table 3. Speech digit recognition accuracy result 
Method Accuracy Taken time 
RNN 0.57 864 s 

LSTM 0.82 1,063 s 
GRU 0.84 1,135 s 

BiLSTM 0.77 1,064 s 
AMSVT 0.95 250 s 

 

 

The study's key findings demonstrate that the AMSVT model surpasses GRU and other RNN-based 

models in terms of accuracy and loss. With an accuracy of 95%, AMSVT outperformed all other models, 

including GRU, by a significant margin. This highlights the effectiveness of the AMSVT architecture for the 

given dataset. A key piece of supporting evidence is the comparison with the GRU model, which achieved an 

accuracy of only 84% on the same dataset, emphasizing the substantial improvement offered by AMSVT. 

This section elaborates on the experiment results conducted on various models. Figure 4 shows the 

training loss of the proposed AMSVT, LSTM, RNN, BiLSTM, and GRU models. The GRU and BiLSTM 

models had a smooth curve for loss whereas for the LSTM model, there was a sudden drop in loss, and it 

remained almost constant for the rest of the epochs. The loss for the AMSVT and RNN models seemed to 

vary over each epoch, where multiple vibrations appear, especially at the level of test loss. 

In comparison with previous studies, the current research sets itself apart by introducing the 

AMSVT model and showcasing its superior performance. Unlike previous studies that primarily relied on 

RNN-based models like GRU, this study explores a transformer-based approach, which has shown to be 

more effective. The strengths of the study include its comprehensive evaluation of different deep learning 

models and the thorough analysis of hyperparameter tuning effects. However, limitations may include the 

lack of exploration of other transformer architectures and the potential bias in the dataset. Unexpectedly, 
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AMSVT not only outperformed GRU but also surpassed all other deep learning models by significant 

margins, indicating its robustness and efficacy. 

The study aims to assess the performance of the AMSVT model in comparison to traditional RNN-

based models for a specific dataset. Its importance lies in demonstrating the superiority of transformer-based 

architectures like AMSVT for certain tasks, shedding light on potential advancements in deep learning for 

similar applications. However, unanswered questions remain regarding the generalizability of AMSVT to 

other datasets and its performance under different conditions. Future research could explore the applicability 

of AMSVT in diverse domains and investigate ways to enhance its performance further. 

 

 

 
 

Figure 4. Training and testing history plots of loss of the different models 

 

 

4.3.  Comparison study 

Our research has been contrasted with other studies that looked into the Arabic language's digit speech 

recognition. Table 4 displays a variety of findings from earlier research. MFCC+AMSVT achieves the highest 

accuracy of 95% in 2024. This suggests that this approach is currently the most effective for speech recognition. 

The accuracy of most approaches has improved over time. For example, MFCC+CNN improved from 82% in 

2021 to 86% in 2020. This shows that research in speech recognition is making progress. 
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Some approaches, such as MFCC+DTW and DHMM, have seen a decrease in accuracy over time. 

This could be due to several factors, such as the limitations of these approaches or the increasing difficulty of 

the datasets. It is not clear which approach is best for all tasks and datasets. The best approach may vary 

depending on the specific requirements of the task. 

 

 

Table 4. Results of different approaches 
Reference Year Approach Accuracy 
Our work 2024 MFCC+AMSVT 95% 

Asroni et al. [28] 2021 MFCC+CNN 82% 

Zada and Ullah [29] 2020 MFCC+HMM and CNN 84% 

Alasadi et al. [30] 2020 MFCC+SVM 86% 

Wazir and Chuah [31] 2019 MFCC+RNN 69% 

Hachkar et al. [32] 2011 MFCC+DTW and DHMM 92% 

 

 

5. CONCLUSION  

By utilizing our suggested AMSVT, this study has effectively built a voice recognition solution for 

Arabic digits. Mel Spectrograms have been employed for feature extraction from audio recordings, and 

RNN-Based has been compared performance with our proposal model. We found the length of time needed 

to train our model was ideal, whereas the training procedure took far longer for RNN-based models. During 

the training phase, the created model had little loss and attained an accuracy of 95%. The model's accuracy 

will be examined in the work's final phase using a different test dataset. The testing step uses 60 samples per 

digit for a total of 600 data points for all the digits. Where the results were encouraging. 96% accuracy is 

achieved in the recognition of the majority of the digits. 
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