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 Machine learning (ML) techniques empower computers to learn from data 

and make predictions or decisions in various domains, while preprocessing 

methods assist in cleaning and transforming data before it can be effectively 
utilized by ML. Feature selection in ML is a critical process that 

significantly influences the performance and effectiveness of models.  

By carefully choosing the most relevant and informative attributes from the 

dataset, feature selection enhances model accuracy, reduces overfitting, and 
minimizes computational complexity. In this study, we leverage the  

UAH-DriveSet dataset to classify driver behavior, employing Filter, 

embedded, and wrapper methods encompassing 10 distinct feature selection 

techniques. Through the utilization of diverse ML algorithms, we effectively 
categorize driver behavior into normal, drowsy, and aggressive classes. The 

second objective is to employ feature selection techniques to pinpoint the 

most influential features impacting driver behavior. As a results, random 

forest emerges as the top-performing classifier, achieving an impressive 
accuracy of 96.4% and an F1-score of 96.36% using backward feature 

selection in 7.43 s, while K-nearest neighbour (K-NN) attains an accuracy of 

96.29% with forward feature selection in 0.05 s. Following our 

comprehensive results, we deduce that the primary influential features for 
studying driver behavior include speed (km/h), course, yaw, impact time, 

road width, distance to the ahead vehicle, vehicle position, and number of 

detected vehicles. 
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1. INTRODUCTION 

Machine learning (ML) and feature selection are fundamental components within the realm of data 

science. ML typically furnishes systems with the capability to autonomously learn and improve from 

experience without explicit, rule-based programming. It is often recognized as one of the leading and 

contemporary technologies in the era of the fourth industrial revolution [1]. It involves crafting algorithms 

and models capable of analyzing data, recognizing patterns, and making predictions or decisions. Conversely, 

feature selection involves the process of identifying the most pertinent and valuable features from a given 

dataset [2]. In the ML domain, the quality and relevance of the selected features for training a model 

significantly impacts its performance and accuracy. Opting for the most meaningful features enhances the 

efficiency and effectiveness of models, while the inclusion of irrelevant or redundant features may cause 
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overfitting and heightened computational complexity. Hence, feature selection techniques have become 

imperative in discerning the most suitable and informative features for a specific task. 

On the other hand, driver behavior is a multidimensional concept, influenced by many factors, 

making its accurate description and analysis challenging [3]. These factors include social, cultural, 

psychological, and environmental factors [4], along with individual driver attributes [5]. In the realm of 

driver behavior classification, feature selection holds particular significance as it aids in pinpointing the most 

informative features essential for accurately categorizing distinct driving behaviors [6], [7]. Moreover, is the 

widespread use of feature selection techniques evident in the literature when it comes to the classification of 

driver behavior? additionally, are machine learning algorithms consistently delivering compelling results in 

the context of classifying driver behavior? 

Moukafih et al. [8], classified behavior into four distinct classes: representing aggressive driving on 

the highway, depicting aggressive driving on secondary roads, indicating normal driving on the highway, and 

signifying normal driving on secondary roads. The classification features were selected using the forward-

selection method, including speed, acceleration in X, Y, and Z, pitch, roll, yaw, car angle relative to lane 

curvature, car position relative to lane center, road width, distance to ahead vehicle in the current lane, and 

time of impact to the ahead vehicle. The authors implemented random forest (RF), adaboost, and ResNet 

models, achieving respective F1-scores of 94.11%, 92.75%, and 88.29%, showcasing their effectiveness in 

accurately categorizing driver behavior across these defined classes. Saleh et al. [9], categorized driving 

behavior into three specific classes: normal, aggressive, or drowsy driving, utilizing the UAH-DriveSet 

dataset. The classification features encompassed acceleration along the x, y, and z axes, pitch angle, roll 

angle, yaw angle, vehicle speed, distance to the ahead vehicle, and the count of detected vehicles. Their 

implementation included ML classifiers such as the multi-layer perceptron (MLP) and decision tree (DT) 

models, achieving respective F1-scores of 48% and 80%. Vyas et al. [10] introduced an intelligent 

recommendation system designed to forecast the influence of prior driving attributes on stress levels, driving 

behavior, and energy efficiency across different driving and environmental conditions. They incorporated 

various features such as acceleration in different axes (x, y, and z), pitch angle, roll angle, yaw angle, vehicle 

speed, the number of detected vehicles, distance to the ahead vehicle, car angle relative to the lane curvature, 

and car position relative to the lane center. For data preprocessing, the authors employed K-nearest neighbors 

(KNN) for stress level identification and labeled the data using K-means++. To predict driver stress, they 

utilized different regression models including linear regression, support vector regression (SVR), and 

decision tree regressor. The achieved R² values for stress prediction were 0.85, 0.83, and 0.75, respectively. 

In the context of driver behavior and distraction detection, Ghandour et al. [6] focuses on leveraging machine 

learning classification methods applied to real-world data portraying diverse driving behaviors including 

aggressive, drowsy, and normal states. Through systematic analysis and randomization of the dataset, the 

study evaluates the efficacy of four distinct models: logistic regression (LR), RF, gradient boosting, and 

neural networks (NN). Results reveal varying levels of accuracy, with LR achieving 54%, gradient boosting 

at 67%, RF scoring 63%, and NN performing at 29%. These models, though applied to the same dataset, 

showcase different capabilities in effectively classifying and identifying diverse driver behaviors and 

distraction scenarios. Yi et al. [11] delved into the feature distribution analysis of data collected from 

individual drivers and the collective dataset, employing advanced data visualization techniques and statistical 

analyses. When substantial disparities were detected, they developed a model aimed at predicting a driver's 

driving state. Silva and Henrique [12], explored a unique method for identifying maneuvers using vehicle 

telematics data, focusing on uncovering patterns within time series data. They employed the extended motif 

discovery algorithm, conducting two distinct experiments: one to recognize accelerations and brakes from 

longitudinal acceleration time series and another to identify turns from lateral acceleration time series.  

Silva and Henrique [13], introduced TripMD, a system designed to extract significant driving patterns from 

sensor recordings such as speed and acceleration. Initially applied to journeys undertaken by a single driver, 

this system showcased its ability to extract an extensive array of driving patterns. Moreover, these patterns 

successfully differentiated between various driver behaviors. Furthermore, they demonstrated the system's 

effectiveness in identifying the driving behavior of an unknown driver among a group of drivers whose 

behaviors were known by using the patterns derived from TripMD.  

From the related works analysis, we concluded that feature selection methods have not been fully 

utilized to enhance the prediction of driver behavior, and the performance achieved so far by machine 

learning algorithms in this context still needs improvement. The primary objective of this paper is is to 

highlight the potential of feature selection techniques to enhance the accuracy and effectiveness of ML 

models for classifiying driver behavior. Additionally, the research aims to identify features that directly 

influence the comprehension of driver behavior. Our methodology comprises an exploratory analysis of 

driver behavior data sourced from the UAH-DriveSet dataset. To accomplish this, we deploy three distinctive 

feature selection methodologies: filter methods, wrapper methods, and embedded methods, employing a total 
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of 10 techniques across these methods. Subsequently, we utilize diverse ML algorithms to categorize driver 

behavior into normal, drowsy, and aggressive classifications. 

The paper's structure is organized as follows: in section 2, we comprehensively outline our research 

methodology, encompassing details about the dataset, preprocessing steps, the feature selection methods 

applied, and the ML algorithms utilized. Section 3 presents the results obtained from the application of 

feature selection and various machine learning algorithms, accompanied by a discussion of these results. 

Finally, the conclusion and perspective are presented in section 4. 

 

 

2. RESEARCH METHOD 

The objective of our paper is to employ machine learning algorithms for classifying driver behavior 

while utilizing feature selection methods. This approach aims to identify the most influencing features on 

driver behavior classification and enhance the overall performance of our ML models. Our methodology 

workflow is depicted in Figure 1.  

The initial phase involves consolidating driving data gathered from various sensors. Subsequently, 

we perform data preprocessing to enhance its quality. Following this, we systematically apply ten distinct 

feature selection techniques. Each application is succeeded by a balancing step to ensure a representative 

dataset. The next stage involves splitting the data into training and testing sets. Finally, we apply eight 

different ML algorithms to classify driver behavior. 

 

 

 
 

Figure 1. Research methodology 

 

 

2.1.  Dataset description 

The UAH-DriveSet [14] dataset encompasses extensive data collected from six drivers operating 

various vehicles, simulating three distinct driving behaviors: normal, drowsy, and aggressive. These 

behaviors were observed on both highways and secondary roads. Consequently, the dataset contains over  

500 minutes of naturalistic driving data, comprising raw and processed sensor data in addition to video 

recordings of the trips. The dataset, amounting to 3.4 GB in size, comprises video recordings along with 

sensory data (both raw and processed), collected through the DriveSafe application. The data collection 

process involved utilizing smartphone sensors like GPS signals, accelerometers, gyroscopes, and cameras, as 

described in Figure 2. 

 

2.2.  Data preprocessing 

Several preprocessing techniques were used in the data preparation [15], including: 

 Removal of missing and abnormal data: incomplete drive data and entries with missing or abnormal 

values were deleted. 
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 Elimination of duplicated rows: rows containing identical timestamps were removed to ensure unique 

data entries. 

 Removal of redundant data: features showing identical information were eliminated to streamline the 

dataset. 

 Transformation of categorical data: categorical data were encoded into numerical format to enable 

analysis. 

 Data normalization: the dataset was normalized using linear scaling techniques to standardize the values 

across different features [16]. The following equation was employed to transform the data into a format 

where feature values fall within the range of 0 to 1. 

 

𝑋𝑖 =
(𝑋𝑖−min(𝑋𝑖))

(𝑚𝑎𝑥(𝑋𝑖)−𝑚𝑖𝑛(𝑋𝑖))
 (1) 

 

 

 
 

Figure 2. The UAH-DriveSet features 

 

 

2.3.  Feature selection 

Feature selection indeed aims to identify the most pertinent features from a dataset with a vast 

feature space. Various methodologies exist for this purpose, broadly categorized into three main types: 

wrapper methods, embedded methods, and filter methods [17], [18]. These approaches differ in how they 

assess and select features based on different criteria or algorithms to determine the most relevant subset of 

features for a particular task or analysis. 

 

2.3.1. Filter methods 

These evaluate features based on statistical measures. Such as pearson correlation, chi-square test, 

and ANOVA. While computationally efficient and easily interpretable, this method might overlook complex 

feature relationships. 

 

2.3.2. Wrapper methods 
These assess a model's performance by utilizing subsets of features. They involve training models 

with various feature subsets and selecting the subset that produces the best performance. While this approach 

offers increased accuracy, it can be computationally demanding, particularly for larger datasets. Techniques 

employed in this paper within Wrapper methods include recursive feature elimination with RF, backward 

selection, and forward feature selection. 

 

2.3.3. Embedded methods 
These perform feature selection during the model training phase. They automatically determine 

which features to use during training, reducing the risk of overfitting by dynamically selecting and updating 

features. Techniques explored within embedded methods consist of: Lasso, Ridge, Elastic Net, and Tree-

based methods. 

 

2.4.  Balancing data 

Balancing classes can offer benefits in machine learning. Yet, generating synthetic data might lead 

to overfitting, particularly when not executed correctly or in scenarios where the original dataset is limited in 

size. SMOTE is a prevalent method employed in machine learning to mitigate class imbalance by 

oversampling the minority class [19]. 
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2.5.  Split data 
Following the data collection, preparation and feature selection, the subsequent step involves 

dividing the dataset into training and test sets. The training set serves as the basis for training the machine 

learning model, while the test set is crucial for evaluating the model's performance. To ensure a 

representative assessment, the data is randomly split, and in our case, a 70/30 partitioning is applied. This 

means that 70% of the data is allocated for training purposes, and the remaining 30% is reserved for testing 

the model's efficacy. 

 

2.6.  Machine learning algorithms 

In the literature, a wide range of machine learning techniques has been investigated and employed 

for the classification of driver behavior. The classification of driving behavior relies heavily on the utilization 

of these diverse ML algorithms, as highlighted in the literature [3]. The algorithms utilized in this paper are 

outlined below. 

 

2.6.1. Standard machine learning algorithms 
ML methods involve applying algorithms that allow computer systems to understand patterns and 

make judgments or predictions based on data. 

 LR is commonly used for binary classification tasks, LR estimates the probability that a given input 

belongs to a particular class [20]. 

 SVM proves efficient for tasks involving both classification and regression [21]. SVM identifies the optimal 

decision boundary (hyperplane) to separate distinct classes or predict values. 

 KNN is an algorithm that assigns labels to data points by considering the majority class among their KNN 

within the feature space [22]. 

 DT are a supervised learning technique utilized for both classification and regression. They entail 

constructing a tree-like structure to make decisions based on input features [23]. 

 Naive bayes (NB) uses Bayes' theorem to classify instances based on the probability of attributes 

belonging to different classes [24]. 

 

2.6.2. Ensemble methods 
Ensemble methods are machine learning algorithms that aggregate predictions from numerous 

different models to provide a more robust and accurate final prediction. 

 RF is an ensemble technique that constructs multiple decision trees during training and merges their 

predictions to improve accuracy and reduce overfitting [25]. 

 Extreme gradient boosting (XGBoost) is an optimized implementation of gradient boosting that is highly 

efficient and widely used in various ML competitions [26]. 

 Adaptive boosting (AdaBoost) is a boosting technique that combines multiple weak learners to create a 

strong classifier. Each subsequent model gives more weight to misclassified data points from the previous 

model [26]. 
 

2.7.  Hyperparameters of feature selection techniques and algorithms  

The hyperparameters of feature selection techniques and algorithms encompass crucial settings and 

configurations that significantly influence their performance. Table 1 presents the hyperparameters associated 

with feature selection techniques, while Table 2 outlines the hyperparameters specific to ML algorithms. 

These tables serve as comprehensive references, detailing the key settings and configurations essential for 

optimizing the performance of each respective technique or algorithm. 
 

 

Table 1. Hyperparameters of feature selection techniques 
Methods Techniques Hyperparameters 

Filter methods Pearson correlation Threshold=0.4 

Chi-square test Score_func=chi2, k=8 

ANOVA Score_func=f_classif, k=9 

Wrapper methods Recursive feature 

elimination 

Estimator=base_model, step=1, cv=5 

base_model=randomforestregressor(n_estimators=100, max_depth=10) 

Backward feature 

selection 

Estimator=base_model, direction='forward' 

base_model=kneighborsclassifier(n_neighbors=3) 

Forward feature selection Estimator=base_model, direction='backward' 

base_model=kneighborsclassifier(n_neighbors=3) 

Embedded methods Lasso Alpha=1e-05 

Ridge Alpha=4.01 

ElasticNet Alpha=0.1, l1_ratio=0.1 

Tree-based methods Randomforestclassifier, n_estimators=100, random_state=42 
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Table 2. Hyperparameters of algorithms 
Type Algorithms Hyperparameters 

Standard machine 

learning algorithms 

LR Max_iter=1,000, random_state=42, C=1.0 

SVM Kernel='rbf', C=1.0, gamma='scale', random_state=42 

KNN N_neighbors=3, weights='uniform', algorithm='auto 

NB Priors=None, var_smoothing=1e-09 

DT Min_samples_split=2, min_samples_leaf=1, max_depth=None, 

criterion='gini' 

Ensemble methods RF N_estimators=100, criterion='gini', random_state=42, min_samples_split=2, 

min_samples_leaf=1 

XGBoost Random_state=42, max_depth=3, learning_rate=0.1, n_estimators=100 

AdaBoost N_estimators=50, learning_rate=1.0 

 

 

2.8.  Software and hardware 

To implement this study, we used python programming language. The experiments were conducted 

on a Victus by HP laptop equipped with an AMD Ryzen 5 5600H CPU with Radeon Graphics, operating at 

3301 MHz, comprising 6 Cores and 12 Threads (8 CPUs). The laptop features 16 GB of RAM and is 

powered by an NVIDIA GeForce RTX 3050 laptop GPU. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Feature selection results 

These findings provide a comprehensive overview of the key features consistently identified by the 

various methods, contributing to a more nuanced understanding of the significant attributes influencing driver 

behavior. Based on the results obtained from the feature selection methods, the following set of features were 

selected across all methods: speed, course, course variation, acceleration in X, Y, and Z filtered by KF, X 

(meters), phi, road width, roll, pitch, yaw, state algorithm, distance to ahead vehicle, impact time, number of 

vehicles, number of lanes in the current road, and road type. In Table 3, we have outlined the features 

selected by each technique in the filter method, wrapper method, and embedded method. 

 

 

Table 3. Result of feature selection methods 
Filter methods Wrapper methods Embedded methods 

Pearson correlation Recursive feature elimination Lasso 

Speed, course, course variation, 

acceleration in X, Y, Z filtered, roll, 

yaw, X, phi, road width, state of the 

lane, distance to ahead vehicle 

Speed, course, roll, yaw, X, road width, 

distance to ahead vehicle, impact time, 

number of vehicles, road type 

Speed, course, course variation, 

acceleration in X, Y, Z filtered, roll, yaw, 

X, phi, distance to ahead vehicle, impact 

time, number of lanes, road type 

Chi-square test Backward feature selection Ridge 

Speed, course, pitch, yaw, X, impact 

time, number of vehicles, number of 

lanes, road type 

Speed, course, course variation, pitch, yaw, 

road width, impact time, number of lanes, 

road type 

Speed, course variation, acceleration in Y 

filtered, phi, distance to ahead vehicle, 

impact time, number of lanes  

ANOVA Forward feature selection ElasticNet 

Speed, course, acceleration in Y 

filtered, yaw, X: (meters), phi, road 

width, number of vehicles, road type 

Speed, course, course variation, yaw, road 

width, distance to ahead vehicle, impact 

time, number of lanes, road type 

Speed, course, yaw, number of vehicles  

Tree-based methods 

Speed, course, roll, yaw, road width, 

distance to ahead vehicle, impact time 

 

 

Based on the results of feature selection, we can conclude that several key features significantly 

influence driver behavior as shown in Figures 3 and 4. The most prominent features are as follows: 

 Speed (km/h): speed appears to have a substantial impact on driver’s behavior. Higher speeds might 

indicate a more aggressive or risk-prone driving style. 

 Course: the course or direction of the vehicle is a vital aspect influencing driver’s behavior, potentially 

reflecting patterns in navigation and decision-making. 

 Yaw: which indicates the rotation around the vertical axis of the vehicle, seems to be closely associated 

with various driving behaviors, possibly indicating changes in direction or steering patterns. 

 Impact time: the time of impact is a crucial indicator, potentially suggesting drivers' responsiveness and 

ability to manage their vehicle in critical situations. 

 Road width: is another influential factor, potentially affecting driving choices, especially in relation to 

maneuvering and spatial awareness. 

 Distance to ahead vehicle: its significance in assessing the space between vehicles and potential driver 

decision-making. 
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Figure 3. Number of records of each feature Figure 4. Number of records of each feature in each 

feature selection method 

 

 

Moreover, the literature frequently employs certain features in the analysis of driver behavior. 

Bouhsissin et al. [3], these commonly utilized features include speed, acceleration, accelerator pedal, rotation 

angle, lateral and longitudinal acceleration, as well as time of impact. The frequency of these features 

suggests a consensus in the literature regarding their significance and relevance for understanding diverse 

aspects of driver actions. 

The convergence of two results indicates the presence of shared features that hold significant 

importance across both types of studies. Vehicle speed emerges as a prominent indicator, based on its 

significant presence in the dataset in literature and in our experimentation and it also suggests its relevance in 

analyzing driving patterns and behavior. Acceleration is indeed a crucial parameter in understanding driver 

behavior, and both literature and experimentation support this notion as it provides insights into how drivers 

control their vehicles. The rotation angle of the vehicle emerges as another pivotal factor, its relevance in 

understanding the rotational movements of the vehicle, which can be crucial for assessing driver behavior 

during turns or maneuvers. Time of impact is a critical determinant to understanding the potential risk 

scenarios, and driver responsiveness during critical situations on the road. The distance to the ahead vehicle 

holds profound importance, offering insights into vehicle spacing and the decision-making processes of 

drivers as they maintain safe distances on the road. Vehicle position, as reflected in the literature and 

experimentation, emerges as a noteworthy contributor to our understanding of driver behavior. It provides 

crucial information about the spatial orientation and positioning of the vehicle, making it a key factor in the 

analysis of driver behavior across diverse road scenarios. Finally, detected vehicles are instrumental in 

identifying the presence of other vehicles within proximity. This feature is of utmost importance in assessing 

driver awareness and responsiveness, especially in multi-vehicle settings, ultimately enhancing our 

comprehension of driver behavior and its implications for road safety. 

 

3.2.  Machine learning results  

We will assess our machine learning models by examining metrics like accuracy, precision, recall, 

and F1-score, in addition to analyzing the mean execution time. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 
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The results of ML algorithms without feature selection are presented in Table 4. Tables 5 to 7 display the 

results of ML algorithms with feature selection using filter methods, wrapper methods, and embedded 

methods respectively. 

 

 

Table 4. Machine learning algorithms results without feature selection 
Type Algorithms Accuracy F1-score Precision Recall Time 

Standard machine learning algorithms LR 59.66 59.73 59.49 61.41 2.19 

SVM 77.45 77.62 77.33 78.60 44.89 

KNN 91.07 91.04 90.96 91.01 0.01 

NB 61.99 52.49 56.04 52.84 0.02 

DT 89.86 89.90 89.80 89.94 0.72 

Ensemble methods RF 94.37 94.33 94.25 94.34 9.04 

XGBoost 95.10 95.14 95.06 95.19 2.14 

AdaBoost 70.31 70.73 70.30 71.55 2.41 

 

 

Table 5. Machine learning algorithms results with filter methods 
Technique Algorithm Accuracy F1-score Precision Recall Time 

Standard machine learning algorithms 

Pearson correlation LR 52.87 53.19 53.03 54.97 3.05 

SVM 70.31 69.81 69.66 71.35 55.40 

KNN 89.55 89.53 89.56 89.51 0.06 

NB 64.31 56.46 58.83 55.86 0.01 

DT 88.03 88.10 88.05 88.18 0.47 

Chi-square test LR 57.05 57.09 56.93 58.59 0.50 

SVM 75.56 74.67 74.52 76.63 43.64 

KNN 92.47 92.51 92.43 92.55 0.05 

NB 57.25 55.08 55.80 54.70 0.02 

DT 90.43 90.40 90.30 90.38 0.23 

ANOVA LR 56.07 56.04 55.98 57.59 0.92 

SVM 75.79 75.63 75.60 77.07 35.41 

KNN 92.78 92.82 92.83 92.86 0.05 

NB 61.62 57.80 59.08 57.07 0.03 

DT 89.90 89.89 89.83 89.88 0.28 

Ensemble methods 

pearson correlation RF 93.15 93.10 92.99 93.09 9.39 

XGBoost 93.77 93.81 93.70 93.85 4.20 

AdaBoost 70.60 70.82 70.21 71.79 2.12 

Chi-square test RF 94.73 94.69 94.58 94.67 7.62 

XGBoost 93.47 93.50 93.33 93.53 1.36 

AdaBoost 70.32 70.50 70.19 70.88 1.38 

ANOVA RF 94.11 94.16 94.11 94.24 8.03 

XGBoost 93.81 93.87 93.82 93.95 2.13 

AdaBoost 64.39 64.74 64.50 66.00 2.27 

 

 

Table 4 presents insights showcasing the varied performance of different algorithms of ML without 

feature selection. XGBoost outperforms other models in terms of accuracy, F1-score, precision, and recall, 

achieving 95.10%, 95.14%, 95.06%, and 95.19%, respectively, while maintaining a moderate processing 

time of 2.14 seconds. KNN also stands out for its high accuracy at 91.07% and low processing time. RF 

displays strong performance in accuracy, F1-score, precision, and recall, with 94.37%, 94.33%, 94.25%, and 

94.34%, respectively, but requires more time (9.04 seconds) compared to KNN. Conversely, NB and LR 

exhibit relatively lower performance metrics compared to other models. 

The results of the filter methods are presented in Table 5. Notably, among the standard ML 

algorithms, KNN consistently demonstrates a high level of accuracy across different feature selection 

techniques. The KNN algorithm achieves an accuracy rate of 92.78% with ANOVA. This indicates its 

robustness in maintaining high accuracy regardless of the feature selection method used. In terms of 

ensemble methods, RF and XGBoost consistently exhibit strong performance across different feature 

selection techniques, maintaining high accuracy rates. RF achieves accuracy rates 94.73% with Chi-square 

test, while XGBoost achieves accuracy rate 93.81% with ANOVA. These findings highlight the robustness of 

KNN, DT, RF, and XGBoost across different feature selection techniques, showcasing their stability and 

efficiency in maintaining high accuracy in classification tasks. Additionally, the feature selection technique 

using Chi-square test consistently showcases slightly higher accuracy values across most algorithms 

compared to pearson correlation and ANOVA. 
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Table 6. Machine learning algorithms results with wrapper methods 
Technique Algorithm Accuracy F1-score Precision Recall Time 

Standard machine learning algorithms 

Recursive feature 

elimination 

LR 57.51 57.45 57.26 59.46 2.04 

SVM 71.08 71.18 70.97 72.22 35.31 

KNN 89.18 89.23 89.14 89.28 0.09 

NB 57.41 57.34 57.26 57.65 0.02 

DT 83.79 83.77 83.51 83.76 0.24 

Backward feature 

selection 

LR 52.90 52.97 52.81 54.58 2.45 

SVM 74.99 73.31 73.42 75.64 61.19 

KNN 96.04 96.05 96.03 96.05 0.15 

NB 56.24 49.95 52.34 50.13 0.03 

DT 91.85 91.79 9177 91.75 0.33 

Forward feature 

selection 

LR 55.95 55.86 55.58 58.02 1.12 

SVM 77.20 75.86 75.61 77.48 41.37 

KNN 96.29 96.27 96.28 96.25 0.05 

NB 51.33 49.81 50.50 49.66 0.02 

DT 92.09 92.05 92.10 92.02 0.32 

Ensemble methods 

Recursive feature 

elimination 

RF 89.25 89.25 89.11 89.30 8.13 

XGBoost 86.56 86.66 86.44 86.82 1.65 

AdaBoost 66.32 66.53 66.14 67.46 1.47 

Backward feature 

selection 

RF 96.40 96.36 96.33 96.32 7.44 

XGBoost 94.99 94.97 94.93 94.98 5.50 

AdaBoost 64.12 64.59 64.03 65.65 2.26 

Forward feature 

selection 

RF 95.77 95.67 95.70 95.61 6.05 

XGBoost 94.59 94.60 94.53 94.64 1.42 

AdaBoost 64.95 65.35 64.76 66.12 1.57 

 

 

Table 7. Machine learning algorithms results with embedded methods 
Technique Algorithm Accuracy F1-score Precision Recall Time 

Standard machine learning algorithms 

Lasso LR 59.97 60.05 59.84 61.51 2.09 

SVM 75.65 74.47 74.06 75.96 46.42 

KNN 90.04 90.03 89.92 90.02 0.07 

NB 62.98 56.14 58.45 55.78 0.02 

DT 88.30 88.32 88.17 88.33 0.42 

Ridge LR 53.04 52.91 52.75 54.57 1.01 

SVM 60.65 61.14 60.65 62.18 59.63 

KNN 63.38 63.72 63.53 64.47 0.04 

NB 55.48 45.08 50.50 46.86 0.02 

DT 61.35 61.57 61.21 61.84 0.30 

ElasticNet LR 52.66 52.04 52.16 54.69 0.19 

SVM 68.95 67.04 67.35 69.92 38.81 

KNN 90.82 90.84 90.91 90.86 0.03 

NB 52.00 52.11 51.94 53.31 0.01 

DT 89.16 89.18 89.18 89.21 0.18 

Tree-based 

methods 

LR 53.72 53.20 53.48 56.57 0.72 

SVM 74.89 73.57 73.28 75.16 39.79 

KNN 95.36 95.31 95.31 95.26 0.04 

NB 53.16 53.41 52.74 54.10 0.02 

DT 91.38 91.37 91.32 91.37 0.24 

Ensemble methods 

Lasso RF 92.31 92.28 92.17 92.33 8.84 

XGBoost 92.96 92.99 92.83 93.04 6.34 

AdaBoost 69.43 69.64 69.21 70.47 2.98 

Ridge RF 69.87 69.90 69.43 69.93 5.89 

XGBoost 69.13 68.99 68.48 68.86 4.17 

AdaBoost 61.45 61.67 60.98 62.54 1.50 

ElasticNet RF 92.34 92.36 92.38 92.42 5.00 

XGBoost 87.91 88.09 87.98 88.54 0.96 

AdaBoost 62.94 61.43 61.95 64.91 1.00 

Tree-based 

methods 

RF 95.53 95.44 95.43 95.36 7.49 

XGBoost 94.03 94.06 93.94 94.14 1.48 

AdaBoost 67.08 67.25 66.59 68.63 1.49 

 

 

Based on the results presented in Table 6, which illustrates the outcomes obtained from the wrapper 

methods. The KNN stood out as the most robust standard ML algorithm, exhibiting high accuracy in all 

feature selection methods with 96.29%. Ensemble methods like RF and XGBoost displayed more consistent 
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performance across feature selection techniques compared to standard ML algorithms with 96.40% and 

94.99%. NB and LR generally displayed lower accuracy and performance compared to KNN and ensemble 

methods across all feature selection techniques. Forward and backward feature selection methods showed 

varying impacts on the algorithms' performance across different models. These findings suggest that different 

feature selection methods can significantly impact the performance of ML models, with KNN and RF 

exhibiting more robust performance across multiple techniques. 

Table 7 displays the outcomes of ML algorithms employing embedded methods. Notably, among 

the standard ML algorithms, KNN and DT demonstrated superior accuracy and performance in multiple 

feature selection techniques. They achieve exceptional accuracy rates of 95.36% and 91.38%, respectively, 

specifically with Tree-based methods. Ensemble methods, especially RF and XGBoost, consistently 

performed better across various feature selection methods compared to standard ML algorithms. RF and 

XGBoost notably achieved impressive accuracy rates of 95.53% and 94.03%, respectively, especially with 

Tree-based methods. These findings emphasize the strength of ensemble methods, particularly RF and 

XGBoost, in delivering high accuracy, showcasing their potential as robust models for classification tasks 

when coupled with appropriate feature selection techniques, such as Tree-based method. 

The Figure 5 encompasses a comprehensive assessment of various algorithms' accuracy and 

execution time across different feature selection techniques. The highest accuracy of 96.4% was achieved by 

RF with backward feature selection, then forward feature selection with KNN reached an accuracy of 

96.29%, also KNN achieved an accuracy of 96.04% with backward feature selection. Conversely, certain 

algorithms exhibited lower accuracies across various feature selection techniques, such as LR, and NB, all 

achieving accuracies below 65%. In terms of time, the KNN algorithm demonstrates faster processing than 

the RF algorithm. KNN achieves an accuracy of 96.04% with the backward feature selection technique in  

0.15 seconds, while RF achieves an accuracy of 96.4% in 7.44 seconds. 

 

 

 
 

Figure 5. Comparison of accuracy and execution time results of all machine learning algorithms 

 

 

3.3.  Discussion 

In summary, this study demonstrates how feature selection techniques enhance ML models’ 

performance for driver behavior classification. Additionally, we introduce a ML process aimed at the 

development of these models, facilitating an assessment of their performance. Furthermore, the study aims to 

identify pivotal features that contribute to or shape driver behavior. The results highlight the varied 

performance of algorithms when combined with various feature selection techniques, showcasing the 

potential of specific pairings to substantially enhance accuracy in the classification of driver behavior. In the 

other hand, the study also endeavors to discern pivotal features contributing to or shaping driver behavior, 

employing different feature selection methods, and considering various aspects of driving behavior such as 

speed, acceleration, lane detection, and car position. 

In comparison with previous studies, our method demonstrates superior results. For instance, when 

compared to studies [8] and [9], where the authors achieved F1-scores of 94.11% and 80% respectively using 

Random Forest, our study outperforms with an F1-score of 96.36%. Additionally, our accuracy stands at 

96.4%, surpassing the 63% accuracy reported in paper [6]. These findings underscore the efficacy of our 

approach in achieving higher classification performance in the context of driver behavior. Additionally, our 

conclusion highlights that the most influential features for driver behavior encompass speed (km/h), course, 

yaw, impact time, road width, distance to the ahead vehicle, vehicle position, and number of detected 

vehicles. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 354-365 

364 

4. CONCLUSION 
In this paper, we conducted a classification of driver behaviors utilizing various feature selection 

techniques and ML algorithms. We explored Filter methods including pearson correlation, Chi-square test, 

and ANOVA, wrapper methods involving recursive feature elimination, backward feature selection, and 

forward feature selection, and embedded methods using lasso, ridge, elasticnet, and tree-based methods. In 

general, a comprehensive analysis of features influencing driver behavior reveals several critical factors. 

Vehicle speed, rotation angle, time of impact, distance to ahead vehicle, vehicle position, and number of 

detected vehicles are prominent variables consistently associated with driving patterns. Each technique of 

feature selection was applied with ML algorithms LR, SVM, K-NN, DT, NB, and ensemble methods RF, 

XGBoost, and AdaBoost. The RF algorithm emerged as the top-performing classifier, achieving an 

impressive accuracy of 96.4% and 96.36% F1-score using backward feature selection in 7.43 seconds. 

Additionally, KNN displayed notable performance as the fastest classifier, with results close to those of RF. 

In future work, we aim to explore different deep learning algorithms for driver behavior classification and 

compare their results with the findings presented in this article. 
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