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 Melanoma is a highly malignant skin cancer that may be fatal if not 

promptly detected and treated. The limited availability of high-quality 

melanoma images, which are needed for training machine learning models, 

is one of the obstacles to detecting melanoma. Generative adversarial 

networks (GANs) have grown in popularity as a strong technique for image 

synthesis. This research is also targeted at the sustainable development goal 

(SDG) for health care. In this study, we survey existing GAN-based 

melanoma image synthesis methods. In this work, we briefly introduce 

GANs and how they may be used for generating synthetic images. Ensuring 

healthy lifestyles and promoting well-being for everyone, regardless of age, 

is the main aim. A comparative study is carried out on how GANs are used 

in current research to generate melanoma images and how they improve the 

classification performance of neural networks. Various public and 

proprietary datasets for training GANs in melanoma image synthesis are also 

discussed. Lastly, we assess the examined studies' performance using 

measures like the Frechet Inception distance (FID), Inception score, 

structural similarity ındex (SSIM), and various classification performance 

metrics. We compare the evaluated findings and suggest further GAN-based 

melanoma image-creation research. 
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1. INTRODUCTION 

Skin cancer is a prevalent form of cancer, representing 1 to 2% of all new malignancies and over 

90% of all identified cases of skin tumours [1], [2]. Melanoma, the least common and most fatal type of skin 

cancer, has a global mortality rate of 25% [3]. Early detection can significantly improve survival rates in 

numerous cases [4], whereas without an accurate diagnosis, the 5-year survival rate drops to 19.9%. 

Diagnosing melanoma early is challenging because of variations in skin tone and lesion types. Even skilled 

dermatologists can only identify it with 60% accuracy through visual examinations [5]. Dermoscopy, a 

precise technique [6], necessitates sophisticated equipment and skilled personnel, highlighting the importance 

of enhancing computer-aided design (CAD) systems to support dermatologists and alleviate strain on 

healthcare resources [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Image processing filters such as the Harris corner detector are used to analyse specific image 

features in traditional CAD and machine-based systems. Nevertheless, these techniques were labor-intensive 

and restricted to small datasets. In recent decades, convolutional neural networks (CNNs) and other image 

processing methods have attracted attention in the field of medical imaging because of their diagnostic 

accuracy [8]-[12]. Deep learning models with intricate structures necessitate extensive datasets to prevent 

overfitting. 

Insufficient data in medical imaging, especially for melanoma, presents a major challenge. Biopsies 

provide a limited amount of training data due to the fact that they only represent a portion of cases for 

pathologic diagnoses [13]. Data augmentation and transfer learning are used to address the scarcity of data in 

medical datasets, despite facing challenges due to their limited availability [14]. Generative adversarial 

networks (GANs) have proven to be effective in tasks such as medical image generation, alteration, 

segmentation, and categorization [15]-[19]. 

Some of the review consolidates important contributions and findings from pivotal research in the 

field. Such as GANs in unsupervised and semi-supervised settings and uncovering their capabilities and 

constraints. A comparison of various GAN architectures and demonstrations that personalize GAN (PGAN) 

outperform others in producing lifelike images, and GAN-based data augmentation techniques like 

demonstrating superior performance compared to conventional models. Section 3 discusses these studies in 

detail. Yet, unresolved challenges include generalizability across datasets, computational efficiency, and 

detailed evaluation of synthetic image quality and biases. 

This review seeks to address these gaps by thoroughly examining the methodologies, computational 

requirements, and reliability of synthetic images in different studies. Thus, our review aims to provide a 

systematic and comprehensive overview of the use of GANs in melanoma image synthesis. By highlighting 

current advancements and identifying areas for future development, this study contributes towards the 

healthcare sector's sustainable goals, particularly enhancing early detection and treatment of skin cancers. 

Following this introduction, the paper is organised as outlined below: section 2 outlines the research 

methodology for the proposed systematic review, while section 3 delves into the operations of GANs and 

their architectures. Section 4 provides a literature review on GANs in melanoma image synthesis. Section 5 

examines standard skin lesion datasets accessible online. Section 6 investigates the current research 

challenges in utilising GANs for image synthesis. Section 7 wraps up the study with recommendations for 

future research. 

 

 

2. METHOD 

We conducted this systematic review to select and classify the most effective methods currently 

available for generating synthetic melanoma images to overcome class imbalance problems using GAN and 

the classification of the same at an early stage with good accuracy. Systematic literature reviews involve 

collecting and evaluating previously published research as per a set of predetermined evaluation criteria. These 

kinds of reviews help determine what previous research in the relevant field of study has uncovered [20]. 

Every piece of information obtained from primary sources is sorted and then analyzed. When the 

literature review is finished, it will provide a more reasonable, logical, and solid answer to the fundamental 

question that the research was attempting to answer [21]. The research papers that were relevant to melanoma 

image synthesis and classification using GANs made up the population of this study that was considered 

during the systematic literature review. 

 

2.1.  Research framework 

We began our systematic review by creating a detailed conceptual framework to guide us through 

three phases. The planning phase consisted of creating research questions and determining the scope. We 

moved on to the data collection and analysis stage, during which we carried out a focused literature search 

using specific databases and established criteria. The last stage focused on consolidating our discoveries and 

reaching conclusions that effectively answered our research inquiries. 

− Research questions: research question formulation is important for an effective systematic literature 

review. The following questions can be addressed in this study: 

Question 1: which are the primary features of the datasets that are accessible for lesions of melanoma 

skin cancer?  

Question 2: what are the major GAN methods for synthesizing images of melanoma skin cancer, and 

how have they improved the classification performance? 

− Search criteria: we conducted a systematic review by strategically selecting search keywords related to 

our study's theme, including melanoma, skin cancer, image synthesis, image classification, deep 

learning, GAN, and generative adversarial networks. We conducted a comprehensive search across 
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major databases such as PubMed, Scopus, and Web of Science by using a combination of keywords and 

Boolean operators. This systematic search strategy was created to thoroughly gather pertinent literature, 

guaranteeing a strong and comprehensive dataset for our research. The keywords used to search for 

information relevant to skin cancer are listed in Table 1. 

Criteria for selecting articles: 

− Articles published between 2015 and 2023. 

− Concentrate on generating melanoma images using GAN. 

− Include studies on image synthesis and classification utilising GAN or alternative classifiers. 

− Only articles that have undergone peer review were taken into account. 

− Articles are screened initially using titles, abstracts, and keywords. 

− Thorough examination of complete texts to gather data on study design, methodologies, findings, and 

conclusions. 

Resources explored: performed literature searches in reputable databases such as PubMed, Arxiv.org, IEEE 

Xplore, ACM Digital Library, Springer, Science Direct, and selected open-access sources. 

 

 

Table 1. Search terms for literature collection 
Search keywords/terms 

melanoma AND image synthesis 
(melanoma OR skin cancer) AND image synthesis 

(melanoma or skin cancer) AND (image synthesis OR image generation) 

(melanoma or skin cancer) AND (image synthesis OR image generation) AND GAN 
(melanoma or skin cancer) AND (image synthesis OR image generation) AND GAN AND classification 

 

 

2.2.  Selection criteria and evaluation methods 

There were 26 research papers and conference reports found using the search criteria. Of the 

identified papers, 18 were chosen because their titles and abstract were most relevant to our research. Table 2 

displays the results of the search. 

Some quality control questions were attempted to be answered by carefully reading the full texts of 

the selected research papers. The current systematic research asks the following questions to evaluate the 

quality. 

i) Did the article that was reviewed include all relevant information? 

ii) Has the paper's quality been confirmed? 

iii) Does the chosen study provide satisfactory responses to the research questions? 

The first quality assessment item inquired whether data augmentations using GAN methods for 

generating skin lesion images were discussed at length. Secondly, the standing of the journal/publisher in 

which a given article appeared was to confirm the article's quality. The third inquiry checked whether or not 

the study addressed the research questions posed in section 2. We selected only the most relevant articles 

from the research literature that pertained to our field. These papers have been selected because they answer 

the aforementioned research questions. Non-relevant text or papers that did not fully respond to the research 

or quality control questions were also disqualified. 

The above-mentioned research questions were answered with 'true/false' responses. We assigned 

each true response a value of 1, and for each false response, a value of 0 was assigned. The 18 research 

papers chosen for the first quality control question had a topic coverage evaluation of 95%, which is very 

good. The chosen papers were found to be of higher quality, so a score of 90% is achieved for the second 

question; it is beyond average. The third question was crucial to address the primary research questions posed 

by the review. An indicator of the studies' ability to address the review's research questions yielded 85% 

results. The aggregate response rate to these high-standard questions was encouraging. 

 

 

Table 2. Search results for literature review 
Resource Related articles 

Springer 2 

arXiv 4 
IEEE Xplore 4 

PubMed 3 

Science direct 3 
SBC open lib 1 
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2.2.1. Methodology justification 

The chosen databases are well-known for their scientific rigour, guaranteeing access to top-quality 

research related to GANs and melanoma. The keywords are directly connected to the main focus of our 

study, guaranteeing a thorough review of relevant literature. The importance of a systematic approach lies in 

its necessity for an impartial evaluation, which supports our goal of addressing knowledge deficiencies 

regarding GAN applications in melanoma image synthesis, as outlined in the introduction. 

− Technical details included: we used a binary true/false system to evaluate the relevance and quality of 

each paper consistently, focusing on criteria directly related to our study's scope. The true/false evaluation 

system quantifies 'true' as 1 and 'false' as 0, offering an objective method to assess each article's suitability 

for review. 

− Connecting methodology to research questions and gaps in knowledge: we address our research questions 

on GANs in melanoma image synthesis using a systematic approach. Through analysing recent literature, 

we pinpoint current trends and shortcomings, successfully addressing the gaps outlined in the 

introduction. 

 

2.3.  Generative adversarial networks for image synthesis 

GAN, a popular deep learning framework, is often used to make new images [22]. It has completely 

changed the field of image synthesis, making it possible to create images from scratch that look real and are 

of high quality [23]. Its has two main components, a generator for generating synthetic images and a 

discriminator to check whether image is fake or real using a neural network trained jointly in a zero-sum 

game. During the training process, the generator and the discriminator play a game together in which the 

random noise is given to generator which create a image from it that convince the discriminator that it is real. 

In contrast, the discriminator classifies whether the image is real or fake. Because the two networks are 

always competing, the generator learns from discrimiantor feddback and further make images look more real 

so the discriminator is not able to distinguish it from real one. 

After the training process is completed for the GAN , the generator is used to generate new images 

that share characteristics with the training data. The GAN can generate these new images, and because of 

this, GANs are applicable in image editing, style transfer, and the synthesis of realistic images of people, 

objects, and landscapes. The popular GANs architecture for image synthesis is as discussed: 

 

2.3.1. Vanilla GAN 

Vanilla GAN comprises a generator and discriminator as given in Figure 1, which were first 

proposed by Goodfellow et al. 2014 as a classic GAN [24]. The generator generates images with the random 

noise and the discriminator classifies whether the image is synthetic or real. Iteratively, the generator tries to 

create images that are indistinguishable from real ones, approximating Nash equilibrium-the point where the 

generator consistently conned or deceived the discriminator. The training process of Vanilla GAN includes 

unique loss functions. 

− Discriminator loss: 

 

LD = −E[log(D(x))] −  E [log (1 –  D(G(z)))] (1) 

 

where D(x) is the real data output from the discriminator, G(z) is the noise output from the generator, and E 

is the expected value. 

− Generator loss: 

 

LG = −E [log (D(G(z)))] (2) 

 

where D(G(z)) is the discriminator output for the data G (z). 

− Update rules: when training the discriminator, LD is made as small as possible in relation to its 

parameters. 

 

𝜃𝐷 = 𝜃𝐷 − 𝛼 ∗
𝜕𝐿𝐷

𝜕𝜃𝐷
  (3) 

 

Where 𝜃𝐷 , are the parameters of the discriminator and is 𝛼 the learning rate. In order to train the generator, 

L_G is minimized in relation to its parameters: 
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𝜃𝐺 = 𝜃𝐺 − 𝛼 ∗
𝜕𝐿𝐺

𝜕𝜃𝐺
 (4) 

 

where 𝜃𝐺 represents the generator's parameters and 𝛼 represents the learning rate. 

 

 

 
 

Figure 1. Vanilla GAN architecture 

 

 

2.3.2. Conditional GAN 

Conditional GAN receives class labels or other pertinent data as an additional conditioning input [25]. 

The generator aims to produce realistic samples corresponding to the provided conditioning information as 

shown in Figure 2. The discriminator role is to find whether the image is real or fake sample which is 

conditioned on the same information. The CGAN equations can be expressed as follows: 

− The generator G accepts a noise vector z and conditioning information y as inputs and generates a fake 

sample x̂: 

 

𝑥̂  =  𝐺. (𝑧, 𝑦) (5) 
 

− The discriminator D receives as input a real sample x and conditioning information y, and generates a 

probability score D(x, y), indicating the likelihood that x is real: 

 

𝐷(𝑥̂, 𝑦) (6) 
 

− The discriminator also accepts a fake sample x̂ generated by the generator G and conditioning 

information y as inputs and generates a probability score D(x, y), indicating the probability that x̂ is fake: 

 

𝐷(𝑥̂ , 𝑦) (7) 
 

− Generator G seeks to minimize the objective function listed below: 

 

𝑚𝑖𝑛_𝐺 𝑚𝑎𝑥̂_𝐷 𝐸[𝑙𝑜𝑔 𝐷(𝑥̂, 𝑦)]  +  𝐸[𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧, 𝑦), 𝑦))] (8) 

 

where E represents the expected value, log represents the natural logarithm, and z is a noise vector sampled 

from a prior distribution such as the normal or uniform distribution. 

− The discriminator D seeks to maximize the same objective function as the generator, but in reverse: 

 

𝑚𝑎𝑥̂_𝐷 𝑚𝑖𝑛_𝐺 𝐸[𝑙𝑜𝑔 𝐷(𝑥̂, 𝑦)]  +  𝐸[𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧, 𝑦), 𝑦))] (9) 
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Minimizing this objective function enables the generator and discriminator to play a minimax game in which 

the generator learns to generate realistic samples that match the conditioning information. The discriminator 

learns to distinguish between real and fake samples conditioned on the same information. 

 

 

 
 

Figure 2. Conditional GAN architecture 

 

 

2.3.3. Deep convolutional GAN 

Deep convolutional GAN (DCGAN) use CNNs in both the generator and discriminator. DCGAN 

was introduced by Radford et al. [26] in 2016 and has since become one of the most popular image synthesis 

architectures. Figure 3 shows DCGAN generates an image by passing a normal distribution noise vector 

through several layers of transposed CNNs (deconvolutional layers). Each generator layer increases image 

spatial resolution while decreasing channels. The most important equations in DCGAN are: 

A. Generator 

The noise vector z is used as an input, and the output is an image G(z). Most of the time, the 

generator is made with deconvolutional layers, also called transposed convolutional layers. These layers learn 

to upsample the noise vector to create an image. The following is the way the generator can be described 

mathematically: 

 

𝐺(𝑧)  =  𝑓(𝑊𝑧 + 𝑏) (10) 

 

where b is a bias vector, W is a weight matrix, and f is a non-linear activation function like rectified linear 

unit (ReLU). 

B. Discriminator 

The discriminator receives an input image, x, and returns a scalar, D(x), which represents the 

likelihood that x is an actual image (as opposed to generated). Convolutional layers, which learn to 

downsample the input image to a smaller feature representation, are commonly used to implement the 

discriminator. Mathematical expressions for the discriminator are as (11). 

 

𝐷(𝑥̂)  =  𝑔(𝑊𝑥̂ + 𝑏) (11) 

 

Non-linear activation functions like sigmoid are used in the formula, where W is a weight matrix, and b is a 

bias vector. 

The adversarial loss is used while training a discriminator and a generator. The discriminator aims to 

perform the exact opposite of what the generator does, which is to produce images that the discriminator is 

unable to distinguish from genuine ones. The adversarial loss is represented mathematically as (12). 

 

𝐿_𝑎𝑑𝑣 =  −𝐸[𝑙𝑜𝑔(𝐷(𝑥̂))]. − 𝐸[𝑙𝑜𝑔1 −  𝐷𝐺(𝑧)] (12) 
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Where x is a real image, z is a noise vector, and G(z) is the generated image; E is the expectation over the 

real data distribution and the noise distribution; the log is the natural logarithm; and z is the generated image. 

The image quality of generated images can be improved through training with the generator loss. 

The core concept is that the generator should produce fake images that the discriminator will mistake for the 

real thing. The mathematical expression for the generator loss is as (13). 

 

𝐿_𝑔𝑒𝑛 =  −𝐸[𝑙𝑜𝑔(𝐷(𝐺(𝑧))] (13) 

 

Where E stands for the expectation over the noise distribution, log stands for the natural logarithm, z is a 

noise vector, and G(z) is the generated image. 

It is trained with the discriminator loss to improve the discriminator's ability to tell fake from real 

images. The theory behind it is that the discriminator should return a high probability for real images and a 

low probability for fake ones. Here is a mathematical representation of the discriminator loss: 

 

𝐿_𝑑𝑖𝑠 =  −𝐸[𝑙𝑜𝑔(𝐷(𝑥̂))]  − 𝐸[𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧)))]  (14) 

 

where x is a real image, z is a noise vector, G(z) is the generated image, E is the expectation over the real 

data distribution and the noise distribution, the log is the natural logarithm, and x is the natural logarithm. 

 

 

 
 

Figure 3. DCGAN architecture 

 

 

2.3.4. StyleGAN 

Karras et al. [27] introduced a new type of GAN called StyleGAN. The novel feature of StyleGAN 

is the use of a mapping network for first converting the input noise into a latent space before applying to the 

image generation process. The mapping network is composed of several fully connected layers; it turns the 

input noise vector into a high-dimensional latent space Figure 4. The latent space is then used as an input to a 

generator network, which comprises several convolutional layers that generate the final image. The core 

component of StyleGAN is a mapping network, which receives a noise vector z as input and produces a 

latent code w as output. 

 

𝑤 = 𝐹(𝑧) (15) 

 

Where F is a fully connected neural network that transforms z, a vector representing noise, into a vector 

representing the latent space. 

− Noise injection: StyleGAN randomizes noise at various levels to ensure diversity in the generated images 

using this method. To the intermediate feature maps of the generator, nonzero noise is added via a sample 

from N(0, 1). 

 

X̂ = x + α ∗  ε   (16) 

 

Where x represents the intermediate feature map, is a scalable factor that can be trained, and is the noise 

vector. 
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− Adaptive instance normalization (AdaIN): it is used to alter the appearance and sensation of the generated 

images. AdaIN normalizes the feature maps x by the style vectors si according to mean and standard 

deviation of the style vector. 

Here μ(x) and σ(x) are the mean and standard deviation of the feature map x, and are learnable 

scale and shift parameters, and si is the ith element of the style vector, then. 

 

Y = sin (γ + (
(x – μ(x))

σ(x)) ∗  β) (17) 

 

The generator takes a latent code w as input and outputs an image x. 

 

x =  G(w)  (18) 

 

Where G is a convolutional neural network that converts the latent code w into an image. 

 

 

 
 

Figure 4. StyleGAN architecture 

 

 

2.3.5. Progressive GAN 

As opposed to conventional GANs that train the generator and discriminator on full-resolution images 

simultaneously, the progressive GANs [28] start with low-resolution image input as shown in Figure 5.  

This method involves slowly turning from basic model (generator and discriminator) towards a larger and 

more complex one while training, which leads to the generation of images with growing quality, resolution 

and detail. This approach helps to stabilize and standardize training formation in a step-by-step manner, 

starting from the simplest and ending with complicated ones. In progressive GANs, multiple generators and 

discriminators are used for various resolutions, which have equations of the same format that is used in a 

standard GAN but adjusted to the corresponding progressive architecture. 

A. Generator 

A random noise vector z with dimensions (batch size, latent size) is provided as input.  

 

G(z) = x (19) 
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Where x is the resultant image, the adversarial loss is one of several losses that the generator is trained to 

reduce; others include the feature matching loss and the pixel-wise reconstruction loss. 

B. Discriminator 

Input: an image of particular channels, height, and width, output: a scalar between 0 and 1 

representing the likelihood that the input image is real. 

 

D(x) =  y (20) 

 

Where y is a scalar between 0 and 1, the discriminator is optimized through training to maximize the 

adversarial loss, defined as the discrepancy between the predicted probability and the correct label (0 or 1), 

and minimize other losses, such as the feature matching loss. 

Each of the GANs discussed in this space has its benefits and drawbacks; the choice of model 

required for a given scenario will depend on other, context-specific factors. For instance, Vanilla GANs are 

easy to implement and deliver high-quality image but not of more variety because mode collapse stops the 

generator from producing a lot of images. Thanks to using conditional GANs it is possible to generate images 

by observing certain standards. The limitation of conditional GANs is that their training becomes more 

complex and furthermore requires a higher amount of data. DCGAN uses deeper convolution networks, and 

in comparison, with vanilla GAN, it produces images that are more realistic due to the higher quality of the 

textures and details. Yet they still may suffer from the impact of mode collapse. Concerning progressive 

GANs, these GAN models result in higher-resolution and more realistic images than any other. 

GAN model. Unfortunately, they require far more time and computational power to train. The most 

important achievement of StyleGAN is the ability to generate images with the highest degree of realism and 

characteristics that make each of them stand out from others. However, they require vast amounts of training 

data and processing resources. 

 

 

 
 

Figure 5. Progressive GAN operation 

 

 

3. MELANOMA IMAGE SYNTHESIS USING GANS 

This section provides in-depth analysis of the various methods selected from the literature search as 

per the strategy discussed in section 2 for synthesizing melanoma images using GAN to improve 

classification accuracy. These days, GANs are being used effectively in skin cancer diagnostic systems [29]. 

A method called catWGAN was proposed that use categorical generative adversarial networks in an 

unsupervised and semi-supervised manner [30]. To eliminate background interference and any segmentation 

algorithm confusion, ground truth segmentation maps were used to segment the skin lesions. On ISIC 2016 

dataset an average precision score of 0.424 with only 140 labeled images is achieved. The proposed method 

was only tested on single dataset in this paper, which may reduce the generalization of the findings to other 
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datasets. The proposed method has high computational requirements, which may restrict its use in real-world 

scenarios.  

Baur et al. [31], compared the performance of DCGAN, the LAPGAN, and the PGAN, in which 

PGAN with progressive growth outperformed the other two. The authors utilized the ISIC2018 dataset of 

benign and malignant skin lesions for their experiments. They successfully synthesized highly realistic 

dermoscopic images of skin lesions using GANs at a high resolution of 256×256 pixels. The results 

demonstrated images of high quality and realism, and even expert dermatologists find it hard to distinguish 

between real and fake images. Here, the user study conducted to evaluate the realism of the synthesized 

images was limited to a small number of participants and could benefit from a larger and more diverse 

sample size. 

Another method for skin lesion classification using GAN based data augmentation is proposed by 

Rashid et al. [32]. They compared the performance of a deep learning model that uses GAN for data 

augmentation with two other popular deep learning models, ResNet and DenseNet, for skin lesion 

classification. Using the identical training data as the GAN-based model, the ResNet and DenseNet models 

were fine-tuned; however, synthetic GAN-generated images were left out for augmentation. Conventional 

augmentation techniques such as rotation, flipping, and adding noise were used for all models during 

training. The balance accuracy score was used as the metric for performance comparison, which considers 

class imbalance in the data. The results showed that the GAN-based model outperformed both ResNet and 

DenseNet, even though these models are deeper than the GAN-based classifier. 

Pollastri et al. [33], presented an innovative approach using GAN to augment data for skin lesion 

segmentation, which is a key initial phase in the automated process of detecting melanoma. The effect of the 

diversity and quality of synthetic images on the method’s performance was examined by modifying two well-

known GANs: aDCGAN and a Laplacian GAN. The baseline CDNN architecture was implemented that has 

the highest score in the ISIC2017 challenge in order to map the input image to a map of posterior probability. 

The images were resized to 192×256, and with the HSV and L* channels the original RGB channels were 

augmented. The proposed method is evaluated by populating training data with synthetic data to train CNN 

and overall accuracy was measured for CDNN for melanoma lesion segmentation. The proposed 

methodology outperforms the DCGAN in terms of diversity and quality of synthetic images.  

While in the work proposed by [34], DermGAN is introduced, which is an adaptation of the popular 

Pix2Pix architecture. Opinion of several board-certified dermatologists was taken to find the actual skin 

condition in each case. This was done to differentiate between 26 common skin conditions and "other" 

category. Human turing test and objective GAN evaluation metrics were used to evaluate the generated 

images. The synthetic images were used along with orginal ones for training a classifier, and the model's 

performance was compared to the baseline model. Using the synthetic images, the model worked about the 

same overall as the baseline model, but it did better in some rare but malignant conditions. 

The enhancements in the pix2pixHD GAN is proposed by [35] that combines the coarse-to-fine 

generator, a multi-scale discriminator architecture, and a robust adversarial learning objective function. These 

improvements allow the network to work with high-resolution samples. The authors only use the global 

generator from pix2pixHD to generate 1,024×512 resolution images. The synthetic images have features that 

aren't in the real images. This makes the classification network better by an average of 1.3% percentage 

points and keeps it more stable. All of the differences were important (95% confidence level) (p-value 

<0.05). The p-value of a paired samples t-test is given to make sure that the comparison between 

"real+instance+PGAN" and other data is statistically significant. At a 95% confidence level (p-value 0.05), 

all of the differences were statistically important. 

The work proposed by [36] modifies the structure of style control and noise input in the original 

generator. Various metrics such as accuracy, specificity, sensitivity, average precision, and balanced 

multiclass accuracy achieved were 95.2%, 83.2%, 74.3%, 96.6%, and 83.1% respectively on ISIC 2018 

challenge dataset. However, the paper does not provide a detailed analysis of the generated images by the 

proposed skin lesion style-based GANs model. It would be interesting in future work to see how the 

generated images compare to real skin lesion images and whether they have any artifacts or biases. 

Another work proposed by [37] used PGAN for melanoma image synthesis and populated the ISIC 

archive dataset with the generated images to build a classifier model for melanoma classification. The 

proposed model achieved the highest area under the curve (AUC) of 84.7 on the populated data set, while the 

AUC on the real dataset is 82.8. Zhao et al. [38] suggested a new skin lesion augmentation style-based GAN 

called SLA-StyleGAN that changes how style control and noise input work in the original generator network. 

It reconstructs the discriminator so that high-quality skin lesion images can be generated quickly. The 

proposed framework uses DenseNet201 as the backbone network for skin lesion classification. It also used an 

enhanced loss function that mixes focal loss with weighted cross-entropy and A-Softmax loss to fix the 

problems caused by sample imbalance in the data and make the weights of the different types of samples 
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more equal. This can help the classification model work better. On the ISIC2019 dataset, the suggested 

method gets a balanced multiclass accuracy (BMA) of 93.64%, which is better than other cutting-edge 

methods. 

A new framework is implemented called TED-GAN by [39] that incorporated an encoder-decoder 

that was trained obtaining the newly noise vector with the image manifold's data, and the GAN sampled the 

intake from this noise vector which is full informative and generate the skin lesion images. The variety of the 

images made was better with another GAN that had an extra classifier that took samples from a heavy-tailed 

student t-distribution as a replacement of random-noise distribution of Gaussian. The authors improved 

classification performance rising from 66% average accuracy to 92.5% on the skin lesion classification task. 

To recreate super-resolution skin lesion images from low-resolution ones, [40] also suggests a brand-new 

cascade ensemble super-resolution GAN (CESR-GAN) technique. The authors designed a novel feature-

based measurement loss function to obtain more details and generate higher-quality images. It achieved a 

peak signal-to-noise ratio (PSNR) of 34.23 dB and a structural similarity index (SSIM) of 0.94 on the ISIC 

dataset, a PSNR of 33.12 dB, and an SSIM of 0.93 on the PH 2 dataset. 

A self-attention PGGAN (SPGGAN) to generate fine-grained 256×256 skin lesion images for CNN-

based melanoma diagnosis is proposed by [41]. They used the two-timescale update rule (TTUR) to improve 

stability of SPGGAN while generating melanoma images. The results of the paper show that the proposed 

SPGGAN and TTUR can lead to statistically significant improvements in the sensitivity (recall) over non-

augmented and augmented counterparts, with classical data augmentation, for all classes and specifically for 

melanoma class. Further, a novel method for melanoma skin cancer using an advanced deep neural network 

and adversarial training to achieve better accuracy even with a small amount of data [42]. The input image's 

depth, gradient, and shade are amplified to extract useful information. The the gradients of the loss function 

were used for the input image to generate a new adversarial image that maximizes the loss for the input 

image. and generated images were used in the training of classifier model. Training accuracy of 74.65% with 

0.75 loss value is achieved and during validation, accuracy of 74.76% at a loss of 0.5865 is achieved. A state-

of-the-art performance using ResNet101 architecture with adversarial training was achieved with accuracy of 

84.77% for melanoma diagnosis. 

In another novel work [43], StyleGAN2 was used to generate synthetic melanoma images and 

additionally, a U-Net model was utilised for creating masks for regions of interest in the images, to focus on 

the image's relevant features. Finally, a CNN called EfficientAttentionNet was trained with the mask-based 

attention mechanism for classification of lesions. A classification accuracy of 96% with GAN-generated 

synthetic images was achieved using EfficientAttentionNet. Al-Rasheed et al. [44] fine-tuned VGG16, 

ResNet50, and ResNet101 for multi class classification of skin cancers. In order to address class imbalance 

problems that could result in model overfitting, extra photos were added to the training set using conditional 

GAN and traditional data augmentation. The model's output is contrasted with models trained on the 

imbalanced dataset. By fine-tuning and training it on both balanced and unbalanced datasets, an ensemble of 

transfer learning models is created. With suitable data augmentation, an accuracy of 9.35% for the ensemble 

one and 92% for VGG16, 92% for ResNet50, and 92.25% for ResNet101 is obtained. 

A novel GAN model with four transposed convolutional layers and a leaky rectified linear unit 

(LReLU) as an activation function in generator was proposed [45] to avoid vanishing gradients and dying 

neurons problems in ReLU. The generator network also includes a convolutional layer with the sigmoid 

activation function and the discriminant consists of five convolutional layers with LReLU as an activation 

function, followed by a dense layer for classification with sigmoid function. The U-Net architecture, a type of 

CNN, is used with an attention mechanism to improve image segmentation performance. For classification, 

the pre-trained EfficientNetV2S and Efficient-NetV2B2 networks were used. On ISIC dataset it achieved an 

accuracy of 96%, recall of 0.95, precision of 0.88, and F1-score of 0.91, outperforming the state-of-the-art 

models. 

Table 3 (in Appendix) summarizes all GAN-based melanoma image synthesis and detection systems 

discussed so far, along with the diagnosed skin cancer type, classifier, dataset, and the result obtained. In the 

table AUC is area under curve, AC: accuracy, SWD: sliced wasserstein distances, FID: Fréchet Inception 

distance, IS: Inception score, SS: sensitivity, SP: specificity, RL: recall, FS: F1-score, PR: precision, SSIM: 

structural similarity index measure, FSIM: feature similarity index measure, and PSNR: peak signal-to-noise 

ratio. The classification and image synthesis results using GAN of different studies are shown below in 

Figures 6 and 7. 
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Figure 6. Combined classification results of different studies 

 

 

 
 

Figure 7. FID and IS score for selected studies 

 

 

4. SKIN LESION DATASETS 

One of the challenges in developing and evaluating a classification system is the availability of a 

solid and reliable collection of dermoscopic images [46]. In the case of melanoma, the most deadly form of 

skin cancer, there is a need for diverse and comprehensive datasets for training and validating artificial neural 

networks. Traditionally, the datasets available for automated skin cancer diagnosis have primarily focused on 

melanocytic lesions, such as nevi or melanoma [47]. 

Furthermore, the datasets have not adequately represented the wide range of patients who commonly 

experience non-melanocytic lesions. To address these limitations and improve the performance of melanoma 

detection systems, researchers have turned to GANs for melanoma image synthesis. Using a provided dataset 

as a source, GANs are a type of machine learning model that can produce artificial data. For training and 

testing GANs for melanoma image synthesis, a standard, trustworthy collection of dermoscopic pictures is 

essential. This section discusses about various real-world datasets of skin lesions. 
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4.1.  HAM10000 

HAM10000 [48] is a human-vs.-machine dataset consisting of 10,000 training images. It's among 

the most up-to-date skin lesions datasets we can find online, and it fixes the issue of data homogeneity. Cliff 

Rosendahl's skin cancer practice in Queensland, Australia, and the Dermatology Department at the Medical 

University of Vienna, Austria, contributed 10,015 dermoscopic images to the final HAM10000 dataset. This 

dataset has 6,705 images of melanomas, 1,113 images of melanocytic nevi, 115 images of dermatofibromas, 

and 327 images of AK. There are also 1,099 images of benign keratoses, 115 dermatofibromas, and 115 

images of AK. 

 

4.2.  ISIC archive 

The ISIC repository [49] houses a variety of skin lesion datasets, comprising of ISIC2016 released 

as part of the round 3 contest through the challenge organized at ISIC-ISBI 2016. It is composed from 900 

training and 379 test images, whereabout the proportion of melanoma stands in approximate completeness of 

30%. In an attempt to accelerate automated skin cancer diagnosis, the perpetual challenges organized by ISIC 

each year. The ISIC2017 dataset contnotes melanomas, seborrheic keratoses and benign nevi and in all 2,500 

images. ISIC2018 and ISIC2019 enlarged the image library to larger extent including an outlier class for 

testing systems of diagnosis which had over 25,000 images of eight lesion types. 

 

4.3.  PH2 

The dermoscopy images in the PH2 dataset were taken at the Pedro Hispano Hospital Dermatology 

Center in Portugal [50]. The dataset has 200 dermoscopy images. There are 80 common nevi images,  

80 atypical nevi images, and 40 melanoma skin cancer images. The lesion images in this dataset have 

medical annotations, including evaluation of several dermoscopic criteria, histological and clinical diagnosis, 

and medical segmentation of pigmented skin lesions. The evaluation was done using dermoscopy criteria like 

streaks, colors, regression areas, pigment network, and blue-white veil globules. 

 

4.4.  Dermofit 

The dermofit [51] provides a variety of images of skin lesions along with their metadata, which can 

help advance the field of computer-assisted diagnosis. Various types of skin cancer and other lesions are 

represented in the dataset, including basal cell carcinoma, malignant melanoma, melanocytic nevus, 

seborrheic keratosis, and squamous cell carcinoma. The dermofit dataset gives researchers a sizable sample 

size for training and evaluating their models with 1,000 dermoscopic images. This dataset is publicly 

available for academic use. 

 

4.5.  DermIS 

The acronym "DermIS" stands for "dermatology information system". The University of Erlangen's 

Dermatology Department and the University of Heidelberg's Clinical Social Medicine Department worked 

together to compile this dataset. There are 6,588 images in total. Recently, this data set was split in half to 

create a DOIA (dermatology online image atlas) and a PeDOIA (pediatric dermatology online image atlas). 

About 600 skin lesions are represented in the DOIA's 3000 images. Case reports, differential diagnoses, and 

other details on nearly every conceivable skin disorder are included alongside dermoscopy images. 

 

 

5. RESULTS AND DISCUSSION 

This section outlines and examines the main discoveries resulting from the comparative 

investigation of different GAN approaches in the realm of melanoma picture creation. 

 

5.1.  Comparative analysis of GAN strategies 

We thoroughly examined various GAN models utilized in generating melanoma images in our 

review. The table provides a concise overview of the main features, approaches, and results of these studies. 

The work conducted by Yi, Walia, and Babyn (2018) [30] showcased catWGAN's favourable outcomes in 

unsupervised and semi-supervised scenarios, with AUC values of 0.613 and 0.690, respectively. According 

to Baur, Albarqouni, and Navab (2018) [31], PGAN produced more realistic melanoma images than DCGAN 

and LAPGAN, as seen by reduced SWDs when compared to genuine images. Rashid, Tanveer, and Aqeel 

Khan (2019) [32] discovered that traditional GAN performed better than DenseNet and ResNet-50 in 

categorizing different skin lesions. The experiments demonstrate improvements in realism and diagnostic 

precision with the use of GANs. Nevertheless, issues like as data quality, generalization across various skin 

types, and computational efficiency continue to exist. 
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5.2.  Data quality and annotation 

The importance of precise and well-annotated data for training GANs to create synthetic melanoma 

images is emphasised by our results. The difficulties in acquiring a varied and thoroughly annotated dataset 

are clear, especially due to the subjective and time-intensive process of manual annotation. This emphasises 

the necessity for research in creating standardised annotation protocols and improving annotation methods 

for greater efficiency. 

 

5.3.  Addressing class imbalance and rare subtypes 

The study uncovers substantial class imbalance problems in existing datasets, where rare and 

aggressive melanoma subtypes are not adequately represented. GANs face a challenge in creating synthetic 

images that accurately represent all types of melanoma. 

 

5.4.  Authenticity and variety of produced images 

Our analysis shows that although GANs can generate images resembling real melanoma lesions, 

there is a requirement for enhancing the authenticity and variety of these images. Improving GAN structures 

and training techniques, while integrating sophisticated loss functions, may elevate the quality of generated 

images. 

 

5.5.  Generalisation and transferability 

Generalising and transferring GAN models between various populations, skin tones, and imaging 

conditions is still difficult. Using these models in real clinical settings can be challenging, indicating a 

necessity for further research to improve GANs' flexibility. 

 

5.6.  Interpretability and explainability 

Interpretability and explainability are essential for the clinical approval of GAN-generated images. 

Our research shows that existing GAN models do not have enough interpretability, highlighting the need to 

create methods for improving the understanding of GAN features and decisions. 

 

5.7.  Ethical considerations 

Ethical considerations, especially regarding patient privacy and data protection, are of utmost 

importance. Our review indicates an increasing demand for research that concentrates on privacy-preserving 

methods in the clinical utilisation of GAN-generated images. 

 

5.8.  Data representation 

Most images in current datasets mainly show individuals with light skin tones, indicating a notable 

lack of diversity in representation. It is necessary to train GAN models on a wider range of datasets to 

guarantee accurate skin cancer detection on various skin tones. 

 

5.9.  Diversity of skin lesions 

We observed little variation among various categories of skin lesions in medical imaging. The 

minimal variation between different classes makes it difficult to distinguish melanoma from other skin 

conditions, which poses a challenge for creating synthetic images. 

 

5.10.  Computing needs 

Generating synthetic images using GANs requires powerful GPUs and extensive RAM, which can 

be challenging due to resource constraints in research settings. 

 

 

6. CONCLUSION 

The review paper thoroughly analyzed GANs in melanoma image generation, emphasizing its visual 

quality, diversity, and clinical significance. We have analyzed many GAN models such as DCGAN, WGAN-

GP, and CycleGAN to determine their specific advantages and drawbacks, especially in duplicating the 

intricate structure of melanoma lesions accurately. The findings show substantial development in the sector 

but also highlight the need for further advancements, aligning with our objective. Although models such as 

PGAN demonstrate potential in creating high-quality artificial pictures, there are still obstacles in 

guaranteeing data variety and handling the computational requirements for real-world clinical use. The 

constraints in the generalizability and applicability of existing GAN models highlight a crucial topic for 

further investigation. 
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Our evaluation, which includes assessing visual quality and diversity, indicates that GAN-generated 

melanoma images have the potential to greatly improve the precision and dependability of melanoma 

detection systems. Synthetic images have been successfully incorporated into current classification methods, 

resulting in significant progress in dermatological imaging. Nevertheless, this advancement highlights the 

need for ongoing research, specifically emphasizing transfer learning methods and the utilization of pre-

trained GAN models on large datasets from relevant areas such as general medical imaging. These methods 

could significantly enhance the generalization capacities of GAN-generated melanoma images, making them 

more adaptable and successful in different therapeutic situations. 

Our findings have significant consequences for dermatological research and the medical community. 

They highlight the significant impact GANs can have on enhancing early melanoma identification and 

therapy, potentially resulting in improved patient outcomes. Advancements in GAN technology can be 

utilized in dermatology and other medical imaging fields, sparking a new era of innovation in healthcare. Our 

study provides opportunities for the scientific community to investigate sophisticated machine learning 

methods in medical diagnostics. It highlights the importance of interdisciplinary collaboration to connect 

technology with clinical practice. Our analysis highlights the significant progress in GANs for generating 

melanoma images and suggests future research to address current obstacles. The technology has promising 

possibilities for improving healthcare delivery and patient care in clinical settings and beyond. 

 

 

7. FUTURE WORK 

Future research should prioritize the development of novel structures, loss functions, and training 

techniques for GANs to enhance the quality and diversity of generated images. These developments are 

essential to ensure that GAN-generated images can accurately replicate the wide variety of melanoma 

presentations observed in real-world clinical environments. Future research also relies significantly on 

collaborating with dermatologists and medical specialists. Their clinical feedback on the assessment of GAN-

generated melanoma images is crucial to assure the technical quality and clinical significance of the images. 

As we advance in using GAN technology in clinical settings, it is crucial to focus on ethical issues, especially 

regarding patient data privacy and permission. Creating frameworks to ensure the responsible and ethical 

utilization of GAN-generated images in clinical environments is crucial for their effective incorporation into 

medical procedures. 

Ultimately, our research sets the stage for future progress in GAN-generated melanoma picture 

creation. This discovery has the potential to improve patient outcomes in dermatology by boosting melanoma 

identification and therapy. By focusing on the specified future research areas, we can expect substantial 

advancements in the field, resulting in more precise, varied, and clinically significant tools for diagnosing 

and treating melanoma. 
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APPENDIX 
 

 

Table 3. Summary of GAN-based melanoma image synthesis and classification methods 
Reference  Diagnostic framework Description Results 

(Yi, Walia, and 

Babyn 2018 
[30] ) 

Classes: benign and melanoma, 

model(s): catWGAN dataset(s): 
ISIC2016, PH2 

The proposed model can learn a 

feature representation that 
outperforms the denoising 

autoencoder and simple hand-crafted 

features. 

catWGAN-unsupervised AUC→ 

0.613, AC→0.812 
catWGAN-semisupervised AUC→ 

0.69, AC→0.810. 

(Baur, 

Albarqouni, 

and Navab 
2018 [31] ) 

Classes: benign and melanoma, 

model(s): PGAN, DCGAN, 

LAPGAN dataset(s): ISIC2018 

PGAN generated realistic-looking 

melanoma images and outperformed 

DCGAN and LAPGAN 

SWDs: PGAN vs real→20.0197,  

DCGAN vs real→94.71508 

LAPGAN vs real→96.68380. 

(Rashid, 

Tanveer, and 
Aqeel Khan 

2019 [32]) 

Classes actinic keratosis/basal 

cell carcinoma/benign 
eratosis/dermatofibroma/melano

ma/melanocytic nevus/vascular 

lesion, model(s): traditional 
GAN, DenseNet, ResNet-50 

Dataset(s): ISIC2018 

Traditional GAN generated realistic-

looking images and was also used as 
a classifier for various skin lesion 

images. It outperformed DenseNet 

and ResNet-50 

AC: GANs 0.861 

DenseNet→0.815 
ResNet→50 0.792. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 551-569 

566 

Table 3. Summary of GAN-based melanoma image synthesis and classification methods (Continue…) 

Reference  Diagnostic framework Description Results 

(Pollastri et al. 
2020 [33]) 

Classes: benign and melanoma, 
model(s): modified DCGAN 

and LAPGAN, CDNN for 

classification, dataset(s): 
ISIC2017 

Data augmentaion with DCGAN and 
LAPGAN boosts the classification 

performance of various CDNNS 

AC→0.76 on augmented data using 
LAPGAN. 

(Ghorbani et 

al. 2019 [34]) 

Classes: actinic keratosis/basal 

cell carcinoma/benign 
eratosis/dermatofibroma/melano

ma/melanocytic nevus/vascular 

lesion, 
model(s): DermGAN and 

MobileNet, dataset(s): 

teledermatology service US 
2010-2018 

Data augmentation with DermGAN 

and classification of eught skin 
lesions with MobileNet 

FID: real data→83.60, 

DermGAN→122.40, AC→0.75. 

(Bissoto et al. 

2018[35]) 

Classes :benign and melanoma, 

model(s): DCGAN, conditional 
version of PGAN and version of 

pix2pixHD GAN, Inception-v4, 

dataset(s): ISIC 2017, ISIC 
archive, dermot image library, 

PH2 dataset, interactive atlas of 

dermoscopy 

Using a multi-scale discriminator 

architecture, a coarse-to-fine 
generator, and resilient adversarial 

learning goal function resolution 

samples, a pix2pixHD GAN is 
employed. 

 

AUC→84.7 using PGAN. 

(Qin et al. 

2020 [36]) 

Classes: actinic keratosis/basal 

cell carcinoma/benign 

eratosis/dermatofibroma/melano
ma/melanocytic nevus/vascular 

lesion, model(s): skin lesion 

style-based GAN, ResNet-50, 
dataset(s): ISIC2018 

By modifying the style control and 

noise input structure of the generator, 

the suggested model effectively 
synthesizes high-quality skin lesion 

images by adjusting the generator 

and discriminator. 
 

SL-StyleGAN IS→3.037, 

FID→1.059 PR→0.525, RL→0.220 

Classification result-AC→0.95, 
SS→0.74, SP→0.96. 

(Bissoto and 

Avila 2020 
[37]) 

Classes: benign and melanoma, 

model(s): PGAN, dataset(s): 
ISIC archive 

The proposed PGAN generates 

realistic looking melanoma images 
and the classfier is trained with and 

without synthetic images to analyse 

its performance. 

AUC→84.7 achieved with orginal 

plus synthetic images. 

(Zhao et al. 

2021[38]) 

Classes: benign and melanoma, 

model(s): SLA-StyleGAN and 

DenseNet201, dataset(s): ISIC 
2019 

(SLA-StyleGAN) is proposed to 

generate melanoma skin lesion 

images and give as input to 
DenseNet201 pre-trained network to 

do transfer learning for melanoma 

classification. A novel loss function 
with focal loss and weighted cross-

entropy and A-Softmax loss to solve 

data imbalance problem 

DenseNet201: AC→0.9364  

SLA-StyleGAN: IS→3.224, 

FID→0.932. 

(Ahmad et al. 

2021[39]) 

Classes: melanoma, melanomic 

neves, basal cell carcinoma, 

benign keratosis, model(s): 
VAE, GAN1, GAN2, dataset(s): 

HAM10000 

The decoder-encoder network give 

noise as input to GAN 1 which 

generate sythetic images of given 
classes and these images along with 

real images are given to GAN 2 
which take student t-distribution as 

input instead of gaussian, for 

classification purpose. 

Classification results: SS→89%, 

SP→94%, FS→0.91 and 

AC→92.5%. 

(Shahsavari, 

Ranjbari, and 

Khatibi 
2021[40]) 

Classes: basal cell carcinoma, 

malignant melanoma, nevus, 

and seborrheic keratoses, 
model(s): CESR-GAN, U-Net, 

dataset(s):  ISIC archive and 

PH2 dataset 

The low-resolution images are 

convereted to high resolution using 

the proposed CESR-GAN and then 
they are classified using U-Net 

architecture. 

Image conversion results: 

SSIM→0.94, FSIM→0.98, 

PSNR→42 
Classification results: AC→0.55, 

PR→0.538, RL→0.583, FS→0.560. 

(Abdelhalim, 

Mohamed, and 

Mahdy 
2021[41]) 

Classes: benign and melanoma, 

model(s): SPGGANs and 

ResNet 18, dataset(s): 
HAM10000 

SPGGAN generated  fine-grained 

256×256 skin lesion images . TTUR 

is applied to SPGGAN to improve 
stability while generating images. 

ResNet18 is used for finally 

classifying melanoma. 

Qualitative results: P-value of the T-

test. 68.1 (GAN-train) and 60.8 

(GAN-test) quantitative results: 
AC→66.1, AUC→79.3, 

precision→50.1, RL→64.7, 

FS→53.1 
(Sharma et al. 

2022 [42]) 

Classes: benign and melanoma, 

model(s): GAN, VGG16, 

VGG19, DenseNet121 and 
ResNet101, dataset(s): 

HAM10000 

Adversarial images are generated 

with an FGSM attack using GAN, 

and then classification is done using 
various CNN mentioned. 

Classification: AC→84.77%. 
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Table 3. Summary of GAN-based melanoma image synthesis and classification methods (Continue…) 

Reference  Diagnostic framework Description Results 

(Teodoro et al. 
2023 [43]) 

Classes: benign and melanoma, 
model(s): StyleGAN, U-Net and 

EfficientNet, dataset(s): 

HAM10000, ISIC2020, MKS 
and BCN20000 

Melanoma images are input to GAN, 
and synthetic images are generated. 

U-Net is used to generate clipping 

masks from the balanced dataset. 
EfficientNet was trained using these 

masks as a RoI-based attention 

mechanism that improved the 
classification performance 

Segmentaion results by U-Net: 
AC→0.89, RL→0.83, PR→0.89, 

IoU→0.76, DC→0.85, classification 

results: with GAN images 
AC→0.96, RL→0.99, PR→0.92, 

AUC→0.96 EfficientAttentionNet: 

AC→0.97, RL→0.99, PR→0.94, 
AUC→0.97 

(Al-Rasheed et 

al. 2022 [44]) 

Classes: dermatofibroma, 

melanoma, nevus, and vascular 
cancer , model(s): CGAN,  

VGG16, ResNet50, and 

ResNet101, dataset(s): 
HAM10000 

First, data augmentation is done 

using traditional techniques and with 
GAN also. The various CNN models, 

as mentioned, are used to analyze the 

classification performance. Also, the 
ensemble of all models is used for 

classification. 

classification results: ResNet101 

AC→92.25, RL→85.40 R→90.63 
FS→87.79 

Ensemble model AC→93.5, 

RL→88.98 PR→93.20, FS→90.82. 

(Hassan, 

Mahar, and 

Fouad 2023 

[45]) 

Classes: benign and melanoma, 

model(s): novel GAN, U-Net 

and EfficientNetV2S, Efficient-

NetV2B2, dataset(s): ISIC 
archive 

The proposed GAN generates the 

synthetic images which are added to 

training data. Segmentation masks 

are generated with U-Net and are 
given as input to EfficientNetV2S, 

Efficient-NetV2B2 for classification. 

Classification results: AC→96, 

FS→0.91, RL→0.95, PR→0.88. 
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