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 CRYSTALS-Kyber was chosen to be the standardized key encapsulation 

mechanisms (KEMs) out of the finalists in the third round of the National 

Institute of Standards and Technology (NIST) post-quantum cryptography 

(PQC) standardization program. Since the number theoretic transform  

(NTT) was used to reduce the computational complexity of polynomial 

multiplication, it has always been a crucial arithmetic component in 

CRYSTALS-Kyber design. In this paper, a simple and efficient architecture 

for NTT is presented where we easily archived the functionality of 

polynomial multiplication with efficient computation time. Only 857 Look-

Up Tables and 744 flip-flops were utilized in our NTT design, which 

consisted of two processing elements (PEs) and two butterfly cores within 

each PE. 
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1. INTRODUCTION 

Since the application of Shor’s algorithm, classical public-key cryptography protocols have become 

increasingly vulnerable to quantum computer attacks [1]. CRYSTALS-Kyber is one of the finalists in the 

third round of post-quantum cryptography (PQC) algorithm evaluation by the National Institute of Standards 

and Technology (NIST), a competition to determine various algorithms to withstand attacks from quantum 

computers. Specifically, the algorithm is a lattice-based cryptosystem based on the module learning-with-

errors problem (MLE). In July 2022, CRYSTALS-Kyber was selected as the standard Public-Key 

Encryption/Key Encapsulation Mechanism [2].  

CRYSTALS-Kyber and other lattice-based cryptosystems extensively rely on polynomial 

multiplication. It serves as the primary operation, but its implementation might be computationally intensive, 

causing a bottleneck [3]. To overcome this issue, an algorithm based on number theoretic transform (NTT) 

for polynomial multiplication has been used. This algorithm is a typical method for calculating polynomial 

multiplication with less complex operations, thereby decreasing the computational burden of lattice-based 

cryptosystems. By applying the NTT-based polynomial multiplication method, the performance of lattice-

based cryptosystems can be significantly enhanced, making them more applicable and effective in a range of 

contexts. Optimizing the complexity of hardware accelerators is one of the most critical factors in selecting 

an optimal hardware design approach for schemes. For the purpose of validating the efficacy of a specified 

design approach, benchmarks should be executed on a variety of implementation platforms. Despite the fact 

that software-implemented designs provide intuitive and user-friendly interfaces, their performance is 
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typically inferior to that of other platforms [4]. A hybrid design of software and hardware was used to 

improve the performance while retaining the flexibility of the design with software only. Although the 

designs implemented on both platforms would be flexible and design-time efficient, they did not provide the 

same level of performance as the pure hardware design. In contrast, hardware implementation is 

characterized by the complexity of its algorithms and the lack of basic units written in hardware description 

languages, posing a challenge to designers who are tasked with creating the hardware for complex algorithms 

using basic logic gates. In return, pure hardware implementations would offer designers the best 

performance. 

The hardware design encompasses a diverse array of devices with varying specifications, design 

constraints, and implementation settings. These factors make it difficult to fairly compare the hardware 

implementations of various designs. Application-specific integrated circuit (ASIC) and field-programmable 

gate array (FPGA) are the two primary architectures used for hardware implementation, and they are 

frequently employed in research analysis and development. The NIST recommends the use of Xilinx Artix-7 

FPGA for hardware implementation in order to compare the design with greater precision [5]. ASIC results, 

on the other hand, are highly dependent on the technology library and system configurations used during the 

implementation process. This makes it difficult to compare designs to others, as the implementation details of 

different projects can vary significantly. Despite these obstacles, ASICs continue to be an important and 

widely employed tool in the field of hardware design, especially for large-scale and complex systems that 

require a high degree of precision and dependability [6]. For example, Banerjee et al. [6] presented a lattice 

cryptography processor with configurable parameters that had an NTT block accelerated by a single-port 

RAM-based memory architecture on an ASIC that aimed to optimize resources, but their design was 

inefficient, especially in terms of frequency and latency. Moreover, a low-power and resource-efficient NTT 

ASIC design was presented in [7]. Although the area and power results were good, the design did not offer a 

good trade-off between timing and resource efficiency. Song et al. [8] also proposed one of the quickest and 

most energy-efficient NTTs on ASIC, but with opaque resources, which could be interpreted as a trade-off 

between resources, timing, and power. 

The comparisons on the FPGA side did not look good either, whereas designers used different 

FPGA families and there were usually conflicts between three aspects: resources, timing, and power. 

Fritzmann et al. [9], RISQ-V, a tightly coupled RISC-V accelerator for both ASIC and Xilinx Zynq-7000 

FPGA was proposed. Karabulut and Aysu [10] also created a resource-optimized RISC-V NTT core on a 

Xilinx Virtex-7 FPGA, albeit with high timing latency. In [4] and [11], Xilinx Artix-7 was used as the 

implementation platform for the NTT design; however, the NTT design introduced in [4] was more timing-

efficient than that in [11] due to the double number of butterfly cores, resulting in a higher frequency and 

lower latency. The frequency results for [9] and [10] were null. On the other hand, the designers omitted the 

resource results in [4] and [11], making it difficult to compare the design approach. 

Mentioning FPGA resources, the number of look-up tables (LUTs) and flip flops (FFs) used in [6] is 

enormous due to the large number of multipliers, whereas designer could use the digital signal processing 

(DSP) module in the FPGA for integer multiplier to reduce the number of LUTs and DFFs that might be 

used. This may also balance the FPGA resources to conserve them for other logic components within the 

CRYSTALS-Kyber hardware. The NTT hardware described in [4] utilized only one block RAM (BRAM) for 

storing polynomials, resulting in a design with a high latency. 

In summary, at the moment, most studies on NTT hardware implementation have their own 

weaknesses that could be addressed for better performance. All the aforementioned factors led us to design a 

Xilinx Artix-7 FPGA and ASIC NTT with balanced frequency, latency, and power efficiency. Our design 

also utilized the FPGA resource by incorporating the DSP and BRAM unit, which prevented the excessive 

use of LUT and FF and the risk of FPGA resource over-utilization when integrating the NTT design into the 

complete CRYSTALS-Kyber hardware design. Specifically, the use of DSP in our FPGA resulted in a 33% 

reduction in the number of LUTs and DFF used. Moreover, we used three BRAMs per butterfly core to store 

polynomials and twiddle factors, allowing our butterfly cores to operate in parallel and reducing latency by 

64.5% relative to [4]. 

Contribution of this work: 

Polynomial multiplication arithmetic is one of the most important components of the CRYSTALS 

Kyber hardware implementation since it has a significant impact on the latency and efficiency of the design 

[12]–[17]. By utilizing the NTT core to apply NTT-based polynomial multiplication, we may lower the 

operation complexity and boost throughput while consuming fewer resources. This paper presents a resource-

efficient NTT hardware design with a balance of frequency, latency, and power. In comparison with other 

works that handle NTT in hardware implementation, we would like to prove our efficiency upon outstanding 

working frequency, improved timing operation, and less resource cost (LUT and FF) leading to power 

optimization. 
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− Pure hardware implementation with balanced benefits: We proposed a pure hardware capable of handling 

NTT and INTT (Inverse NTT) operations for the CRYSTALS-Kyber PQC algorithm with a balance of 

resources and performance. By optimizing the resources on the FPGA for the processing units and 

managing the memory access efficiently, we have been able to reduce the overall size and memory usage 

without slowing down the performance. 

− Standard benchmark for future verification: By implementing on both FPGA (Xilinx Artix-7) and ASIC 

(TSMC 65nm technology), we offer our design as a standard benchmark for other researchers to clearly 

evaluate the NTT and INTT parts in their CRYSTALS-Kyber hardware designs. This aims to analyze the 

advantages and disadvantages of each design rationale for CRYSTALS-Kyber hardware, which helps 

designers soon determine and develop the most suitable hardware design approach of their own. 

− Outstanding performance in comparison to previous studies: Our results on Xilinx Artix-7 made use of 

the DSPs and BRAMs of the FPGA so that the number of LUTs and FFs logic was small in comparison 

to [9], [6], and the computation time was reduced compared to [4], [11]. By utilizing efficient memory 

access, our ASIC results outperformed other NTT hardware designs in [6], [7]. 

The remainder of this paper is organized as follows:  

− Section 2 explains the mathematical foundations of the NTT and INTT algorithms in CRYSTALS-Kyber, 

which contains a number of algorithms in pseudocode forms and their descriptions in detail.  

− In Section 3, we describe our strategy for hardware design and the overall module architecture, where 

major components are depicted, including the polynomial multiplications, butterfly units, memory 

address controls and the overall design containing them.  

− The findings and comparisons with other designs are analyzed in Section 4. Most of the results were 

obtained from the synthesis and implementation processes since the design was based on hardware. 

Parallel implementation on FPGA and ASIC was executed for mutual discussions as well as comparison 

to other work for efficiency.  

− The conclusion of this work is presented in the final section, where the study is summarized, and some 

implications can be stated. 
 

 

2. BACKGROUND 

2.1.  NTT-based polynomial multiplication 

Efficient polynomial multiplication, especially for large degrees, is fundamental in encryption and 

lattice-based cryptography but can be time-consuming though. In Kyber, polynomials are defined in the ring  

ℤ𝑞[𝑥]/(𝑥𝑛 + 1). The operation takes polynomials 𝐴(𝑥) = ∑ (𝑎𝑖𝑥
𝑖)𝑛−1

𝑖=0  and 𝐵(𝑥) = ∑ (𝑏𝑖𝑥
𝑖)𝑛−1

𝑖=0  as inputs and 

return the output polynomial 𝐶(𝑥) = ∑ (𝑐𝑖𝑥𝑖)𝑛−1
𝑖=0  as multiplication output. As usual, the technique for 

multiplying two polynomials has a 𝑜(𝑛2) complexity, which leads to slow processing time when dealing with 

large-degree polynomials. NTT is used to speed up this operation since NTT performs it with 𝑜(𝑛. 𝑙𝑜𝑔𝑛)  

complexity. 

The resultant polynomial 𝐶(𝑥) can be further reduced with negative wrapped convolution technique 

shown within Algorithm 1, whereas, the reduction polynomial, 𝜙(𝑥) = (𝑥𝑛 + 1) and 𝑞 ≡ 1 (𝑚𝑜𝑑 2𝑛). This 

technique hence directly reduces the degree of the resulting polynomial 𝐶(𝑥) to degree 𝑛 − 1, which is 

accomplished by multiplying the coefficients of the input and output polynomials by the power of 𝛹 𝜖 𝑍𝑞 and 

𝛹−1𝜖 𝑍𝑞, respectively, where 𝛹 is a primitive 2𝑛-th root of unity in 𝑍𝑞 satisfying 𝛹2𝑛 ≡ 1(𝑚𝑜𝑑 𝑞) and 

∀𝑖 < 2𝑛, 𝛹𝑖 ≠ 1 (𝑚𝑜𝑑 𝑞), when 𝑞 ≡ 1 (𝑚𝑜𝑑 2𝑛) [18]. 
 

Algorithm 1. NTT-based Polynomial Multiplication with negative wrapped convolution (NWT) [16]  
Input: 𝐴(𝑥), 𝐵(𝑥) ∈ 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) 

Input: Primitive 2𝑛-th root of unity 𝛹 ∈ 𝑍𝑞 

Output: 𝐶(𝑥) = 𝐴(𝑥) × 𝐵(𝑥), 𝐶(𝑥) ∈ 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) 

1 �̂� = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ⊙ (1, 𝛹1, 𝛹2, . . . , 𝛹𝑛−1) 
2 �̂� = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1) ⊙ (1, 𝛹1, 𝛹2, . . . , 𝛹𝑛−1) 
3 �̅� = 𝑁𝑇𝑇(�̂�) 
4 �̅� = 𝑁𝑇𝑇(�̂�) 
5 �̅� = �̅� ⊙ �̅� 
6 �̂� = 𝐼𝑁𝑇𝑇(𝐶̅) 
7 𝐶(𝑥) = (�̂�0, �̂�1, . . . , �̂�𝑛−1) ⊙ (1, 𝛹−1, 𝛹−2, . . . , 𝛹−(𝑛−1)) 
8 return 𝐶(𝑥) 

 

2.2.  Number theoretic transformation 

An (𝑛 − 1) degree polynomial 𝐴(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0  is transformed into NTT domain as �̅�(𝑥) =
∑ 𝑖𝑥

𝑖𝑛−1
𝑖=0  by using a n-pt forward NTT operation. The coefficient of �̅�(𝑥) in NTT domain is 𝑖 =
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∑ 𝑎𝑖𝜔
𝑖𝑗𝑛−1

𝑗=0  over  ℤ𝑞 for 𝑖 = 0,1, . . . , 𝑛 − 1. After pointwise multiplying �̅�(𝑥) and �̅�(𝑥) in NTT domain, an n-

point INNT is used to transform the result back to the polynomial domain with  𝑎𝑖 = 𝑛−1 ∑ 𝑖𝜔
−𝑖𝑗𝑛−1

𝑗=0  in ℤ𝑞. 

Moreover, NTT and INTT regularly use the twiddle factor, 𝜔 ∈ ℤ𝑞  and its modular inverse, 𝜔−1 ∈ ℤ𝑞  as 

input. It is a primitive 𝑛-th root of unity in ℤ𝑞 and the conditions 𝜔𝑛 ≡ 1 (mod 𝑞) and ∀𝑖 < 𝑛, 𝜔𝑖 ≠

 1 (mod 𝑞), where 𝑞 ≡ 1 (𝑚𝑜𝑑 𝑛). 

In this study, the iterative NTT (Algorithm 2) and INNT (Algorithm 3), which utilize the 

Gentleman-Sande butterfly phenomenon, were applied. The NTT and INTT algorithms transform the 

polynomial from normal order to bit-reversed order and vice versa. The bit-reversal operation on (𝑙 − 1)-bit 

integer k, where 𝑙 =𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛  is executed by the 𝑏𝑟(𝑘, 𝑙 − 1) operation in Algorithm 3 [18]. In addition, the 

coefficients of the output polynomial must always be multiplied by (1/𝑛) 𝑚𝑜𝑑 𝑞 in the INTT operation since 

the bit reversion, as shown in steps 19-21 of Algorithm 3. Algorithm 2 can also be further modified to 

implement the INTT operation by substituting 𝜔 with 𝜔−1 and having the output polynomial coefficients 

divided by 𝑛 in 𝑍𝑞. 

 

Algorithm 2. Iterative NTT Algorithm [14] 
Input: 𝐴(𝑥) ∈ 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) in normal order 

Input: 𝜔 ∈ 𝑍𝑞 , 𝑛 = 2𝑙 

Output: �̅�(𝑥) = 𝑁𝑁𝑇(𝐴) ∈ 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) in bit-reversed order 

1 for 𝑖 from 1 by 1 to 𝑙 do 

2 |      𝑚 = 2𝑙−𝑖 

3 |      for 𝑗 from 0 by 1 to 2𝑖−1 − 1 do 
4 |      |      for 𝑘 from 0 by 1 to 𝑚 − 1 do 

5 |      |      |     𝑖𝑒 ← 2 ∙ 𝑗 ∙ 𝑚 + 𝑘                  
6 |      |      |     𝑖𝑜 ← 2 ∙ 𝑗 ∙ 𝑚 + 𝑘 + 𝑚 

7 |      |      |     𝑖𝑤 ← 2𝑖−1 ∙ 𝑘 
8 |      |      |     𝑈 ← 𝐴[𝑖𝑒] 

9 |      |      |     𝑉 ← 𝐴[𝑖𝑜] 

10 |      |      |     𝑊 ← 𝜔𝑖𝜔 𝑚𝑜𝑑 𝑞 
11 |      |      |     𝐸 ← (𝑈 + 𝑉) 𝑚𝑜𝑑 𝑞 
12 |      |      |     𝑂 ← (𝑈 − 𝑉) ∙ 𝑊 𝑚𝑜𝑑 𝑞 

13 |      |      |     𝐴[𝑖𝑒] ← 𝐸 
14 |      |      |    𝐴[𝑖𝑜] ← 𝑂 
15 |      |      end for  

16 |      end for 

17 end for 

18 return 𝐴 

 

Algorithm 3. Iterative INTT Algorithm [14] 
Input: �̅�(𝑥) ∈ 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) in bit-reversed order 

Input: 𝜔−1 ∈ 𝑍𝑞 , 𝑛 = 2𝑙 

Output: 𝐴(𝑥) = 𝐼𝑁𝑁𝑇(𝐴) ∈ 𝑍𝑞[𝑥]/(𝑥𝑛 + 1) in normal order 

1 𝑚 = 1 
2 𝑣 = 𝑛 
3 while 𝑣 > 1 do 
4 |     for 𝑖 from 0 by 1 to 𝑚 − 1 do 
5 |      |      𝑘 = 0  

6 |      |      for 𝑗 from 𝑖 by 2 ∙ 𝑚 to (𝑛 − 2) do 
7 |      |      |      𝑈 ← 𝐴[𝑗]                  
8 |      |      |      𝑉 ← 𝐴[𝑗 + 𝑚] 

9 |      |      |      𝐸 ← (𝑈 + 𝑉) 𝑚𝑜𝑑 𝑞 

10 |      |      |      𝑂 ← (𝑈 − 𝑉) ∙ 𝜔−𝑏𝑟(𝑘,𝑙−1) 𝑚𝑜𝑑 𝑞 
11 |      |      |      𝐴[𝑗] ← 𝐸 
12 |      |      |      𝐴[𝑗 + 𝑚] ← 𝑂 
13 |      |      |      𝑘 = 𝑘 + 1 
14 |      |      end for   

15 |     end for 

16 |        𝑚 = 2 ∙ 𝑚 

17 |        𝑣 = 𝑣/2 
18 end while 

19 for 𝑖 from 0 by 1 to 𝑛 − 1 do         
20 |        𝐴[𝑖] ← 𝐴[𝑖] ∙ (1/𝑛) (𝑚𝑜𝑑 𝑞) 
21 end for    

22 return 𝐴 
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3. DESIGN RATIONALE 

In this section, our hardware design approach and the overall architecture of the main modules are 

given. As described in Section 3.1, the multiplier using Montgomery's modular algorithm at the word level 

performs the modular multiplication in our hardware. The primary arithmetic operation in NTT and INTT 

algorithms is the butterfly operation; We describe our processing elements hardware with the butterfly unit in 

Section 3.2. In Section 3.3, our efficient memory and its address generator are given, which enhances the 

performance of our design. Section 3.4 describes the overall structure. The proposed architecture can be 

implemented using either FPGA or ASIC technology. 

 

3.1.  NTT-based polynomial multiplication 

Modular multiplier is one of the most essential components in NTT system. The aforementioned 

component involves two different blocks: a DSP-based integer multiplication unit and a word-level 

Montgomery modular reduction unit. Both blocks are independent of the other. The Montgomery [18] and 

Barrett algorithms [6] are the most common ones used in modular reduction, and they are designed to achieve 

efficiency. For this design, we decided to build a Montgomery reduction unit, since the algorithm uses fewer 

components, and processes through fewer stages in comparison to Barrett’s; therefore, it can be hardware 

implemented into smaller designs in terms of area, as well as can work in larger frequencies. The unit hence 

can be used for the word-level Montgomery modular reduction operation for modulus-satisfying  

𝑞 ≡ 1 (𝑚𝑜𝑑 2𝑛). 

As shown in Figure 1, the DSP unit of the FPGA is utilized for the integer multiplier unit to cut 

down on the number of LUTs and FFs. Moreover, the integer multiplication unit that has been proposed used 

pipelining technique to ensure that the product of the multiplication is synchronized with the system. The 

output of the multiplier, however, needs to have its bit length brought down to match that of the modulus, 

which we call the reduction operation. The Montgomery modular word-level algorithm of that operation is 

provided in Algorithm 4. Any NTT prime 𝑞, possessing the 𝑞 ≡ 1 (𝑚𝑜𝑑 2𝑛) property when the negative 

wrapped convolution method is applied, can be written as 𝑞 = 𝑞𝐻 ∙ 2𝑤 + 1; and by harnessing this property, 

a Montgomery reduction operation can be performed at the word level with the word size 𝑤 = (2𝑛). This 

property allows the reduction operation to be handled in multiple stages, rather than running it all at once. To 

perform the modular reduction operation on a 𝐾-bit modulus, 𝐿 = 𝐾/𝑤 iterations are also required. The 

Montgomery modular reduction constant, which was previously written as 𝜇 = −𝑞−1 𝑚𝑜𝑑 2𝑤), is now 

written as −1 𝑚𝑜𝑑 2𝑤. This change makes it possible to use a simple two’s complement operation instead of 

a multiplication operation 𝐴 ∙ 𝐵 ∙ 𝜇 (𝑚𝑜𝑑 2𝑤) in the Montgomery scheme, as demonstrated in Step 6 of 

Algorithm 4. In each NTT component of CRYSTALS-Kyber, a fixed modulus 𝑞 = 3329 is used [19], while 

the parameters  𝑛 = 128 and 𝐾 = 12, 𝑞 can be written as 𝑞𝐻 ∙ 28 + 1, with word size 𝑤 = 8. So, we need 

𝐿 = 12/8 = 2 iterations for the algorithm to work. 𝑅−1 can be calculated as 𝑅−1 = 𝑞𝐻
2 = 132 = 169 in 

CRYSTALS-Kyber. 

 

 

 
 

Figure 1. 12-bit montgomery modular multiplier 

 

 

Algorithm 4. Word-Level Montgomery Reduction Algorithm for NTT-friendly modulus [20] [21] 

Input: 𝐶 = 𝐴 ∙ 𝐵 (a 2𝐾-bit positive integer) 

Input: 𝑞 (a 𝐾-bit modulus), 𝑞 = 𝑞𝐻 ∙ 2𝑤 + 1 

Input: 𝒘 = (2𝑛)  (word size) 

Output: 𝑹𝒆𝒔 = 𝑪 ∙ 𝑅−1 (𝑚𝑜𝑑 𝑞) where 𝑅 = 2𝑤∙𝐿 
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1 𝐿 ← 𝐾/𝑤 

2 𝑇 ← 𝐶 

3 for 𝑖 from 0 to 𝐿 do 

4 |        𝑇1𝐻 ← 𝑇 >> 𝑤 

5 |        𝑇1𝐿 ← 𝑇 (𝑚𝑜𝑑 2𝑤)  
6 |        𝑇2 ← 𝑡𝑤𝑜′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑇1𝐿 

7 |        𝐶𝑖𝑛 ← 𝑇2[𝑤 − 1]  ∨  𝑇1𝐿[𝑤 − 1]      
8 |        𝑇 ← 𝑇1𝐻 + (𝑞𝐻 ∙  𝑇2[𝑤 − 1: 0]) + 𝐶𝑖𝑛 

9 end for  

10 𝑇4 ← 𝑇 − 𝑞 

11 if (𝑇4 < 0) then 𝑅𝑒𝑠 = 𝑇 else 𝑅𝑒𝑠 = 𝑇4 

12 return 𝑅𝑒𝑠 
 

As can be seen in Step 8 of Algorithm 4, the word-level Montgomery modular reduction algorithm 

makes use of a number of multiply and accumulate (MAC) operation units, which is responsible for 

performing the X ·Y +Z+Cin operation. Figure 2 depicts the hardware architecture that was developed for the 

word-level Montgomery modular reduction algorithm. This architecture includes two Modulo Reduction sub-

blocks. The first Modulo Reduction sub-block performs a reduction that takes the 24-bit input data P and 

transforms it into the 16-bit intermediate data P_red[1]. After that, the data is reduced by the second Modulo 

Reduction sub-block for a second time in order to obtain the 14-bit data P_red[2]. By utilizing a subtractor 

and a multiplexer, the modular value of P_red[2] is obtained, which is also the output of the Montgomery 

modular reduction algorithm at the word level. 

To be more specific, the Modulo Reduction Sub’s proposed hardware is shown in Figure 2, which is 

the hardware implementation for Step 4 to Step 8 of Algorithm 4. The m-bit input data T1 is divided into two 

parts: T2L = T1[7:0] (8 last bits) and T2H_t = T1[m:8] (the rest) due to the word size w=8 of the 

Montgomery reduction algorithm. One adder is also used to calculate the mult t, carry t, and T2H t, therefore 

the reduction result C t can be obtained.  

 

 

 
 

Figure 2. Modular reduction sub-unit hardware 

 

 

3.2.  Butterfly unit 

After we had completed an effective implementation for the modular arithmetic, the construction of 

the hardware for the butterfly units was concentrated. These butterfly units make use of modular operations 

and are located within the PEs (processing elements). The butterfly operation is conducted by the PEs, each 

of which receives one twiddle factor and two coefficients as inputs. Each PE then generates two resulting 

coefficients, which are referred to as the odd (O) and even (E) coefficients, as outputs. As can be seen in 

Figure 3, the proposed PE module to implement the butterfly operation consists of one modular adder, one 

modular subtractor, and one modular multiplier. In each PE, three dual-port BRAMs are used for necessary 

data storage. One of them is called the twiddle factor BRAM (TW BRAM), while the other two are called the 

input and intermediate coefficient BRAM (both are called DATA BRAM).  

The even coefficient output of the PE is the output of the modular adder, while the odd coefficient 

output of the PE is the output of the modular subtractor and multiplier, as shown in steps 11-12 of Algorithm 

2. To maintain synchronization between the output of the odd and even coefficients, additional flip-flops 

were inserted at the modular adder hardware output. For an 𝑛-point NTT operation, the maximum number of 
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processing units that can be included in the design is equal to 𝑛/2, and the number of processing units must 

be a power of 2. In the design that we have proposed, we make use of 2 PEs, which indicates that the NTT 

operation is carried out through two butterfly units. The whole hardware design for a typical PE, which 

contains a butterfly unit, is demonstrated in Figure 3. 

By assigning the value 0 to the input signal in0, the first multiplicand to the input signal in1, and the 

second multiplicand to the input signal in mult, it is possible to utilize the butterfly hardware to handle a 

modular multiplication operation, as illustrated in Figure 3. Here, we referred to the 2-input butterfly unit as 

an NTT2 unit. To compute the modular addition and subtraction of the two data sets, the NTT2 unit 

processes two sets of 12-bit input data called in0 and in1. The modular sum is synchronized after it is passed 

through a shift register, and then the value is used as the even index output of the NTT2 device. For the 

modular multiplier unit to produce the 12-bit output data MODout, its inputs consist of the result of the 

modular subtraction, the modulo 𝑞, and the input data MULin, and one DFF is used to synchronize this signal 

to obtain the odd index output of the NTT2. 

 

 

 
 

Figure 3. Processing Element and Butterfly Unit hardware 

 

 

3.3.  Memory access and address generator 

In CRYSTALS-Kyber’s NTT & INTT hardware, accessing the memory needs to be implemented 

well and orderly to avoid bottleneck problems [22]–[25]. The Iterative NTT, which is illustrated in Algorithm 

2, consists of 𝑛 stages, and there are 𝑛/2 butterfly operations used in each stage. Additionally, the read 

address pattern for the input coefficients varies from stage to stage. The calculation of the index occurs 

between Steps 5 and 6 of Algorithm 2 in the NTT processing flow. To have control over the BRAMs 

presenting in each PE, an address generator is required. This unit grants the NTT block the ability to read the 

input coefficients for the process of the current NTT stage, and it also grants the NTT block the ability to 

store the output coefficients in the appropriate index order for the subsequent NTT stages. The state diagram 

for the address generator can be seen in Figure 4, which is a finite-state machine, suitable for hardware 

implementation. 

There are three states in the address generator: IDLE, NTT, and WAIT state. In NTT state, read 

addresses for the input coefficients and the corresponding twiddle factor, 𝜔𝑖, are generated for the PEs to 

perform NTT processing. The write addresses are also generated to store the NTT output coefficients in the 

BRAMs, these coefficients are then used as inputs for the next NTT stage. There are 7 stages in a 128-pt 

NTT, so the NTT state (STATE 1) is iterated 7 times to get the final NTT result, as shown in Step 1 of 

Algorithm 2. The states between these NTT states are called WAIT states. These states start after completing 

the generation of the read addresses and end when all the output coefficients are stored in the BRAMs with 

the generated write addresses. The next NTT stage process can start only if the current WAIT state finishes. 

After 7 WAIT states, which correspond to 7 respective NTT states, the system can transit from the final 

WAIT state back to IDLE state for the next NTT process. 
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Figure 4. Address Generator state diagram 

 

 

3.4.  Overall design 

Due to the property that an 𝑛-pt NTT operation can be implemented by two (𝑛/2)-pt NTT 

operation, we can implement CRYSTALS-Kyber’s 256-pt NTT operation by using two separated classic 

128-pt NTT, of which algorithm is shown in Algorithm 2 (Figure 5). These two NTTs will gather their data 

allocated in the BRAMS, where data in and out of the NTT block are stored. An address generator is also 

required to instruct the BRAMS to output the correct information for each NTT respectively. 

Before starting the NTT/INTT operation, the hardware stores twiddle factors (for NTT operation), 

modular inverse twiddle factors (for INNT operation), and the input coefficients into the BRAMs of each PE. 

The twiddle factor and its modular inverse values are stored in 2 BRAM, while the input coefficients are 

stored in 4 BRAMS: 2 BRAMs for the first PE and 2 BRAMs for the second PE. After the NTT2 operation, 

the output coefficients at the current stage are then stored back to the same 4 BRAMs to be used as input 

coefficients of the next stage. This data storing process is handled at the top level using the generated read 

and write addresses from the address generator as mentioned above. After finishing 7 NTT stages, the DOUT 

BLOCK unit would set the done signal to high to indicate the completion of NTT/INTT operation, while also 

passing the output coefficients data through the dout signal. Figure 5 shows our proposed NTT overall design 

structure. 

 

 

 
 

Figure 5. NTT top overall architecture 

 

 

4. EXPERIMENTAL RESULTS AND COMPARISON  

4.1.  Experimental scenario 

Our hardware design was written in Verilog Hardware Description Language, the most common one 

for hardware implementation in the meantime. On the other hand, our design was synthesized and 

implemented using Xilinx Vivado tools, on the Xilinx Artix-7 FPGA of name xc7a12tcpg238-3, specifically. 

In parallel, the design was also synthesized and post-synthesis verified using Synopsys Design Compiler and 

Synopsys Formality tools with the TSMC 65nm library, as a method for comparison. The NTT software for 

the reference model was written in Python and based on the NIST submissions’ reference C source code of 

the CRYSTALS Kyber developing team. 
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4.2.  Experimental scenario 

Our proposed design was synthesized with the CRYSTALS-Kyber parameters of q=3329 and 

n=256. There were 2 PEs used in our design and each of those had 2 butterfly units. The synthesis result 

using Synopsys Design Compiler tools with TSMC 65nm technology library is shown in Table 1. 

One of the most crucial and precious factors of the synthesized design was its maximum frequency 

to work properly. The value of our design was approximately 497 MHz, which outweighs most of the 

cryptosystems at the current time. The value was measured by changing the frequency value in the sdc 

(Synopsys Design Constraints) file and re-run the synthesis process until we got the largest value possible to 

fulfill the setup and hold constraints. Meanwhile, on the area side, the gate count value of our design on 

the TSMC 65nm library was around 472K with most of the used area for non-combinational logic (64.8%), 

while the combinational logic accounted for 35.2% of the total area. 

From another perspective, Table 2 reports the synthesis and implementation results using Xilinx 

Vivado tools. which resulted in an area-friendly NTT design with a relatively high frequency of 102 MHz. 

The value was moderately lower than the value of 497 MHz mentioned above, which can be explained by the 

fact that the hardware options for FPGA are much more hindered in comparison to that for ASIC. In contrast, 

the number of LUTs used in the implementation design was much less in comparison to the synthesis design, 

since the better physical optimization and full implementation work of the FPGA. Additionally, the design 

only used 4.65% of the total amount of usable register and there was no latch generated in our design. This 

can be seen as an optimist result in the area and timing efficiency 

 

 

Table 1. Synthesis Result on ASIC 
Library TSMC65nm 

Frequency (MHz) 497 

Area (µm2) 

Total 906113.7472 
Combinational 319100.1598 

Buf/Inv 6389.75997 

Noncombinational 587013.5874 

 

 

Table 2. Synthesis and Implementation results on FPGA 
Design Synthesis Implementation 

Frequency (MHz) 102 102 

Resources 

LUT 872 857 
REG 744 744 

DSP 6 6 

BRAM 3 3 

 

 

4.3. Comparison to prior work 

Table 3 and Figure 6 compare the results in our work and previous works. The relationship between 

the number of butterfly units used in the design and implementation timing results are shown in Table 3 and 

Figure 6(a). The more butterfly units there were, the more work was shared for each butterfly unit, which 

hence decreased the NTT/INTT processing time and increased the maximum working frequency of the 

implementation design. Using two of these units, it can be seen that our works far surpassed [11], which only 

had one, in terms of operating frequency as well as latency. Our hardware design’s resource efficiency can be 

affirmed by the comparative analysis of resource utilization among the designs featured in Table 3 and  

Figure 6(b). This achievement was a result of the strategic optimization of FPGA DSP for calculating 

operations and the reduction of necessary BRAM blocks for memory ones. Regarding the timing and 

performance, the maximum frequency of our work was 102 MHz, which is relatively medium compared to 

other work (59, 155, and 161 MHz). However, by generating the read and write address efficiently accessing 

the memory, the latency of our design was much smaller than other studies in [11], [4], and [6], with the 

respective figures being 6.86, 116.61, 11.83, and 3.18 microseconds.  

Our ASIC design, as shown in Table 4, by utilizing coherent design schemes and pipelining, 

achieved a frequency of 497 MHz, and far surpassed the NTT hardware designs in [6] and [7]. However, this 

optimization came at the cost of a high gate count of 472K since the trade-off between area and timing 

properties. Our design’s architecture though resulted in a relatively small latency of just 686 and an 

insignificant processing time of 1.38 microseconds for the NTT operation. This latency and operation time 

are notably lower than other works such as [6] and [7], primarily due to our well-planned memory read and 

write scheme that employed the address generator block. Despite our design’s relatively small latency for the 

NTT operation, that same value was larger than that of [8] (0.5 microseconds), which was achieved by 
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utilizing a significant number of resources (area) in the synthesized design. Nevertheless, our design struck 

an overall balance between area and timing when compared to other works by having an outstanding 

performance on ASIC, without using up a large number of resources, rendering it a brighter solution for 

designs that orient performance on ASIC platform. 

 

 

Table 3. Comparison of implementation results for NTT design (q=3329) on FPGA 
Work [9] [10] [11] [4] [6] Ours 

Platform Zynq 7000 Virtex 7 Artix 7 Artix 7 Artix 7 Artix 7 

Butterfly 2 1 1 2 2 2 

NTT/INTT latency [CCs] 1935/1930 43756/- 6868/6367 1834/- 512/576 686/842 

Freq [MHz] - - 59 155 161 102 

Time [us] - - 116.61 11.83 3.18 6.86 

LUTs 2908 417 - - 1737 587 

FFs 170 462 - - 1167 744 

DSPs 9 0 - - 2 6 

BRAMs 0 0 - - 3 3 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Comparison of NTT implementation on FPGA regarding (a) timings and (b) resources 

 

 

Table 4. Comparison of synthesis results for NTT design (q=3329) ASIC flow 
Work Platform n q NTT latency (CCs) Freq (MHz) Time (us) Gate count 

[6] 40nm CMOS 256 13 1289 72 17 106K 

[8] 40nm CMOS 256 13 160 300 0.5 - 

[7] UMC 65 nm 256 13 2056 25 82 14K 
Ours TSMC 65 nm 256 12 686 497 1.38 472K 
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5. CONCLUSION 

In this paper, we designed a fast and efficient architecture for NTT-based polynomial architecture 

settings that are suitable for the CRYSTALS-Kyber key encapsulation module (KEM). To the best of our 

knowledge, our proposed design was able to perform the NTT/INTT operations with one of the lowest 

latencies in the literature, while obtaining optimistic results on other aspects of design like area and resources 

required. This also implies the effectiveness of hardware implementation for complex cryptography 

algorithms, especially ones for the post-quantum era, allowing us to establish secure communication in the 

future. Overall, our NTTcore can perform CRYSTALS-Kyber’s NTT/INTT operations at 102 MHz on an 

Atrix-7 FPGA, with a latency of 3.43 µs for the NTT operation and 4.21 µs for the INTT operation, while the 

respective figures for ASIC platform with the TSMC 65nm technology being 497 MHz for maximum 

working frequency, 1.38 µs for latency, and 472K gates for gate count. The study hence implied that 

CRYSTALS-Kyber can be efficiently implemented in hardware and might be produced in industrial. Future 

research might be based on this study to improve further the NTT structure, or to fully construct the 

CRYSTALS-Kyber hardware structure, as well as continue optimizing any cryptography design in terms of 

hardware efficiency. 
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