
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 35, No. 2, August 2024, pp. 1253~1262 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i2.pp1253-1262      1253 

 

Journal homepage: http://ijeecs.iaescore.com 

Tailoring therapies: a frontier approach to pancreatic 

cancer with AI-driven multiomics profiling 
 

 

Janiel Jawahar, Paramasivan Selvi Rajendran 

Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, Chennai, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 15, 2024 

Revised Apr 4, 2024 

Accepted Apr 13, 2024 

 

 Pancreatic cancer is often diagnosed at an advanced stage when treatment 

options are limited. Being one of the deadliest cancers that mandates longer 

medication and treatment phases, there is an inevitable need to have the 

knowledge of drug response of anti-pancreatic cancer drugs before it is 

recommended for a patient. AI-driven drug response prediction has proven 

potential to personalize treatment strategies, improve therapeutic outcomes, 

and reduce adverse effects and treatment costs for cancer patients. In this 

research work, we have accounted for the use of different drug descriptors 

and their core structures known as scaffolds along with three cell line 

features, chromatin profiling, reverse phase protein array, and metabolomics 

data to build a feature engineered dataset for drug response prediction tested 

on various computational learning models. The 53 unique drugs against 18 

unique pancreatic cancer cell lines were taken as the raw dataset. The initial 

dataset having a large dimension was feature selected using an ensemble 

method derived from five different techniques. The dataset was evaluated on 

various computational methods and an accuracy of 89% was achieved using 

the TabNet architecture. Furthermore, the common scaffolds that were 

persistently found among the drugs that possess high IC50-valued drug 

clusters were also recorded. 
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1. INTRODUCTION 

Cancer is an illness with various forms and complexities. It’s crucial to understand that among 

patients with the same cancer type the effectiveness of anti cancer treatments can vary [1]. In particular 

pancreatic cancer  is an aggressive malignancy known for being detected at stages when limited treatment 

options and having an unfavorable prognosis. Pancreatic cancer contributes significantly to the cancer 

mortality rate requiring prolonged periods of medication and treatment due to its increasing prevalence. 

Detecting this disease early poses a challenge since its often diagnosed when it has already reached advanced 

stages. Developed countries in North America and Europe have rates of pancreatic cancer with the United 

States having one of the highest rates. The majority, 80% of individuals diagnosed with pancreatic cancer 

have either locally advanced or distant metastatic disease. Unfortunately these cases have low chances of 

long term survival with an overall 5 year survival rate below 10%. However individuals who are diagnosed 

with cancer in its early stages have the opportunity to achieve a cure by undergoing a combination of surgical 

procedures chemotherapy treatments and radiotherapy sessions [2]. Hence it is of importance to develop a 

comprehensive comprehension of pancreatic cancer and the medications that are recommended for its 

https://creativecommons.org/licenses/by-sa/4.0/
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treatment. This knowledge has the potential to enhance the chances of survival and minimize the overall 

mortality rate. 

Pancreatic cancer has a lower occurrence comparatively while age plays a role as a risk factor and it 

is not practical to screen the entire population solely based on age due to the expensive clinical tests involved 

and the possibility of false positive results in many patients. Therefore prioritizing the utilization of 

automated systems, for detecting cancer is crucial to improve accuracy and treatment outcomes [3]. 

Furthermore it’s important to understand and predict how anticancer drugs recommended for therapy will 

work. Artificial intelligence (AI) which refers to computer systems using advanced learning algorithms to 

mimic intelligence and perform tasks has been successfully applied in oncology. It has contributed to 

advancements in diagnosing and treating gastrointestinal cancers, including pancreatic cancer. These 

advancements include the use of techniques aimed at enhancing patient prognosis [1]-[3]. Personalized 

therapy, also referred to as precision oncology, involves tailoring medications to suit individual patients.  

The use of population based drug doses for patient care often leads to variations in treatment outcomes and 

side effects among individuals [4], [5]. The imperfections in cancer medicine delivery systems can be 

attributed to their complexity [4]. The primary objective of precision cancer therapy is to enhance the 

effectiveness of treatment [6]. However it is equally important to understand the factors associated with drug 

response in order to adopt a comprehensive approach to precision medicine in the field of oncology [4], [7], [8]. 

Establishing correlations between genes and medications can be challenging due to the intricate nature of 

genomics and drug sensitivity data. To address these challenges various computational techniques have been 

developed, with machine learning algorithms proving successful in achieving this goal [8]-[10]. 

Incorporating a range of cell line features such as chromatin profiling, reverse-phase protein arrays (RPPA) 

and metabolomics data provides a holistic understanding of the molecular characteristics of cell lines. 

Consequently, this enhances the precision and significance of models for drug response while offering 

valuable insights. Medical experts believe that by studying tumors at the molecular level they can develop 

customized treatments that target specific subgroups of tumors and even individual patient characteristics. 

This approach has the potential to greatly improve the effectiveness of therapies and yield better treatment 

outcomes [11]. 

When working with datasets that have dimensions in different fields like document and image 

analysis biomedical data and others it is crucial to carefully select a relevant subset of features [12].  

The emergence of datasets with a number of columns or features has caught the attention of many researchers 

in the field of feature selection. Several techniques have been proposed in studies to forecast drug sensitivity [13]. 

However these approaches lack the effectiveness to accurately predict drug sensitivity. This is because no 

single selection algorithm can guarantee the results in terms of stability and predictive performance [14]. It is 

widely acknowledged that not all columns contain information and having irrelevant or noisy columns can 

confuse machine learning algorithms thereby hindering their effectiveness. As a result researchers have been 

exploring the efficacy of approaches that combine multiple selectors to achieve optimal outcomes  

[13]-[16]. This study focuses on examining the utilization of drug descriptors and drug molecular core 

structures along with three cell line features such as chromatin profiling, RPPA and metabolomics data for 

predicting the drug response to anti pancreatic cancer drugs. To manage the vast variety of features in cell 

lines we utilized an ensemble approach for selecting features. The ensemble outcomes were achieved by 

implementing five techniques, for feature selection. 

 

 

2. RELATED STUDIES 

In their study researchers led by Qiu et al. [7] discovered genes that can predict the response,  

to drugs with high reliability and accuracy. They trained machine learning models using biomarker features, 

including gene expression profiles, mutation profiles, pathways, methylation and copy number variations.  

In order to improve the accuracy of predictions additional information such, as the chemical composition of 

drugs was also incorporated into the models. Lanka et al. [8] developed an ensemble machine learning 

algorithm called (ELAFT), which aimed to predict the effectiveness of anti cancer drugs. By harnessing the 

strengths of machine learning techniques, like regression classifiers random forest (RF) classifiers, k-nearest 

neighbor (KNN) classifiers and support vector machines (SVM) this method achieved impressive accuracy 

levels surpassing 90%. Pearson correlation was employed to enhance the accuracy further. 

Suphavilai et al. [9] proposed a method, for predicting how cancer drugs would respond using a 

recommender system approach. The method involves mapping drugs and cell lines into a latent space called 

(CaDRReS) which helps identify similarities between medications and cell lines. The authors utilized the 

genomics of drug sensitivity in cancer (GDSC) and the cancer cell line encyclopedia (CCLE) dataset to 

evaluate their approach. According to their findings, CaDRReS has shown performance compared to 

progressive methods, in accurately predicting drug response. Tan et al. [3] have come up with a method to 
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predict how cancer cells will respond to a chemical used in chemotherapy. They used a combination of 

machine learning algorithms and two unique signatures derived from gene expression profiles of cancer cell 

lines that were exposed to the drug. Furthermore, Partin et al. [17] have proposed the utilization of multi 

omics data such as gene expression, protein expression and DNA methylation to anticipate the response of 

drugs. Summary graphs were created to depict the 61 distinct deep learning based models that were selected 

for examination. Alwi et al. [18] utilizing catalogue of somatic mutations in cance (COSMIC) datasets, 

conducted a study that explores the correlation between resistant mutations and resistance to cancer 

medications by considering protein structures. They also developed a predictive model capable of identifying 

which mutation is responsible for drug resistance, encompassing both inherent resistance (which is observed 

before treatment) and acquired resistance (which occurs after treatment). Similarly the DualGCN method, 

introduced by Ma et al. [19], presents an innovative approach for predicting cancer drug response.  

This method specifically targets the shortcomings of current techniques by effectively transferring knowledge 

from in vitro cancer cell lines to single-cell and clinical data, without the need for extensive single nucleotide 

variant data. DualGCN demonstrated potential for use in clinical and single-cell data, independent of 

extensive single nucleotide variant (SNV) data. The authors also highlighted the importance of considering 

the intricate tumor microenvironment and the limitations of SNV-based models in understanding drug 

response. 

Zhu et al. [20] have proposed a combination approach that involves three different types of models, 

namely light gradient boosting machine (LightGBM), single deep neural network (sDNN) and time delay 

neural network (tDNN), while tDNN is a two subnetwork DNN and sDNN is a single network DNN, 

LightGBM is a decision tree (DT) model. The authors trained and evaluated these models using cancer cell 

line encyclopedia (CCLE), cancer therapeutics response portal (CTRP), and NCI60. Their model achieved an 

accuracy rate of 82% on CCLE datasets, 85% on CTRP datasets and 80% on NCI60 datasets. An inevitable 

constraint in handling the gene expression data is the huge dimensionality of features they possess.  

The advantage of adding more cell line features in model training to help better prediction would also 

potentially increase the dataset dimension thereby making it difficult to handle and becomes computationally 

expensive. This narrows the way of finding the best features to select of the dataset before training.  

Seijo-Pardo et al. [21] have provided an ensemble feature selection method for handling high-dimensional 

data such as gene expression data. They have done this using feature-class and feature-feature mutual 

information, by combining optimal subsets selected by various filters such as Chi-square, Info Gain, Gain 

Ratio, Relief F, and Symmetric Uncertainty. They claimed to have achieved excellent results through this 

approach by validating in different machine learning algorithms such as the KNN, RF, and SVM applied on 

two networks and five gene expression datasets. Similarly, Mera-Gaona et al. [16] have reported the use of 

ensemble advantage in feature selection through a theoretical and practical framework that aids in 

comprehending the fundamental ideas and connections involved in combing different feature selection 

algorithms. Jin et al. [22] have created a sophisticated deep learning algorithm called differential genes 

screening TabNet (DGS-TabNet) that can classify Alzheimer’s disease using genetic data for both binary and 

multiclass scenarios. The DGS-TabNet model has surpassed various state-of-the-art deep learning and 

classical machine learning models, achieving an impressive accuracy of 93.80% for binary classification and 

88.27% for multi-class classification on a gene expression dataset. Similarly, Arık et al. [23] and  

Kita et al [24] have utilized TabNet in their research, achieving superior results in managing large-scale 

medical tabular data. 

 

 

3. MATERIAL AND METHODS 

To build a resourceful feature-engineered dataset, cell line data such as chromatin profiling data, 

metabolomics data, reverse phase protein array data and drug line data such as drug inhibition data (IC50) for 

cell lines were downloaded from the GDSC and CCLE database. RDKit and Datamol [25] libraries were 

used to process the drug simplified molecular-input line-entry system (SMILES) feature. Google’s Colab in 

browser and Microsoft Visual Studio Code were used as IDE for running the python scripts. All the code 

implementation and  results discussed were done on a 12th Gen Intel Core i5-1240P-1.70 GHz processor with 

a 16GM RAM machine. 

 

3.1.  Experiments on drug molecular descriptors 

The raw drugline data downloaded from the GDSC site had information such as drug name, drug 

experimented cancer cell name, their inhibition results, pathway name and putative target as features.  

A Python script was written to retrieve the SMILES data for the corresponding drug names. This was 

achieved through an API offered by PubChem, an open chemistry database maintained by the National 

Institutes of Health (NIH). Using the open source python libraries, RDKit library, and Datamol [25] library, 

multiple features from the SMILES data were derived and built into our dataset. 
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Using the k-means clustering algorithm, the dataset was clustered into three classes, high, moderate 

and low inhibition based on the inhibition values. This new feature was used as the target class for training 

and model validation. The correlation between features was calculated using pearson correlation and the 

pairwise similarity between features was calculated using the cosine similarity method. The feature 

importance chart Figure 1, Table 1 derived using the cosine similarity and the correlation heatmaps for each 

cluster Figures 2-4. The integration of RDKit’s Murcko scaffold approach transforms molecular structures 

into simplified scaffolds. The conversion of RDKit molecular objects into SMILES representations further 

enhances the comparative analysis of our datasets. The resulting count of occurrences for each unique 

scaffold in the dataset provides valuable information regarding the structural diversity and prevalence of 

specific frameworks. This approach proves to be instrumental in identifying common structural motifs within 

each inhibition cluster, paving the way for a more targeted and efficient exploration of chemical space. The 

core structures Figures 5-7 that are found only in high-inhibition drugs were also found and recorded. 
 

 

 
 

Figure 1. Feature importance score of drug descriptors 
 

 

Table 1. Feature importance score of drug descriptors in each cluster 
Drug descriptors Cluster-0 feature importance’s Cluster-1 feature importance’s Cluster-2 feature importance’s 

Largest_Ring_Size 151.2131 208.188 62.8674 

Smallest_Ring_Size 151.2422 208.1102 62.8406 

pKa 151.113 208.1469 62.7967 
MolLogP 151.3571 208.0691 62.6538 

MolWt 151.0908 205.4052 62.4535 

HeavyAtomCount 151.3571 208.1639 62.8298 
HeavyAtomMolWt 150.7802 208.2461 62.8288 

NHOHCount 150.6921 207.949 62.8036 

NOCount 150.3723 207.576 61.8106 
NumHAcceptors 150.4577 208.2221 62.8583 

NumHDonors 151.446 207.4655 62.8466 

NumHeteroatoms 151.2559 208.0154 62.6891 
NumRotatableBonds 151.2948 208.1327 62.6538 

NumValenceElectrons 150.4779 206.3011 62.4535 

NumAromaticRings 150.2994 203.4908 62.764 
NumSaturatedRings 150.9827 207.386 62.6463 

NumAliphaticRings 151.376 207.4655 62.8288 

NumAromaticHeterocycles 151.1853 205.4052 62.8036 
NumSaturatedHeterocycles 150.9936 208.1634 62.8583 

NumAliphaticHeterocycles 151.1327 208.1639 62.6891 

RingCount 151.1836 208.2461 62.6538 
FractionCSP3 151.3733 207.949 62.4535 

TPSA 151.0664 208.2419 62.764 

Veber_Passes 151.3904 207.576 62.8288 
Ghose_Passes 151.31 208.1666 62.8036 

Muegge_Passes 151.4269 208.2221 62.8583 

Ro3_Passes 151.3571 208.0219 62.8466 
Egan_Passes 150.6921 207.4655 62.6891 

Ro2_Passes 150.4577 208.141 62.764 

Lipinski_Passes 151.2559 208.0154 62.8288 
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Figure 2. Correlation heatmap of derived drug descriptors in moderate inhibiting cluster 

 

 

 
 

Figure 3. Correlation heatmap of derived drug descriptors in low inhibiting cluster 
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Figure 4. Correlation heatmap of derived drug descriptors in high inhibiting cluster 
 

 

 
 

 
   

Figure 5. 4-

Anilinoquinazoline 

Figure 6. (4-Benzyloxy-phenyl)-(6-

furan-2-yl-quinazolin-4-yl)-amine 
Figure 7. 4-(piperazin-1-ylmethyl)-N-[3-

[(4-pyridin-3-ylpyrimidin-2-yl) amino] 

phenyl] benzamide 
 

 

4. EXPERIMENTS ON CELL MOLECULAR DESCRIPTORS 

4.1.  An ensemble approach to feature selection 

IC50 data from GDSC and chromatin profiling, reverse phase protein array, and metabolomics data 

from CCLE were downloaded. CCLE data’s high dimensionality necessitated feature selection to avoid 

performance degradation in machine learning models. Ensemble feature selection methods, combining 

strengths and mitigating weaknesses of individual algorithms, were employed to address bias [14], [16], [21]. 

A diverse range of techniques was selected to capture various aspects of feature importance, providing a 

holistic perspective. Python scripting enhanced predictive performance and deepened understanding of 

genomic landscapes. Five different methods ensured a well-rounded feature selection process, mitigating bias 

in selection outcomes [14], [16], [20], [21]. 
 

 

5. METHOD 

To address the high dimensionality of cell line data and improve accuracy and prediction efficiency, 

an effective feature selection process was implemented. Employing multiple feature selection methods,  

each targeting different types of relationships within the dataset, 35 features were selected from each 

approach. Through max voting, the top 35 features among the total 175 were chosen. Figures 8-10 in the 

results section detail these selected features for each cell line dataset.  
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Figure 8. Results of top 35 max voted chromatin profiling data features 
 

 

 
 

Figure 9. Results of top 35 max voted metabolomics data features 
 

 

 
 

Figure 10. Results of top 35 max voted RPPA data features 
 

 

The architectural diagram Figure 11 is illustrated below. The dataset underwent testing, training, and 

validation using various computational methods, including Naive Bayes, generalized linear model, logistic 

regression, fast large margin, deep learning, DT, RF, gradient boosted trees, and SVM, with different feature 

combinations. Gradient boost and TabNet showed superior performance, with TabNet outperforming 

gradient boost by 10%. TabNet [22]-[24] a recently developed deep learning model, specializes in handling 

tabular data complexities. Its attention mechanism enables selective focus on significant features during both 
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training and decision-making, capturing intricate relationships within structured datasets. With an encoder-

decoder architecture and sequential decision-making, TabNet refines predictions by considering multiple 

features. Its sparse feature selection capability, driven by the attention mechanism, identifies critical 

attributes, enhancing both accuracy and interpretability. TabNet’s sequential attention approach improves 

interpretability and facilitates more efficient learning by prioritizing the most significant features. 
 

 

 
 

Figure 11. Architectural diagram 
 

 

6. RESULTS AND DISCUSSION 

A Python programming script was used to create an ensemble of feature selection techniques.  

The top 35 most voted features were used for the model training. The results show that chromatin profiling 

data had the highest correlation between feature selection methods with atleast three of the feature selection 

methods picking same features and all of the methods able to identify four of the features. 

Similarly the correlation between different drug descriptors for each drug cluster was analyzed and 

plotted. Figure 4 describes the feature importance score chart of few of the highly ranked features that are 

highly correlated. And also, the results from analysing the scaffolds structure suggest that the structures  

4-nilinoquinazoline Figure 5, (4-Benzyloxy-phenyl)-(6-furan-2-yl-quinazolin-4-yl)-amine Figure 6, and  

4-(piperazin-1-ylmethyl)-N-[3[(4-pyridin-3-ylpyrimidin-2-yl)amino]phenyl]benzamide Figure 7 are present 

only in drugs that possess high IC50 values and all contain a shared quinazoline core. This core consists of a 

benzene ring fused to a pyrimidine ring and serves as a fundamental structural element in these compounds. 

Despite this common core, each compound possesses distinct aromatic rings, substituents, and functional 

groups, which contribute to their individual chemical identities. The dataset was first trained on nine different 

in-silico prediction methods and the gradient boost algorithm consistently produced better prediction results. 

But Tabnet, which is a deep learning architecture, specifically designed to handle large sized tabular data 

outperformed gradient boost with much better accuracy. Through optimized hyper parameter tuning 

techniques, the accuracy was improved further. Both the results in Figure 12 and Table 2 were recorded. The 

data and code used in this study are available at https://github.com/JJaniel/Drug-Response-Prediction-for-

Pancreatic-Cancer-using-Multiomics-profiling. 
 

 

 
 

Figure 12. Accuracy metrics on different feature combinations 
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Table 2. Accuracy metrics on TabNet classifier 
Hyperparameters Iterations 

n_d 11 61 61 61 31 31 31 75 75 75 
n_a 51 38 38 13 32 32 32 32 32 32 

n_steps 4 4 4 4 2 2 2 5 5 5 

gamma 1.36 1.54 1.54 1.45 1.00 1.00 1.00 2.75 2.75 2.75 
n_independent 1 2 2 1 1 1 1 4 4 4 

n_shared 2 1 1 2 1 1 1 1 1 1 

lambda_sparse 0.00085 2.56692 2.56692 0.000395 0.00055 0.00055 0.00055 0.005
46 

0.0054 0.00546 

optimizer_params: 

{ lr } 

0.0021 0.00842 0.0084 0.00897 0.00998 0.00998 0.00998 0.009

80 

0.0098 0.00980 

{ step_size } 8 12 12 15 15 15 15 13 13 13 

{gamma} 0.969 0.83 0.83 0.98 0.86 0.869 0.869 0.85 0.85 0.85 

mask_type entmax 
Dropout        0.40 0.40 0.40 

Accuracy 81.18 83.5 88.2 82 82.3 85.88 83.52 79.7 85.7 87.0 

 

 

7. CONCLUSION 

Our research, utilizing AI techniques, has successfully utilized drug molecular descriptors, core 

structures and key cell line features to predict the effectiveness of anti-pancreatic cancer drugs with an 

impressive accuracy rate. The TabNet architecture emerged as the top performer closely followed by the 

gradient boost model. Additionally our analysis of the scaffold structures of these drugs has revealed a 

significant finding: the presence of a quinazoline core among highly inhibiting drug clusters.  

This shared scaffold feature consistently appears across potent drug clusters and holds profound implications. 

By integrating these core structures with other relevant drug and cell line features, we can facilitate precise 

predictions and gain insightful analyses. Our study not only provides accurate predictions of drug response 

but also offers valuable insights into shared core structures among distinct inhibiting drug clusters.  

This approach paves the way for deriving and examining insights based on scaffold structures, promoting a 

progressive approach  in precision medicine and future drug design efforts. Through this comprehensive 

approach, our aim is to drive advancements in cancer treatment strategies ultimately leading to improved 

patient outcomes and therapeutic efficacy. 
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