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 In hazard-sensitive processes, the monitoring upsets and malfunctions 

correctly is an important challenge to operation safely and enhance the 

performance. Conventional process monitoring frequently assumes that 
process data follow only one Gaussian distribution, which generates a 

constant confidence limit and hence produces a high number of false alarms. 

However, in fact, industrial processes usually include various operating 

modes. To ovoid this drawback, the suggested approach employs an adaptive 
confidence limit (ACL) when a substantial number of false alarms are 

created. The fundamental concept underlying this study is to extract 

internally several local linear sub-modes of the monitored variables. In 

typical operating circumstances, the Gaussian mixture model (GMM) is 
utilized to extract several local linear sub-modes, followed by fuzzy 

linearization using the Takagi-Sugeno model, thereafter a bank of 

Luenberger observers to construct the residual spaces. An abnormal event is 

detected when the squared prediction error (SPE) is too great or exceeds the 
adaptive threshold designed to prevent the false alarms. Furthermore, an 

enhanced contribution plots is effectively used to identify the defective 

variable. 
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1. INTRODUCTION 

To enhance the performance of any industrial process and correctly detect and identify any 

abnormal mode of the process, especially when any sensor or actuator is prone to malfunctions, the online 

monitoring tools become necessary [1], [2]. Numerous control technology systems have been implemented to 

identify and detect the faults [3]-[5]. However, the most of industrial process monitoring projects are 

predicated on the idea that process data follows a single Gaussian distribution (mean μ and variance σ). As a 

result, numerous false alerts are produced due to the confidence limit which is calculated as a constant 

threshold [6]-[9]. However in reality, because of process non-linearity, the process variables roughly follow a 

combination of Gaussian distributions (𝜇𝑗 , 𝜎𝑗 ) [10]-[14]. It should be noted that some approaches based on 

adaptive control limit have been proposed like [14] but the threshold remains as a straight line. 

So, in this work our contribution focuses on adaptive confidence limit (ACL) leads to correctly 

monitor the nonlinear dynamic systems, the proposed method will be tested on sensor fault detection and 

identification. Gaussian mixture models (GMM) extract, under normal conditions, several operating  
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sub-modes and allows to classify the monitored variables according to their likelihood rates of membership 

to the several local sub-modes, thus obtaining m local linear sub-models characterized by m Gaussian 

components (𝜇𝑗 , 𝜎𝑗), minimum message length (MML) is used during the GMM calculation to help speedly 

select the ideal number m of sub-modes, this technique known as fuzzy satisfactory clustering (FSC) [15], the 

number m is often considered known in the existing works [16]. The proposed strategy gives a multimodal 

behaviour using Takagi-Sugeno (T-S) fuzzy modeling allows to obtain a fuzzy linearized variables. After 

that, a bank of observers is used to estimate the fuzzy linearized variables and create a residual space. GMM 

is still being used once again for the estimated variables to extract the m sub-modes and compute their local 

𝑆𝑃𝐸𝑗. The kernel density estimation (KDE) has been incorporated to acquire the local confidence limit (LCL) 

of each 𝑆𝑃𝐸𝑗. As result, an ACL is acquired via a weighted sum of the likelihood rates and the m local 

confidence limit 𝐿𝐶𝐿𝑗
𝐾𝐷𝐸 of each local 𝑆𝑃𝐸𝑗. The obtained ACL is linked to the global SPE, which gives a 

powerful tool capable improving the monitoring performance, reducing false alarms (nearly entirely 

eliminated) and detecting the commencement of process deviations earlier and more accurately than other 

traditional approaches.  

For fault identification, to overcome the gaps of the traditional contribution plots which involves to 

give the contributions to the SPE(k). In a moment ‘k’ that can cause some errors to identify the defective 

sensor due to the high number of the peaks generated in the residual space. An enhanced contribution plots to 

the SPE is proposed which able to eliminate the unwanted peaks and correctly identify the defective sensor. 

The paper is organized as follows: materials and method in section 2 introduces the monitoring 

tools, including the GMM for extracting m local normal sub-modes and calculating their probability rates, 

Takagi-Sugeno model for fuzzy linearization the monitored variables and then, bank of linear Luenberger 

observers to estimate the fuzzy linearized variables. The algorithm of the proposed technique is presented in 

this section. Section 3 is dedicated to the results and discussion, in which the effectiveness of the proposed 

process monitoring strategy is defended, where we discuss and assess the different obtained results. Finally, 

conclusions are described in section 4. 

 

 

2. METHOD 

The algorithm of the proposed technique involves firstly in offline a fuzzy multi-modelling during 

normal conditions whose aim is to obtain an ACL, usable later in online monitoring. The specified stages are 

explained as follows: 

a. In offline under normal conditions: 

i) The GMM tool is used at the beginning to extract the optimal number m of the local operation sub-

modes. 

ii) T-S fuzzy modelling to fuzzy linearize the monitored variables around the m operating point. 

iii) Bank of Luenberger observers to estimate the fuzzy linearized variables. 

iv) GMM to extract m fuzzy linear sub-modes of the estimated variables. 

v) Calculation of the m local squared prediction error 𝑆𝑃𝐸𝑗 and their local confidence limit 𝐿𝐶𝐿𝑗
𝐾𝐷𝐸.  

vi) The weighted sum of the probability rates 𝜌𝑗 (for each local sub-mode) with m 𝐿𝐶𝐿𝑗
𝐾𝐷𝐸 (of each 

local 𝑆𝑃𝐸𝑗) gives the global ACL. 

b. In online monitoring: 

vii) The obtained ACL is linked to the global SPE for error detection. 

viii) The enhanced contribution plot is used for fault identification. 

 

2.1.  Gaussian mixture model 

In normal operating conditions, processes span multiple operating sub-modes so that each one is 

characterized by a Gaussian component. The GMM tool may be used to extract the probability density 

function (PDF), which is the weighted sum of the density functions of each Gaussian component. Each 

component is described by normal distributions with weights ∅𝑗, means  𝜇𝑗 and covariance matrix 𝜎𝑗 as 

given (1). 

 

𝑝(𝑥| ∧) = ∑ ϕ𝑗
𝑘
𝑗=1 ℕ(𝑥𝑖|𝑦𝑗) (1) 

 

Where x∈ 𝑅ℓ, ϕ𝑗 is the previous probability of the jth portion and ℕ(𝑥𝑖|𝑦𝑗) is the multivariate Gaussian 

density function of the jth component. The model parameters that need to be estimated for each component 

are ϕj and yj = (µj, ϭj). The updated estimated parameters ϕj, μj, and Σj are re-estimated iteratively using the 

expectation-maximization technique, as shown below: 

 Expectation: calculate the posterior probability of the ith training sample (xi) at the kth iteration: 
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𝑝(𝑘)(𝑚𝑗|𝑥𝑖) =
𝛼𝑗

(𝑘)
ℕ(𝑥𝑖|λ𝑗

(𝑘)
)

∑ 𝜙𝑙
(𝑘)𝐾

𝑙=1 ℕ(𝑥𝑖|λ𝑙
(𝑘)

)
  (2) 

 

Where mj is the jth component. 

 Maximization: during the (k + 1)th iteration, change the model parameters: 
 

𝜇𝑗
(𝑘+1)

=
∑ 𝑝(𝑘)(𝑚𝑗|𝑥𝑖)𝑥𝑖

𝑁
𝑖=1

∑ 𝑝(𝑘)(𝑚𝑗|𝑥𝑖)𝑁
𝑖=1

  (3) 

 

𝛼𝑗
(𝑘+1)

=
∑ 𝑝(𝑘)(𝑚𝑗|𝑥𝑖)(𝑥𝑖−𝜇𝑗

(𝑘+1)
)(𝑥𝑖−𝜇𝑗

(𝑘+1)
)𝑇𝑁

𝑖=1

∑ 𝑝(𝑘)(𝑚𝑗|𝑥𝑖)𝑁
𝑖=1

 (4) 

 

𝜙𝑗
(𝑘+1)

=
∑ 𝑝(𝑘)(𝑚𝑗|𝑥𝑖)𝑁

𝑖=1

𝑁
 (5) 

 

In the learning phase, parameter values are updated using the log-likelihood function as the objective: 
 

log 𝐿(𝑥| ∧) = ∑ log(∑ 𝜙𝐽ℕ(𝑥𝑖|𝑦𝑗)𝐾
𝑗=1 )𝑁

𝑖=1  (6) 

 

where 𝑥𝑖  is the ith training sample among the total of N measurements? 

In this work, the MML algorithm is used to extract the optimal number of Gaussian components [17]. 

Therefore, the GMM tool is used to extract 𝑚 local linear sub-modes of the monitored variable and then their 

estimation. It should be noted that the number m of local linear sub-modes is equal to the number of Gaussian 

components (number of local linear sub-modes), which is equal to the number of operating points around 

them the linearization is done.  
 

2.2.  Fuzzy linearization by Takagi-Sugeno models 

Following the extraction of the operating mode mixture, the next step is to develop fuzzy linear 

models [18]. The key characteristic of a T-S fuzzy model is that it expresses the local dynamics of each fuzzy 

implication (rule) using a linear system sub-model. The overall fuzzy model of the system is created by fuzzy 

mixing the linear system models [19]. The structure consisting of several sub-models with decoupled 

operational states, as suggested by [20], may be represented as (7). 

 

{

�̇�𝑗(𝑡) = 𝐴𝑗𝑥𝑗(𝑡) + 𝐵𝑗𝑢𝑗(𝑡)

𝑦𝑗(𝑡) = 𝐶𝑗𝑥𝑗(𝑡)                  

𝑦(𝑡) = ∑ 𝜇𝑗(ξ(𝑡))𝑚
𝑗=1 𝑦𝑗(𝑡)    

 (7) 

 

Where �̇� denotes the vector of the state variable, y denotes the vector of the output variables, m is the number 

of sub-models, u denotes the control variables, 𝐴𝑗, 𝐵𝑗 and 𝐶𝑗 are the matrices associated with the sub-models. 

Weighting function 𝜇𝑗(ξ(𝑡)) ensure the transition between the sub-modes and contribute to the overall 

behavior of the nonlinear system.  

Where, 

 

{
∑ 𝜇𝑗(ξ(𝑡))𝑚

𝑗=1 𝑦𝑗(𝑡) = 1

0 ≤ 𝜇𝑗(ξ(𝑡)) ≤ 1, ∀𝑡 > 0
  (8) 

 

The global output of the multiple models is the weighted sum of the outputs of the sub-models. Each sub-

model therefore has its own state space and develops there independently of the control signal and its initial 

state. 

 

2.3.  Bank of Luenberger observers 

A Bank of observers design based on T-S fuzzy models will be utilized to estimate the fuzzy 

linearized variables and construct a residual space. Luenberger observers [21] are described by (9). 

 

{
�̇��̂�(𝑡) = ∑ 𝜇𝑗(ξ(𝑡))𝑚

𝑗=1 (𝐴𝑗𝑥𝑗(𝑡) + 𝐵𝑗𝑢𝑗(𝑡) + 𝐺𝑗𝑒𝑗(𝑡))

𝑦�̂�(𝑡) = 𝐶𝑗�̂�𝑗(𝑡)
 (9) 
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Where, 𝐺𝑗 denotes the observed matrix gain, �̇��̂�(𝑡) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 the estimation of the state vector, �̂� is the 

estimation of the output vector and 𝑒(𝑡) =  𝑥 − �̂� is the estimation error its dynamic is given by (10). 

 

�̇�(𝑡) = ∑ 𝜇𝑗(ξ(𝑡))𝑚
𝑗=1 (𝐴𝑗 − 𝐺𝑗𝐶𝑗𝑒(𝑡)) (10) 

 

According to Lyapunov’s theorem, (10) is asymptotically stable if there is a matrix P positive and the gain 

matrices 𝐺𝑗 verifying the following inequality: 

 

(𝐴𝑗 − 𝐺𝑗𝐶𝑗)  𝑇𝑃 + 𝑃(𝐴𝑗 − 𝐺𝑗𝐶𝑗) < 0 (11) 

 

linear matrix inequality (LMI) tool is used to resolve (11) [22]. 

 

2.4.  Process monitoring and diagnosis 

2.4.1. Squared prediction error 

The difference between the observed variables and their estimates helps as an indicator for 

determining the occurrence and severity of abnormal events. In the literature, numerous multivariate 

extensions of defect detection have been proposed. The univariate statistic SPE, generated from the error e(k) 

following a central Chi-squared distribution, is extremely important since it represents changes in the 

correlation structure of the measured variables. Box [6], stated the instant ‘k’ is given by (12) and (13). 

 

𝑆𝑃𝐸(𝑘) = 𝑒(𝑘) 𝑒(𝑘)𝑇 (12) 

 

𝑒(𝑘) = 𝑥(𝑡) − �̂�(𝑡) (13) 

 

During the offline phase, m local 𝑆𝑃𝐸𝑗 and 𝐿𝐶𝐿𝑗
(KDE)

 must be calculated in residual subspace for 

different operation sub-modes. In the online phase, the global SPE(k) (which is multimodal) detects the faults 

in residual space. The process is deemed in an abnormal operating state at the kth observation if the global 

SPE(k): 

 

𝑆𝑃𝐸(𝑘) > 𝐴𝐶𝐿(𝐾𝐷𝐸) (14) 

 

with 𝐴𝐶𝐿(𝐾𝐷𝐸) denotes the adaptive control limit to be associated with the global SPE(k). 

 

2.4.2. Adaptive control limit 

After determining the constants 𝐿𝐶𝐿𝑗
(KDE)

 of each 𝑆𝑃𝐸𝑗 and the probability rates of each operation 

sub-mode, an adaptive control limit may be computed using the formula as (15). 

 

𝐴𝑈𝐶𝐿 =  ∑ (𝐿𝐶𝐿𝑗
𝐾𝐷𝐸𝜌𝑗(𝑘)) , 𝑘 = 1,2, … , 𝑛𝑚

𝑗=1  (15) 

 

Where during normal operation mode: 

- 𝑚 is the number of Gaussian components that describe local operational sub-modes. 

- 𝜌𝑗 is the probability rate of jth sub-mode. 

- The local control limit utilizing the KDE of each sub-mode is represented by𝐿𝐶𝐿𝑗
(KDE)

, where n is the 

sample count is the local control limit using the KDE of each sub-mode. 

- n is the number of samples. 

 

2.4.3.  Local control limit by KDE 
KDE is an effective approach for estimating PDF [23]–[27]. For a sample matrix with n variables 

and l samples, the density function estimator may be expressed as (16). 

 

𝑔(𝑦, ℎ) =
1

𝑚ℎ
∑ 𝐾 [

(𝑥−𝑥𝑖)

ℎ
]𝑛

𝑖=1  (16) 

 

Where h  is the bandwidth statistic.  

The estimator K(.) is the Gaussian kernel function: 

 

𝑘(𝑥) = (2𝜋)
−𝑛

2 𝑒𝑥𝑝 (−
1

2
𝑥𝑇𝑥) (17) 
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The KDE tool calculates the PDF of the 𝑆𝑃𝐸𝑗  statistic. The local control limit 𝐿𝐶𝐿𝑗
(KDE)

 may be 

calculated from the PDF of the 𝑆𝑃𝐸𝑗 with α confidence level by solving (18). 

 

∫ 𝑃(𝑆𝑃𝐸𝑗) 𝑑𝑆𝑃𝐸𝑗 = 𝛼, 𝑗 = 1,2, … , 𝑚
𝐿𝐶𝐿𝑗

(KDE)

𝛼
.        (18) 

 

Where 𝑃(𝑆𝑃𝐸𝑗) denotes the PDF of the local 𝑆𝑃𝐸𝑗 (under normal operating data), α is the confidence limit. 

 

2.5.  Fault identification 

2.5.1. Contribution plots method 

For identifying a malfunction and determine which sensor has become faulty, the most traditional 

technique that has been applied extensively is the contribution plots. To determine which variable has an 

extreme contribution to the 𝑆𝑃𝐸𝑗, this technique is often based on the contribution rate of each variable as (19). 

 

𝑐𝑜𝑛𝑡𝐽
𝑆𝑃𝐸 = (𝑒𝑗(𝑘))2 = (𝑥𝑗(𝑘) − �̂�𝑗(𝑘))2 (19) 

 

2.5.2. Enhanced contribution plots 

In order to fill the gaps of the contribution graph method, which is based on the contribution rate 

calculated for each variable at a certain time k. When the fault sensor is detected, it may lead to errors in 

identifying the actual faulty variable as long as the localization is done at time k. Due to the peaks which are 

the residuals produced in the calculation of SPEj.  

The enhanced contribution plots are applied using the average value iteratively during the sensor 

fault period. The 𝐸𝑐𝑜𝑛𝑡𝐽
𝑆𝑃𝐸 (i) value indicates which variable has the highest average contribution to the 

SPEj, reflecting the present contribution. 𝐸𝑐𝑜𝑛𝑡𝐽
𝑆𝑃𝐸 (i) considers all prior contributions 𝑐𝑜𝑛𝑡𝐽

𝑆𝑃𝐸 (i-1) using 

an average calculation. These average contributions are calculated before and after the moment k (and at any 

time gives the same result) when the indicator SPE exceeds the adaptive control limit. 𝐸𝑐𝑜𝑛𝑡𝐽
𝑆𝑃𝐸 (i) can be 

obtained from the (20). 

 

𝐸𝑐𝑜𝑛𝑡𝐽
𝑆𝑃𝐸 (i) =

1

n−k
∑ 𝑐𝑜𝑛𝑡𝐽

𝑆𝑃𝐸 (i − 1)n
i=k−1  (20) 

 

The algorithm of the enhanced contribution plots is applied for each variable, the one that gradually increases 

is the erroneous variable. 

 

 

3. RESULTS AND DISCUSSION 

This section provides an evaluation of the proposed strategy to the below bioreactor, as well as some 

comments on the findings acquired to assess their efficacy. It is important to note that the monitored variables 

must be normalized such as each variable is centered and scaled by subtracting and dividing the 

mean/standard-deviation from/by each column, respectively, to ensure that the results are independent of the 

units used. The dynamic behaviour of the bioreactor may be represented using the following nonlinear 

model: 

 

{
�̇�(𝑡) = 𝐷(𝑡)(𝑆𝑖𝑛(𝑡) − 𝑆(𝑡)) − 𝑘 𝑟(𝑡)

�̇�(𝑡) = −𝐷(𝑡)𝑋(𝑡) + 𝑟(𝑡)
 (21) 

 

Where, 

- S(t) and X(t) are the concentration rates of the carbon substrate and that of the biomass. 

- D(t) > 0 is the dilution rate (A varied square wave signal with noise influence). 

- k is an efficiency coefficient. 

- Sin is the substrate feed concentration rate. 

- r(t) is the speed production of the biomass described by the following expression: 

𝑟(𝑡) =
𝜇𝑚𝑎𝑥𝑆(𝑡)𝑋(𝑡)

𝐾𝑠+𝑆(𝑡)
 (22) 

 

Where, 

- The maximal specific growth rate and the saturation constant are denoted by 𝜇𝑚𝑎𝑥 and 𝐾𝑠 , respectively. 

- In this simulation test μmax = 0.33h−1, Ks = 5 l−1, k = 20 and Sin(t) is square shaped with variable amplitude. 
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3.1. Multi-modelling of the monitored variables 

Under normal operating conditions, Figure 1 show the multi-modeling of the monitored variables, 

where the fuzzy linearized variables (Smm(t), Xmm(t)) and the real variables (SBio(t), XBio(t)) are plotted in 

Figure 1(a). The number of local linear sub-modes m=3 corresponds to the number of activation functions 

𝜇𝑗(ξ(𝑡)) in Figure 1(b), which reflect the weights belonging of the sub-models in the global model. Figure 2 

illustrates the fuzzy linearized variables (Smm(t), Xmm(t)) and their estimates (Sobs(t), Xobs(t)) using banks 

of Luenberger observers with m=3 local linear observers. It is apparent that the measured variables (SBio(t), 

XBio(t)) of the bioreactor have been correctly approximated. 

 

 

  
(a) (b) 

 

Figure 1. Multi-modelling of the monitored variables (a) estimated variables using T-S fuzzy model and  

(b) activation functions 𝜇𝑗(ξ(𝑡)) 

 

 

 
 

Figure 2. Estimated variables using Luenberger observers 

 

 

3.2. Process monitoring 

Figures 3 depict the filtered SPE linked to the ACL (confidence level 95%) where the Figure 3(a) 

shows the monitoring during normal operating conditions (no faults). To more reduce the false alarms, an 

exponentially weighted moving average (EWMA) is employed to filter the influence of outliers and noise. 

The filter is applied to the SPE inserts an important quality and completely eliminate the false alerts. As was 

mentioned in section 1 the proposed adaptive control limit like in [14] the threshold remains as a straight line, 

whilst our proposed strategy is based on the ACL not a straight line which gives a powerful contribution to 

the processes monitoring field. In the abnormal case, as shown in Figure 3(b), it can be observed, the SPE 

indicator surpasses its ACL at the time k=130 (the moment when the fault was inserted). 

The result shows the robust performance of the proposed strategy in the absence or presence of 

faults which produces few alarms (almost zero), fast, early, and safe in detection. Compared to conventional 

methods it is clear that when using ACL, the fault is easily, correctly, and quickly detected, because if there 
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was an upper control limit (straight line) and its value was considerable to avoid false alarms and the fault 

was drift type, the detection will be slow and delayed compared to our proposed ACL. 

 

 

  
(a) (b) 

 

Figure 3. Filtered SPE with ACL (a) during normal state and (b) under drift fault 

 

 

In the previous figure (Figure 3(b)), nothing can be concluded for identification, enhanced contribution plots 

technique is employed in below for completing the monitoring operation and discovering the defective 

variable. 

 

3.3. Fault identification 

Once a malfunction has been found, it is required to locate the defective sensor. According to the 

enhanced contribution plots version, as shown in Figure 4, the sensor’s highest contribution to the SPE is the 

defective sensor. The disadvantages of classical contribution plots were solved using an upgraded of 

contribution plots, as seen in the in Figure 4. 𝐸𝑐𝑜𝑛𝑡𝐽
𝑆𝑃𝐸 (i) can be accurately and quickly presented online as 

soon as any malfunction is discovered. The Figure 4 depicts the filtered SPE, which does not include any 

undesired peaks that might cause identification problems. 

 

 

 
 

Figure 4. Fault identification using enhanced contribution plots 

 

This study investigated the effects of unwanted peaks that cause false alarms in the monitoring and 

therefore may possibly cause identification problems, while earlier studies have explored the impact of false 

alarms. They could not eliminate it completely and they have not explicitly addressed its influence on the 

identification phase. We found that false alarms correlate with the unwanted peaks which come clearly from the 

residual space. The proposed method in this study tended to have a higher proportion of avoiding inordinately 

the unwanted peaks by an adaptive control limit. Our study suggests that higher unwanted peaks are not 

associated with the poor performance of FSC, the proposed method may benefit from increasing the number of 
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linear local models without adversely impacting the algorithm. This study explored a comprehensive model-

based monitoring. However, further and in-depth studies may be needed to confirm its performance on systems 

that have a high number of variables, especially regarding monitoring without behavioural models. Our study 

demonstrates that the model-based monitoring using adaptive control limits is more resilient than those that use 

a traditional threshold in which its value is made constant. Future studies may explore diagnosis under periodic 

non-steady conditions, with feasible ways of producing a useful adaptive control.  
 

 

4. CONCLUSION 

Our findings give clear proof that the phenomena of unwanted peaks can pose significant difficulty 

in accurately detecting and recognizing any aberrant operating mode. The provided observations suggest that 

our method has superior performance and is more efficient for processes monitoring and fault diagnosis, 

because traditional methods are sensitive to false alarms due to their constant threshold (a straight line), and 

the upper confidence limit is considered slow for fault detection because their upper value of the threshold, 

which is typically considered too large to avoid false alarms. Furthermore, the typical contribution plot 

approach for fault diagnosis is unreliable due to undesired peaks. So, as compared to traditional approaches, 

the ACL can reduce an excessive number of false alarms, and the abnormal event is identified as promptly 

and reliably as possible if the squared prediction error exceeds the adaptive threshold. Furthermore, an 

upgraded contribution plot approach is used to accurately identify the observed problematic variable, 

resulting in a higher diagnostic rate. 
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