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 Temperature control plays a crucial role in various industrial processes, 

ensuring optimal performance and product quality. The conventional 

approach to optimizing temperature controller parameters involves manual 
tuning, which can be time-consuming, labor-intensive, and often lacks 

precision. This paper introduces an innovative methodology for optimizing 

the parameters of a temperature controller by integrating statistical methods 

in the preparation of the experimental plan utilized by neural networks. The 
integration of statistical techniques in designing the experimental framework 

enhances the efficiency of data collection, providing a robust foundation for 

subsequent analysis. The neural network leverages this well-structured 

dataset to model and optimize the temperature controller parameters, 
resulting in improved precision and performance. The synergistic integration 

of statistical methods and neural networks not only streamlines the 

optimization process but also enhances the reliability of the temperature 

control system. The effectiveness of the proposed approach is demonstrated 
through case studies on the Procon level/flow and temperature 38-003 

process. The results show significant improvements in temperature control 

performance, with reduced process variability and faster response times. 
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1. INTRODUCTION 

In the realm of temperature regulation, achieving optimal parameter settings is crucial for efficient 

operation across diverse domains, spanning industrial processes to environmental control systems.  

The pursuit of precision and efficiency has driven researchers to explore innovative methodologies that blend 

the strengths of statistical techniques with the adaptability of neural networks. This paper delves into the 

integration of statistical methods and neural networks, presenting a synergistic approach aimed at optimizing 

temperature regulation parameters. 

Temperature regulation is a complex and dynamic process influenced by numerous factors, 

necessitating sophisticated optimization strategies to enhance performance and energy efficiency. 

Historically, the optimization of temperature controller parameters has relied heavily on manual tuning 

methods. Researchers and practitioners have dedicated efforts to refining heuristics and empirical approaches 

to strike a balance between performance and efficiency [1], [2]. Traditional statistical methods have long 

been employed to analyze and model temperature dynamics, providing valuable insights into system behavior 

and variability. However, their effectiveness may be limited by the intricate interdependencies inherent in 
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temperature control systems, especially in non-linear and multi-dimensional environments. Recent 

advancements in statistical approaches have seen an increased reliance on methods such as design of 

experiments (DoE) and response surface methodology (RSM) to systematically explore parameter spaces. 

These approaches offer structured methodologies for experimentation [3]-[5]. Concurrently, the integration 

of neural networks in process control has gained traction due to their ability to model complex relationships 

within datasets. Previous studies have showcased their efficacy in optimizing control parameters across 

various domains, demonstrating the potential for enhanced precision and adaptability [6]-[8]. By integrating 

neural networks with optimization algorithms such as particle swarm optimization (PSO) and 

backpropagation (BP), researchers can achieve improved control and parameter optimization outcomes [9]. 

Neural networks have been demonstrated to be effective in identifying and controlling nonlinear dynamical 

systems, showcasing their potential in enhancing temperature control system optimization [10]. Moreover, 

the integration of neural network-based model predictive control and inverse neural network control 

strategies with optimization based on neural network models has been successfully applied to controlling 

temperatures in various systems, such as batch crystallizers [11]. Gao and Chai [12] allow for the 

optimization of control strategies through neural networks, leading to enhanced temperature regulation. 

Additionally, the use of neural network optimization frameworks has been proposed to determine optimal 

weighting parameters for control systems under diverse working conditions, thereby improving the overall 

performance of the system. Aleksendrić et al. [13] optimized temperature-time curves for curing processes by 

utilizing dynamic artificial neural networks, highlighting the potential of neural networks in correlating 

temperature variables in composite materials. 

Hybrid optimization methodologies that integrate statistical methods and neural networks have 

gained attention in recent research endeavors. By combining the strengths of different optimization 

techniques, such as genetic algorithms (GA), second-order cone programming (SOCP), and artificial neural 

networks (ANN), researchers aim to enhance the efficiency of experimental design and the modeling 

capabilities of neural networks for improved performance in control optimization [10], [14], [15]. These 

hybrid approaches have shown promise in various fields, including the optimization of machining processes, 

material science, and power systems. Studies have reported the effectiveness and robustness of hybrid 

optimization methods in achieving global optimal solutions compared to traditional optimization approaches 

[16]-[18]. Furthermore, the integration of artificial neural networks with optimization algorithms has 

demonstrated success in multi-objective optimization tasks, leading to improved outcomes in complex 

processes like magnetic abrasive finishing and power system design [19]. Moreover, the application of hybrid 

optimization techniques extends to diverse domains such as transportation systems, vehicle architectures, and 

energy systems. Researchers have explored hybrid design methodologies for automated generation and 

optimization of vehicle architectures, powertrains, and renewable energy systems, showcasing the potential 

for enhanced performance and efficiency through integrated optimization strategies [20]-[25]. Overall, the 

emerging trend of hybrid optimization methodologies represents a significant advancement in the field of 

optimization, offering a synergistic approach that leverages the strengths of different techniques to address 

complex optimization challenges effectively. 

In light of the existing literature, our research proposes a new hybrid approach that integrates 

statistical knowledge with neural network capabilities. This comprehensive framework is developed for 

adaptively adjusting control parameters, considering dynamic environmental conditions and system 

constraints. By addressing the limitations of singular methodologies, this integration promises more efficient 

and precise optimization of temperature controller parameters, contributing significantly to the evolving 

landscape of temperature control optimization. 

The proposed approach offers several advantages over conventional methods, including improved 

accuracy, robustness to variations, and adaptability to diverse operating conditions. Moreover, by leveraging 

the vast amounts of data generated in modern temperature control systems, the integrated methodology 

facilitates continuous learning and refinement, enabling real-time adaptation to evolving environments. 

Through a series of case studies and simulations, the efficacy of the integrated approach is demonstrated 

across various applications, showcasing its potential to revolutionize temperature regulation optimization in 

practical settings. By bridging the gap between statistical methodologies and neural network paradigms, this 

paper paves the way for enhanced efficiency, sustainability, and performance in temperature control systems, 

ushering in a new era of intelligent regulation technology. 

 

 

2. METHOD 

We explore the hybridization of Modde 6 with neural networks, a widely used statistical modeling 

software, for the optimization of temperature controller parameters. This combined approach offers increased 

modeling power and the ability to capture complex relationships between control system variables. 

Subsequent sections of this paper delve into a comprehensive analysis of the fundamental 38-600 process, 
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employing a structured analysis and design technique (SADT) diagram. This analysis is followed by the 

different operations of Modde 6.0 and the implementation of our ANN-proportional integral derivative (PID). 

Experimental tests were conducted on the Feedback 38-003 Procon level and flow with temperature process [26] 

to validate the system's effectiveness. 

 

2.1.  SADT diagram of process 38-600 

The main function of our level (A0) is the temperature control and regulation of the secondary flow 

by PID control. The input variables include the temperature process servovalve signal (Sr), the secondary 

water flow (QMVv), a fixed signal, and the water quantity. The system control data represents power and 

water supply, manual control (MV2, MV) and the basic process servo valve (SVB). Our output variables 

consist of the set secondary water flow (Qr), temperature (T5), temperature display (T5), and the current 

signal, represented either as 4-20 mA on degrees as shown in Figure 1. 

 

 

 
 

Figure 1. SADT diagram of the A0 system 

 

 

2.2.  Operation of modde 6.0 

2.2.1. Design of experiments 

Modde 6.0 provides advanced functionalities for planning DoE, helping you design effective 

experiments for process optimization, identifying influential factors, and optimizing results. Here are the 

steps involved in using Modde 6.0 for experimental design planning: 

i. Selection of the experimental design type: Modde 6.0 offers various types of experimental designs.  

We employed fractional factorial designs (full fac (2 levels)). This design type reduces the number of 

required trials by evaluating only a fraction of the possible combinations of each factor’s levels. 

ii. Factor definition: the next step involves identifying the factors that influence the system being studied. 

In this case, the factors Ti, Td, and BP have been identified as inputs affecting the system. These factors 

are crucial for understanding the system’s behavior and optimizing the experimental outcomes. 

iii. Generation of the experimental plan: Modde 6.0 automates the generation of the experimental plan 

based on the input parameters provided. The experimental plan specifies the combinations of factor 

levels to be tested and any potential repetitions. By systematically laying out the experimental design, 

Modde 6.0 ensures that all relevant factors are considered, and the experimental process is structured for 

efficient data collection and analysis. The experimental plan will specify the combinations of factor 

levels to be tested and any potential repetitions as shown in Table 1. 

iv. Experiment execution: in this step, we carried out the experiments according to the plan generated by 

the process. 

 

2.2.2. The mathematical model 

The mathematical model obtained by Modde 6.0 from data analysis is a mathematical equation that 

predicts the value of the dependent variable Y as a function of the values of the independent variables Ti, Td, 

BP, and the regression coefficients b0, b1, b2, ... bn. The mathematical model is a linear equation of the 

form: 

 

𝑌 =  𝑏0 +  𝑏1𝑋1 +  𝑏2𝑋2 + . . . + 𝑏𝑛 ∗ 𝑋𝑛 (1) 
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for our system, after entering all the results into Modde 6.0 as shown in Table 2 through direct measurements 

in the process, we obtained the (2). 

 

𝑌 = 8, 71325 + 1, 3025 ∗ 𝑇𝑑 − 3, 2925 ∗ 𝑇𝑖 − 0, 54925 ∗ 𝑃𝑏 + 

0, 12 ∗ 𝑇𝑑 ∗ 𝑇𝑖 + 1,015 ∗ 𝑇𝑑 ∗ 𝑃𝑏 + 0, 5 ∗ 𝑇𝑖 ∗ 𝑃𝑏 (2) 

 

 

Table 1. Analyzing data using fit 
Generation of the experimental plan Experiment execution 

Temp derivation Temp d’integration bande passante temps d’execusion erreur 

10 20 3 13,57 0,1 

20 20 3 12,54 0 

10 30 3 4,38 0 

20 30 3 6,56 0 

10 30 4 4,04 0 

20 30 4 7,55 0 

10 30 5 4,36 0,1 

20 30 5 6,19 0,1 

15 25 4 6,47 0,1 

10 20 4 8,5 0,1 

20 20 4 14,26 0 

 

 

Table 2. The list of coefficients obtained for our system 
Temps d’execusion Coeff. SC Std. Err. P Conf. int () 

Constant 8,7132 0,64139 0,0053749 2,7596 

Td 1,3025 0,67608 0,19388 2,9089 

Ti -3,2925 0,67608 0,0396728 2,9089 

Pb -0,549 0,64139 0,482034 2,7596 

Td*Ti 0,12 0,67608 0,875472 2,9089 

Td*Pb 1,015 0,67608 0,2721 2,9089 

Ti*Pb 0,5 0,67608 0,536597 2,9089 

N=9; Q2 =-0,724; Cond. no.=1,118; DF=2; R2=0,939; Y-miss=0; R2 Adj.=0,758; RSD=1,9123; Conf. lev.=0,95 

 

 

2.2.3. Prediction 

Prediction is accomplished using statistical models or machine learning algorithms that have been 

previously built from training data. Here is a summary of the prediction process: 

i. Model construction: the input variables Ti, Td, and BP are selected, and the model parameters are 

adjusted using the training data. 

ii. Data feeding to the model: the prepared data is provided to the model as input. 

iii. Prediction calculation: the model utilizes the information provided by the input data to perform internal 

calculations and generate predictions on the target variable or desired outcome. This can be a 

continuous numerical value, a discrete category, or a probability. 

iv. Prediction evaluation: the predictions generated by the model are evaluated by comparing the predicted 

results with the actual or expected results. This allows for measuring the accuracy of the model and 

identifying any potential errors or inconsistencies. 

 

2.3.  The ANN-PID intelligent control approach 

The intelligent ANN-PID system presented here is grounded in an MLP neural network. It harnesses 

the gradient backpropagation algorithm to assimilate process characteristics. ANN-PID adeptly replicates the 

decision-making process of a human operator when configuring controller settings. After evaluating the 

predicted data, it is then employed by our ANN-PID by separating them into two tables: the first table 

contains inputs, which include the inputs (Ti, Td, and BP), and outputs, which contain the outputs (execution 

time and error). In our work, we wanted to test the NNStart tool, one of the tools available in MATLAB to 

facilitate the creation and training of neural networks. NNStart is a function in MATLAB that launches the 

neural network toolbox GUI. This graphical interface provides an interactive way to design, train, and 

simulate neural networks. It simplifies the process of creating and working with neural networks by offering 

a visual environment.  

This network imitates the pattern of an expert operator when he is adjusting the parameters of a 

control regulation for an industrial process. Therefore, this is a pattern recognition problem. To solve this 

problem, we use the database obtained previously by Modde 6.0. Algorithm 1 represents the algorithm used 

to learn this pattern. We chose the back-propagation training method. 
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Algorithm 1. The backpropagation training method 
Execute the training process using the backpropagation method 

Training process 

Initialize all elements of wi and also rand (-0.01, 0.01); 

Repeat 

Begin 

For all i 

Begin 

δwi = 0; 

end; 

For all instances (x,c) in S; 

Begin 

Calculate output: Pb%, td, ti for inputs: reference, error, time reset; 

12-For all i 

13-Begin 

δwi = δwi +ϵ×(c −0)×xi × ˙σx.w ; 

end ; 

end ; 

For all i 

Begin 

wi = wi +δwi ; 

end; 

end 

 

 

3. TEMPERATURE REGULATION EXPERIMENTS  

In this study, we first conducted the tests outlined in the Modde 6.0 experimental design to acquaint 

ourselves with the process and establish the database as shown in Table 3 for parameter tuning. 

Subsequently, we executed more than 50 additional tests to validate the values predicted, all while continuing 

to utilize Modde 6.0 for this purpose. Figure 2 illustrates the optimum value obtained by the PID of the ABB-

CM30 controller on the Procon level/flow and temperature 38-003 process [26] for inputs x equal to [Ti, Td, 

BP%]. In which, we have obtained outputs y equal to [reference value; error; response time value] without 

disturbance.  

For x=[4; 30; 4], PID gave y=[35; 0.1; 4.35]. The curve depicted in Figure 3 illustrates the optimal PID 

values attained for the ABB-CM30 controller in the presence of a disturbance. This disturbance involves 

activating the chiller for a duration of 30 seconds after achieving stabilization. Figure 4 illustrates the 

optimum value obtained by the PID of the ABB-CM30 controller with two disturbances by switching on the 

cooler several times, each time for 30 seconds after stabilization. 
 

 

Table 3. A subset of the database for testing temperature regulation 
Reference Start Bp (%) Ti Td Error Response time 

35 25 4 5 10 0 6,53 

35 25 4 20 10 0 8,11 

35 25 3 40 10 0,1 4,35 

35 25 5 30 10 0,1 4,36 

35 25 3 30 10 0 4,38 

 

 

 
 

Figure 2. Temperature regulation curve for a reference of 35° 
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Figure 3. Temperature regulation curve for a reference of 35° with a disturbance 

 

 

 
 

Figure 4. Temperature regulation curve for a reference of 35° with several disturbances 

 

 

4. IMPLEMENTATION AND VALIDATION OF THE ANN-PID SYSTEM 

The configuration that we choose to train our network with nnstart has a big influence on the aim or 

intended result. In order to determine the best results, we experimented with several setups. The training 

results curves as shown in Figures 5 and 6 illustrate our experimentation and the corresponding results. 

We simulated ANN-PID reasoning for inputs x equal to [reference value; error; response time value] 

in order to validate our network using nnstar. wherein we were able to acquire outputs y=[Ti, Td, BP%].  

The curves x=[35, 0.1, 1.42] and y=[26, 12.5] produced using ANN-PID without disruption are shown as 

shown in Figure 7. The value achieved by ANN-PID with two disturbances is shown in the following curve 

as shown in Figure 8 by turning on the cooler once for 30 seconds after stabilization. The value achieved by 

ANN-PID with two disturbances is shown in the following curve as shown in Figure 9, which is the result of 

turning on the cooler many times, each for 30 seconds after stabilization. 
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Figure 5. Network performance curve Figure 6. Network regression curve 

 

 

 
 

Figure 7. Temperature regulation curve for a reference of 35° using NNStart 

 

 

 
 

Figure 8. Temperature control curve for a 35° reference using NNStart with a single disturbance 
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Figure 9. Temperature control curve for a 35° reference using NNStart with several disturbances 

 

 

5. CONCLUSION  

The hybrid approach presented in this paper offers a compelling solution through the amalgamation 

of the strengths inherent in both Modde 6.0 and neural networks. Modde 6.0 provides an efficient 

methodology for exploring the parameter space and identifying optimal combinations, while minimizing the 

number of experiments required. The neural network, on the other hand, models and predicts system 

performance as a function of controller parameters, reducing the need for extensive testing on the real 

system. This makes the approach innovative and powerful. The method combines the modeling capabilities 

of neural networks with the structured and efficient methodology of Modde 6.0, delivering optimal results 

while saving time and resources. This hybrid approach has the potential to be applied in various fields where 

the optimization of temperature control parameters is essential, opening up new perspectives for the 

improvement of thermal systems and industrial systems. 
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