
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 35, No. 2, August 2024, pp. 1181~1190 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i2.pp1181-1190      1181 

 

Journal homepage: http://ijeecs.iaescore.com 

Optimizing wireless sensor networks using centrality metrics:  

a strategic approach 
 

 

Suneela Kallakunta, Alluri Sreenivas 

Department of Electrical, Electronics and Communication Engineering, GITAM (Deemed to be University), Visakhapatnam, India 
 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 13, 2024 

Revised Apr 2, 2024 

Accepted Apr 7, 2024 

 

 This research paper presents a methodology for improving wireless sensor 

network (WSN) performance by leveraging centrality measures, including 

degree, betweenness, closeness, eigenvector, and Katz centrality. Employing 
a random walk graph model, this study constructs networks with 30 and 50 

nodes to investigate the impact of these centrality metrics on routing 

decisions to optimize energy efficiency, minimize latency, and enhance 

overall network reliability. Additionally, the paper provides a comprehensive 
analysis of the relationships among these centrality measures through 

various correlation techniques, such as Pearson correlation, Kendall rank 

correlation, and Spearman correlation, offering insights into how these 

metrics can effectively improve WSN operations. 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) are advanced, flexible technologies widely used in different 

fields for effectively monitoring and gathering environmental information. These networks consist of many 

small, self-operating sensors spread over an area. These sensors return their data to a central location, a sink, 

or a base station. The collected data is then analysed thoroughly to help make well-informed decisions. The 

sensors in a WSN can detect a range of environmental factors, like temperature, humidity, movement, 

pressure, and pollution. After sensing these elements, the nodes process and send the data wirelessly to the 

central hub. This wireless feature makes WSNs adaptable and suitable for various settings and purposes [1]-[3]. 

However, running WSNs comes with its own set of challenges. Energy efficiency is one of the most 

significant issues since the sensors usually run on limited battery life. This has led to developing methods to 

identify key nodes that save energy and increase the network's life [4]-[6]. 

WSNs are utilized across diverse fields because they can monitor and collect data remotely. They 

serve various purposes, including environmental monitoring for tracking climate conditions, soil moisture, 

and pollution, which is critical for agriculture, forestry, and water management. In healthcare, WSNs enable 

remote patient monitoring by tracking vital signs and improving patient care outside traditional settings. They 

are also integral in industrial automation, enhancing efficiency and safety by monitoring machinery and 

processes. For home automation, these networks contribute to energy efficiency and security by controlling 

lighting, heating, and surveillance systems. In military applications, WSNs are valuable for surveillance and 

detecting threats without human risk. They assist in traffic control by managing the flow, detecting incidents, 

and informing drivers and traffic centers. WSNs are crucial in structural health monitoring, helping prevent 
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disasters by assessing the integrity of buildings and bridges. In agriculture, they optimize irrigation and 

increase crop yields by monitoring environmental conditions. Furthermore, they are essential in disaster 

management by providing early warnings for natural disasters and monitoring wildlife by tracking animals 

and their environments without disturbance, showcasing their extensive applicability and significance in 

modern technology and daily life [1], [3], [7]-[12]. 

Given the growing significance and wide-ranging applications of WSNs, this study aims to assess 

the efficacy of various centrality measures (degree, betweenness, closeness, eigenvector, and Katz centrality) 

in identifying key nodes. These nodes are characterized by their connectivity and strategic positioning within 

the network, which is essential for sustaining efficient communication pathways and ensuring the network's 

overall integrity [13]-[16]. This investigation focuses on reducing computational efforts compared to 

traditional optimization techniques within networks comprising 30 and 50 nodes. These networks were 

systematically constructed using a random walk graph model to further elucidate the interrelationships 

among the centrality measures above. The computational analysis was meticulously conducted utilizing 

Python programming, providing a robust platform for evaluating the network structures. To rigorously 

analyze the correlations among the centrality measures, statistical methodologies such as Pearson correlation, 

Kendall rank correlation, and Spearman correlation were employed. This analytical approach underpins a 

comprehensive framework for dissecting various structural aspects of WSNs, thereby facilitating an in-depth 

examination of the significance attributed to each node within these networks. 

 

 

2. RELATED WORK 

The WSNs field has seen significant advancements due to recent research contributions. One 

notable study by Mbiya et al. [6] presents an innovative routing algorithm utilizing centrality measures to 

optimize data paths within WSNs. This algorithm demonstrates a notable enhancement in network speed, 

energy efficiency, and fault tolerance compared to the conventional Dijkstra's algorithm. This research 

underscores the untapped potential of centrality measures in refining routing capabilities in sensor networks, 

marking a pivotal shift towards more intelligent network management solutions. Delving deeper into network 

structure optimization, Mazumdar et al. [17] examine clustering algorithms used within WSNs. Their 

research spans various approaches, including probabilistic, deterministic, and fuzzy logic methodologies, 

focusing on essential elements such as cluster head selection and formation. The findings stress the 

significance of advanced clustering in extending network life and conserving energy, particularly by 

addressing the notorious hotspot issue, thereby promoting more sustainable and efficient network 

architectures. Innovatively, Ahmad et al. [18] introduce a novel method employing social network analysis 

(SNA) for 3D localization within WSNs, utilizing closeness centrality (CC) to enhance accuracy while 

simultaneously reducing energy demands. This approach, which eliminates the need for node 

synchronization, signifies a significant leap in localization strategies, offering a blueprint for future high-

accuracy, low-energy demand solutions. Bloch et al. [19] investigation into centrality measures provides a 

detailed taxonomy and evaluation of various metrics, such as degree, closeness, and betweenness centrality 

(BC). Their comprehensive study sheds light on the practical application of these metrics in different 

contexts, reinforcing that proper selection of centrality measures can significantly impact the analysis and 

understanding of varied network types. The critical review by Sambo et al. [20] on optimized clustering 

algorithms underlines the integration of machine learning and computational intelligence to mitigate 

challenges such as energy consumption and network scalability. This meticulous evaluation guides 

researchers in selecting and implementing the most appropriate clustering strategies tailored to meet the 

specific needs of large WSNs. Exploring efficiency in network structure, Aditya et al. [21] propose a cutting-

edge algorithm for cluster head selection based on CC.  

This approach drastically improves network efficiency by enhancing energy usage and extending 

network lifespan, pivotal for maintaining seamless communication across extensive WSNs. The innovative 

CS-HiBet method discussed by Mahyar et al. [22], utilizing compressive sensing to identify nodes with high 

BC, presents an effective solution for key node detection in large-scale and undefined networks. This 

technique significantly improves traditional methods by optimizing the accuracy and efficiency of node 

identification without a complete understanding of the network’s topology. In the computational domain, 

Tuzcu and Arslan [23] explore the efficiency of centrality computations within diverse network 

environments. Their algorithm demonstrates versatility across different network sizes and settings, 

suggesting a transformative approach to calculating BC that could benefit various sectors. The studies by 

Ghanem et al. [24] and Shao et al. [25] delve into the dynamics of centrality metrics, examining their 

applications and correlations in evolving network scenarios. These investigations reveal the intricacies of 

centrality metrics and their adaptability, offering new perspectives on network analysis and the 

interconnectivity between different centrality measures. Lastly, the energy-aware routing strategy by  
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Li and Guan [26], leveraging local BC, addresses the paramount need for energy efficiency in WSNs. This 

approach represents a significant advancement over conventional routing techniques, promising enhanced 

network sustainability and longevity [26]. 

Collectively, these studies have significantly advanced WSNs, introducing routing algorithms that 

improve upon traditional methods in speed, energy efficiency, and fault tolerance using centrality measures. 

Further research has optimized network structures through advanced clustering techniques and employed 

social network analysis for more efficient 3D localization. These new ideas, along with others like 

compressive sensing for finding key nodes and energy-aware routing strategies, show how WSNs are 

changing, focusing on making them more efficient, environmentally friendly, and easier to manage. 

 

 

3. METHOD: STRATEGIC NODE IDENTIFICATION IN WSNs 

Identifying key nodes in WSNs using centrality involves several steps. First, construct the network 

graph: create a graphical representation of the WSN. This graph denotes each sensor as a node and each 

connection between sensors as an edge. This visual representation will serve as the basis for further analysis. 

Second, calculate centrality measures: for each node in the graph, compute key centrality measures. These 

measures help quantify the relative importance of each sensor node within the network. Third, rank the 

nodes: organize the sensor nodes in descending order based on their calculated centrality scores. Higher 

scores typically indicate a node's more significant influence within the network, highlighting those crucial for 

maintaining network communication and integrity. Fourth, consider energy constraints (optional): integrate 

energy efficiency considerations into the identification process. While nodes with high centrality are prime 

candidates for key roles, their energy consumption should be carefully managed. Evaluate the energy 

reserves and consumption patterns to ensure these influential nodes do not quickly exhaust their power, 

compromising network functionality. Finally, analyze the results: carefully examine and interpret the 

centrality data and energy considerations to pinpoint the most influential nodes within the WSN. 

Understanding these key nodes helps make informed network management, optimization, and maintenance 

decisions for enhanced performance and sustainability. 

 

 

4. CENTRALITY MEASURES IN WIRELESS SENSOR NETWORKS 

In this study, centrality methods in graph theory are used to identify key vertices. These methods 

include degree, betweenness, closeness, eigenvector, and Katz centrality [6], [7], [27]-[39]. They help in 

understanding the important role of each vertex in the network. 

 

4.1.  Degree centrality 

Degree centrality (DC) is an essential metric for evaluating the ability of a node to establish direct 

communication connections within a network. Nodes with a high DC in WSNs possess direct connections. 

These nodes act as central hubs, enabling efficient information dissemination and establishing essential 

connections throughout the network. These nodes, located in central positions, have a crucial function in real-

time applications by facilitating fast and dependable data transmission. This is particularly important for 

activities such as monitoring and emergency response. Moreover, their central position optimizes the stability 

of the network by offering alternative routes in the case of node or link failures. The ability to adjust and 

respond to changes in real-time enables continuous data transfer even in the event of unexpected 

interruptions, thereby improving the ability of networks with highly influential and interconnected nodes to 

withstand faults and recover quickly. The DC of a node vi is given by: 

 

𝐷𝐶 = 𝑒𝑖
𝑇𝐴𝑒 (1) 

 

where, A is the adjacency matrix of a network, 𝑒𝑖 is the ith standard basis vector (ith column of the identity 

matrix) and e is the vector of all entries one. 

 

4.2.  Betweenness centrality 

BC is an important measure that evaluates the importance of a node in a network by quantifying the 

frequency with which it appears on the shortest paths between other nodes. Nodes with high BC in WSNs 

strategically position themselves along multiple critical paths, pivotal in transmitting information and 

maintaining network connectivity. These nodes serve as crucial intermediaries, effectively directing and 

distributing data across the network, ensuring quick and reliable transmission. High BC nodes are essential in 

military surveillance and disaster management applications, where rapid data transfer is essential. Moreover, 

these nodes enhance network resilience and fault tolerance by dynamically adjusting to redirect information 
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in the event of failures, strengthening the network's ability to withstand unexpected challenges. The BC of a 

node v is given by: 

 

𝐵𝐶 (𝑣)  = ∑
𝜎𝑖𝑗(𝑣)

𝜎𝑖𝑗
𝑖≠𝑗  (2) 

 

where 𝜎𝑖𝑗(𝑣) is the number of shortest paths from node i to node j passing through v and 𝜎𝑖𝑗 is the number of 

shortest paths from node i to node j. 

 

4.3.  Closeness centrality 

CC is an essential metric to measure the efficiency of a node in quickly establishing connections 

with all other nodes in a network. Nodes with high CC in WSNs have shorter average path lengths to other 

nodes, making them efficient for distributing information and coordinating the network effectively. Nodes 

with high CC are essential in quickening the transfer of information within the network, enabling quick data 

exchange for efficient communication. This is particularly advantageous when there is a need for immediate 

data transmission, such as environmental monitoring and disaster response. Nodes with high CC are crucial 

in maintaining the network's resilience and effectiveness. They act as efficient intermediaries in situations 

where nodes or links fail. Their strategic positioning allows them to quickly connect with other nodes, 

ensuring uninterrupted communication even in unforeseen disruptions. Networks containing nodes with high 

CC display an increased ability to withstand faults and exhibit improved adaptability in overcoming 

unexpected obstacles. The CC of a node i is given by: 

 

𝐶𝐶(𝑖) =
𝑁−1

𝑒𝑖
𝑇𝐷𝑒

 (3) 

 

where N is the total number of nodes and D is the distance matrix. 

 

4.4.  Eigenvector centrality 

Eigenvector centrality (EVC)is a fundamental measure for assessing the influence of a node in a 

network, considering the influence of its neighboring nodes. Nodes in WSNs with high EVC exhibit robust 

connectivity and are closely associated with other nodes with significant influence. This dual characteristic 

enables them to influence the overall dynamics of the network significantly. Nodes with higher EVC are vital 

in transmitting information and coordinating activities within a network. They play a crucial role in 

facilitating fast data transmission and are essential for monitoring in real-time and responding to emergencies 

in WSNs applications. Moreover, nodes with high EVC contribute to the network's resilience and stability. 

Due to their central position and connections to other important nodes, they play a crucial role in 

coordinating during node or link failures. This ensures that data flow remains uninterrupted by creating 

alternative pathways for information to travel. The EVC of a node is given by: 

 

𝐸𝑉𝐶 = 𝑋𝑖 =
1

‖𝐴𝑋𝑖−1‖
𝐴𝑋𝑖−1, 𝑖 = 1,2,3, … (4) 

 

where 𝑋0 is the unit column matrix. 

 

4.5.  Katz centrality 

Katz centrality (KC) is a comprehensive measure considering both direct and indirect pathways 

between nodes in a network, surpassing other centrality measures by incorporating contributions from 

neighbors at varying distances. This approach provides more representative centrality scores, offering a 

nuanced evaluation of a node's significance. In WSNs, KC is valuable for quantifying sensor nodes' 

importance and influence. Accounting for indirect connections clarifies a node's role in data transfer and 

network dynamics, which is crucial in environmental monitoring and surveillance applications. Moreover, 

KC's adaptability allows for modification to suit the specific requirements of WSNs, offering a flexible tool 

for optimizing node evaluation based on network or application needs. This adaptability makes KC 

instrumental in identifying and highlighting influential nodes within a network. The KC of a node i is given 

by: 

𝐾𝐶 = (𝐼 − 𝛼𝐴)−1𝑒 (5) 

 

where I is an identity matrix of order n, 𝛼 is called the attenuation factor. Here, 𝛼 ∈ (0,
1

𝜆
), 𝜆 is principal 

eigenvalue of A. 
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5. RESULTS AND DISCUSSION 

To identify key nodes within WSNs through centrality measures, our analysis encompasses two 

scenarios: networks with 30 as shown in Figure 1 and 50 as shown in Figure 2 nodes, respectively. The 

generation of these WSNs employs a random walk graph model that involves simulating sensor node behaviors 

in a specific area to evaluate network connectivity and coverage. This setup can be done in a programming 

environment like Python. Start by defining the deployment area, the number of nodes, their communication 

range, and the steps for each random walk. Then, randomly distribute the sensor nodes across the area and 

establish initial connections based on their proximity and communication range. Perform random walks from 

each node, choosing adjacent nodes within range, and optionally record these paths. Analyze the network by 

checking how well the area is covered and how effectively the nodes are connected, making necessary 

adjustments to improve network performance. Implement data collection and routing protocols based on these 

findings. Visualize the network layout and the paths taken by the random walks to assess the structure and 

performance. Finally, the simulation will be run, the results will be reviewed for adequate coverage and 

connectivity, and iteratively adjust and enhance the network settings as needed [40], [41]. 

 

 

 
 

Figure 1. Graphical representation of a 30-node network generated by a random walk graph model 

 

 

In the analysis of network centralities based on initial configurations shown in Figure 1 for the 30-

node network and Figure 3 for the 50-node network, Figure 2 and Figure 4 display the centrality values 

calculated for these networks, respectively. Figure 2 sequentially illustrates the degree, betweenness, 

closeness, eigenvector, and Katz centrality values through subfigures 2(a) to 2(e) for the 30-node network. 

Similarly, Figure 4 follows with subfigures 4(a) to 4(e), each paralleling these measures for the more 

extensive 50-node network. Complementing these visual insights, Tables 1 and 2 list the top 10 nodes by 

centrality for the 30-node and 50-node networks, respectively, providing a ranked comparison of node 

significance based on the applied centrality metrics. 

 

5.1.  Correlation (Kendall, Pearson, Spearman) coefficient 

An in-depth examination of the correlations between centrality measures enhances our 

understanding of a network's structural dynamics. By delineating the intricate relationships among these 

measures, we gain profound insights into the network's topology, fostering informed strategies in network 

architecture and operational management. The correlation coefficient is a pivotal numerical index, 

encapsulating the degree and orientation of the interplay between paired centrality metrics [25], [42]. This 

coefficient, ranging from -1 to 1, delineates the strength and direction of their relationship: a positive 

correlation indicates a concurrent increase in both variables' rankings, whereas a negative correlation reveals 

an inverse relationship, where one variable's enhancement corresponds to the other's decline. 
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The magnitude of the correlation coefficient nears ±1, and the association between the variables 

intensifies, signifying robust interdependency. Conversely, a correlation coefficient nearing zero suggests a 

weaker linkage. We used Pearson, Kendall rank, and Spearman correlation to find the correlation coefficients 

between measures of centrality for networks with 30 and 50 nodes in our study. The derived outcomes are 

methodically presented in Tables 3 and 4, clearly visualizing the relationships explored. This improvement 

maintains the original content's intent while enhancing clarity, precision, and readability. It emphasizes the 

importance of understanding network structure through centrality measures and using correlation coefficients 

to assess their interrelationships. The outcomes of this analysis highlight the intricate and varied nature of 

centrality in WSNs. The discernible differences in central nodes across the two different network sizes 

illuminate how structural dimensions and network scale crucially sway centrality metrics, thereby influencing 

the flow and dynamics of network communication. Notably, the pronounced correlations between distinct 

centrality metrics in the more extensive network underscore the existence of nodes with critical roles across 

various facets of network communication. This interconnectivity underscores the complex nature of node 

centrality and its critical implications for network structuring and strategic planning. 

 

 

  
(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
(e) 

 

Figure 2. Graphical representation of centrality values in a 30-node network: (a) DC, (b) BC, (c) CC,  

(d) EVC, and (e) KC 
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Figure 3. Graphical representation of a 30-node network generated by a random walk graph model 

 

 

  
(a) 

 

(b) 
 

  
(c) 

 

(d) 
 

 
(e) 

 

Figure 4. Graphical representation of centrality values in a 50-node network; (a) DC, (b) BC, (c) CC,  

(d) EVC, and (e) KC 
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Table 1. Node rankings: network centrality metrics in a 30-node network 
Rank DC BC CC EVC KC 

1 9 9 7 4 7 

2 6 23 9 7 4 

3 17 14 28 10 9 

4 0 4 21 21 14 

5 4 0 4 14 10 

6 23 7 14 25 21 

7 7 5 0 9 28 

8 21 21 10 0 15 

9 14 28 23 23 0 

10 15 11 18 28 20 

 
 

Table 2. Node rankings: network centrality metrics in a 50-node network 
Rank DC BC CC EVC KC 

1 9 49 21 21 21 

2 21 21 42 42 42 

3 49 9 25 25 25 

4 10 10 9 9 9 

5 43 43 6 6 6 

6 28 28 0 26 26 

7 38 0 31 28 28 

8 47 38 2 10 10 

9 0 36 16 38 38 

10 7 47 10 16 16 

 

 

Table 3. Correlation coefficients among centrality values of 30-node network 
 DC BC CC EVC KC 

Pearson correlation 

DC - 0.805892 0.425893 0.471324 0.507036 

BC - - 0.551412 0.347126 0.532022 

CC - - - 0.941123 0.952870 

EVC - - - - 0.962984 

KC - - - - - 

Kendall rank correlation 

DC - 0.640996 0.419672 0.411895 0.441142 

BC - - 0.386528 0.347126 0.365517 

CC - - - 0.838253 0.847567 

EVC - - - - 0.843678 

KC - - - - - 

Spearman correlation 

DC - 0.783487 0.514175 0.509041 0.537859 

BC - - 0.553860 0.511902 0.514127 

CC - - - 0.948870 0.956668 

EVC - - - - 0.955951 

KC - - - - - 

 
 

Table 4. Correlation coefficients among centrality values of 50-node network 
 DC BC CC EVC KC 

Pearson correlation 

DC - 0.925835 0.597960 0.661690 0.662567 

BC - - 0.573357 0.629785 0.629384 

CC - - - 0.942604 0.943999 

EVC - - - - 0.999949 

KC - - - - - 

Kendall rank correlation 

DC - 0.754454 0.409574 0.447586 0.444195 

BC - - 0.380269 0.412245 0.410612 

CC - - - 0.797983 0.806304 

EVC - - - - 0.991837 

KC - - - - - 

Spearman correlation 

DC - 0.884583 0.553909 0.607291 0.605940 

BC - - 0.542626 0.586459 0.585882 

CC - - - 0.921632 0.925865 

EVC - - - - 0.999424 

KC - - - - - 
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6. CONCLUSION 

The research focuses on enhancing the performance of WSNs through various centrality measures, 

such as DC, BC, CC, EVC, and KC. The research examines how these metrics affect routing decisions in 

random walk graph model of networks with 30 and 50 nodes. The main goals are to make the networks more 

reliable, use less energy, and have less latency by identifying key nodes. The investigation employs 

correlation techniques like Pearson correlation, Kendall rank correlation, and Spearman correlation to 

analyze the complex connections between these centrality measures. The results reveal strong and consistent 

relationships between centrality measures, particularly noting strong positive correlations between CC, EVC, 

and KC observed in both experimental scenarios. These findings contribute valuable insights into the 

intricate structure of WSNs, providing a comprehensive understanding of how centrality measures can be 

strategically utilized to boost network efficiency and reliability. The novel approach proposed in this research 

has the potential to advance the field of WSNs, offering concrete applications and implications for improving 

the efficiency of WSNs in various scenarios. 
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