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 Thyroid diseases have developed into significant illnesses in recent decades. 

These diseases affect the thyroid glands and are caused by elevated thyroid 

hormone levels or infections in the thyroid organs. It is challenging to 

resolve thyroid diagnosis using conventional parametric and nonparametric 

statistical techniques since it can be viewed as a classification problem. 

However, there are certain barriers in the manner of obtaining both efficacy 

and accuracy in thyroid nodule diagnosis. Deep learning (DL) and machine 

learning (ML) models have emerged as useful instruments for the diagnosis 

of sickness in the modern era. For the purpose of diagnosing and classifying 

thyroid diseases, this research introduces a novel deep belief network (DBF) 

with transfer learning, known as DBNTL. In this study, the pre-processed 

image was first pre-processed using a conventional multiresolution bilateral 

technique, and then it was subjected to a novel segmentation technique 

called fusion pooling integrated U-net segmentation. The DBN with transfer 

learning model is used to classify and grade malignant thyroid nodules in 

compliance with thyroid imaging-reporting-and-data-system (TIRADS) 

guidelines. In this model, the model's weights are obtained by transfer 

learning. A major metric for evaluating the efficacy of biological image 

processing applications, good sensitivity and specificity (97.28 and 97.22, 

respectively) were obtained for the recommended modes. 
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1. INTRODUCTION 

The main Globally, the dominance of thyroid lumps has stayed rising annually due to rising life 

pressure. It is now among the most significant illnesses and poses a risk to public health. Consequently, it is 

critical to diagnose thyroid nodules as soon as possible. Thyroid nodule diagnosis is mostly achieved by 

aspiration biopsy, computed tomography (CT) scanning, ultrasound scanning, and pathological investigation. 

Nuclear scanning, which is costly and dangerous to people, is necessary for CT exams. Although 

pathological inspection and needle biopsy are more often employed and trustworthy techniques, they both 

cause significant damage to thyroid tissue. They also have a laborious diagnosing process, which uses up 

more medical resources. The most prevalent imaging technique used to diagnose thyroid disorders is now 

ultrasound. Its benefits include little cost, rapidity, non-invasiveness, minimalism, and remarkable 
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reproducibility. Medical professionals typically rely on extremely subjective and readily influenced clinical 

experience to determine what is benign and malignant. It is therefore becoming more and more critical to be 

able to recognise and diagnose the pathology of ultrasound-identified thyroid nodules quickly and properly [1]. 

Solid, cystic, or mixed lesions can all be seen on ultrasounds of nodules. Malignancy is quite likely 

in single solid nodules. Whereas pure cystic nodules have a lower risk of malignancy, mixed nodules are still 

susceptible to it. Ten percent of calcified nodules have the potential to be cancer. The score from the thyroid 

imaging-reporting-and-data-system (TIRADS) [2] is utilized to categorized thyroid nodules. Founded on 

features of ultrasonography, TIRADS is a standardised thyroid risk classification approach for thyroid 

lesions. The threat of cancer, which is based on the quantity of suspicious ultrasonography characteristics, is 

the foundation of TIRADS classifications. TIRADS-2, TIRADS-3, TIRADS-4a, TIRADS-4b TIRADS-4c, in 

addition TIRADS-5 are the categorisations of TIRADS-related disorders. 

Computer-aided design (CAD) systems are designed to help radiologists quickly assess information 

from medical imaging for accurate diagnosis and detection, as well as to help interpret ultrasound pictures of 

thyroid nodules. As such, to give sufficient information for an accurate assessment of thyroid nodules, CAD [3] 

systems with TIRADS score that are capable of detecting and classifying thyroid nodules into several stages 

of malignancy are required. Multi-class picture categorization is improved by recent developments in deep 

learning. So, in this paper we suggested unique way for ordering of thyroid lumps. 

The structure and contribution of the paper is as follows: 

− Fusion pooling integrated U-Net segmentation (FPIU-Net) of thyroid nodules is shown together with the 

pre-processing. 

− Transfer learning is used to build weights in the model by sending these extracted features to the 

suggested DBNTL technique. 

− Section 3 then provides a description of the experimental outcomes. The last section of the presentation is 

the conclusions. 

 

 

2. LITERATURE SURVEY 

Chu et al. [4] suggested an ultrasound deep network segmentation method for the diagnosis of 

thyroid nodules in 2021. The results of the ultrasonography thyroid nodules were incomplete; therefore, 

during the diagnosis process, the segmentation output and the doctor's prepared data were combined. The 

CNN-based U-net model is necessary for this kind of nodule segmentation. As a result, the performance of 

the proposed model in improving the accuracy of thyroid nodule segmentation is well-acted upon by the U-

net model. Table 1 summarized work done till now in thyroid lump classification. A novel multimodal 

domain adaptation technique known as SCGAN was identified in 2022 by [5]. It employed cross-domain 

mutual coalition of nodule images. 

They employed an individual attention strategy for learning through competition between concurrent 

domains in order to get beyond visual variances among modal data and maintain the domain consistency that 

defined the retrieved semantic features. DL was proposed as a new diagnostic paradigm in 2023 by Fresilli et 

al. [6]. Localization-classification diagnostics is the diagnostic method employed by the system. The 

distribution criteria controlling nodule size and nodular aspect ratio were initially established a priori for 

networks using a multi-scale localization architecture. The placement results were used to construct the 

overall nodule aspect ratio. A joint-training CNN for the identification of thyroid nodules in ultrasound 

images was presented by Tang et al. [7]. Because Fast R-CNN is so good at detecting natural targets, they 

adopted it as our foundation. The module's attention mechanism was incorporated to enhance dynamic 

features in both spatial and channel dimensions, thereby augmenting representational power and mitigating 

network noise. Furthermore, they employ a novel technique known as joint training annotations, which 

increases the sensitivity to tiny nodules during training, by using the FFG area encompassing the nodule as an 

additional spatial prior constraint to label the collection of training data. 

 

 

Table 1. Summary of thyroid lump classification by artificial intelligence 
Source Classifier Architecture Layers Sensitivity Specificity Accuracy AUC 

[8] ResNet-50 Darknet-19 50.19 93.40% 86.10% 92.60% 0.947% 
[9] Elastic net Elastic Net NA 90.07% 94.90% 96.70% 0.954% 

[10] Google net ANN, SVM 3 99.10% 93.90 98.29% NA 

[11] Bi-LSTM Bi-LSTM 3 0.939% NA 0.8618% 0.9361% 
[12] VGG16, ResNet50 Res-Net50 50 NA 85.20% 0.83% 89.20% 
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3. METHOD 

The Figure 1 shows the proposed method for new segmentation and classification task. Here we 

have used two types of datasets. The fusion-based segmentation method used followed by preprocessing by 

boosted winner filter. The segmented image is given for feature extraction using Inception V3+ Google Net 

method. Lastly classification done with transfer leaning strategy. 

 

 

 
 

Figure 1. Overall flow of proposed methodology 
 

 

3.1.  Pre-processing 

Taking into account the two datasets, digital database of thyroid ultrasound images (DDTI) and 

Dataset 2 (manually collected), where the input image is represented as Im. Initially, the image Im is pre-

processed to provide a denoised image suitable for subsequent processing. A certain amount of noise may 

occur during the image's capture and transfer, which alters the image's visual effects by causing random spots 

of light or dark noise. This work uses the multi-resolution bilateral technique to eliminate the undesirable 

noise from the image [13]. According to this architecture, the input signal is divided into frequency subbands. 

By applying the bilateral filter to the approximate subband during reconstruction, low frequency noise 

components are reduced. When compared to a bilateral filter of type single-level, this drop is advantageous to 

a multiresolution bilateral filter. 

This design consists of two primary phases. In the first phase, the bilateral filter's ideal parameter 

selection is examined, and in the second, the bilateral filter is extended: when using a wavelet filter bank, an 

image's approximation subband is subjected to the bilateral filter of multiresolution. This concept produces 

an efficient denoising image framework when combined with wavelet thresholding, which removes noise 

from the provided medical ultrasound image. 

 

3.2.  Fusion pooling integrated U-Net segmentation 

The ultrasonic image is first cleaned up by applying a median filter to eliminate paper noise and salt. 

We use this pre-processed image as input for our segmentation block. This image undergoes use of the 
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modified U-net segmentation technique [14], [15]. Our innovative segmentation method's flow is illustrated 

from input image to segmentation in the accompanying Figure 2. In this improved segmentation method 

instead of using Max-pooling we have considered mixed pooling and mathematical significance of mixed 

pooling is explained in (1). 
 

 

 
 

Figure 2. Proposed method for thyroid lump segmentation 

 

 

Localization tasks are successfully completed by sliding window method on all training datasets. 

Each pixel is assigned a unique class identification after receiving a local patch. However, there are two main 

issues with this design. Overall, there is a significant degree of redundancy due to the overlapping patches. 

Second, it took a long time and a lot of resources to complete the training procedure. The architecture was 

unusable for many applications because of these features. It is U-Net that resolves these two concerns [16]. 

A network of encoders is used in the method. In this encoder network, there are four encoder blocks. 

There are two convolutional layers after a leaky rectified linear unit (ReLU) activation function, each with a 

3×3 kernel dimension and appropriate padding. This is fed into a mixed pooling layer using a 2×2 kernel 

dimension. The mixed pooling layer lowers the learned spatial dimensions and cuts the computational cost of 

training the model by half. According to the (1), fusion pooling integrated U-Net (FPIU-Net): 

 

𝐹𝑢𝑠𝑖𝑜𝑛  𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = 𝜂 .  𝑚𝑎𝑥  (𝑎,𝑏)𝜖𝐴𝑖,𝑗     
𝐼𝑃𝑘𝑎𝑏

+ (1 − 𝜂).  
1

|𝐴𝑖,𝑗| 
∑ 𝐼𝑃𝑘𝑎𝑏(𝑎,𝑏)𝜖𝐴𝑖,𝑗   

 (1) 
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where, 𝐼𝑃(𝑖,𝑗)
 is the pixel significance of i-th row and j-th column of image 𝐼𝑝, 𝜂 signifies arbitrary value in the 

interval [0, 1], |𝐴𝑖,𝑗| is the pooling area dimension, and m and n are the width and height of the image 𝐼𝑝, 

correspondingly [17]. 

The bottleneck layer is located between the networks for encoders and decoders. As can be seen in 

the diagram up top, this is the bottom layer. It has two convolutional layers and then leaky ReLU. The final 

feature map representation comes out of the bottleneck. The expanding network is yet another name for the 

decoder network. Our plan is to up sample our feature maps to the size of our image [18]. 

This unit is composed of four decoder blocks. Each block starts with a transpose convolution, shown 

in the image as up-conv, with a 3×3 kernel size. Joining this output to the appropriate encoder block skip 

layer connection is the process of concatenating. Once twin convolutional layers with a 3×3 kernel size are 

employed, a leaky ReLU-activation utility is operational. U-Net can be enhanced by combining multi-scale 

feature information. The feature map data from the feature withdrawal stage is gathered in the up-sampling 

step. The segmentation experiment's main network structure in this study is a U-Net network as experience 

indicates that it can function better even with little data sets. 

 

3.3.  Enhanced DBNTL classification 

The characteristics were then fed into the hybrid classification-based nodule classification model 

after the feature extraction and data augmentation process for the dataset DDTI. One popular energy-related 

technique is the restricted Boltzmann machine (RBM). A bipartite graph is considered. The top layer is called 

the visible layer, while the bottom layer is called the concealed layer. The nodes, also known as random 

binary parameters, are applied from 0 to 1. The Boltzmann distribution is simultaneously filled by the entire 

probability distribution (ϑ, ℎ). In (2) presents the energy function of the RBM technique, which is converted 

into free energy. In (3) illustrates how the Boltzmann distribution and configured power are used to calculate 

the created joint probability distribution [19]. 

For example, in (4) and (5) are conditionally autonomous since no link is established between the 

nodes in each layer. This means that in (6) and (7) are also conditionally autonomous, which is why ℎ is 

reached by 𝑝(ℎ|ϑ). Similarly, ℏ achieves ϑ ′ of the visible layer by extending the parameters to make ϑ and ϑ ′ 

symmetric. Here, ℎ is represented as the attributes of the input data [20], [21]. 

If the visibility layer ϑ is supplied as per (8), the probability associated with the 𝑗 𝑡ℎ node of the 

hidden layer is between 1 and 0. Similarly, if the hidden layer is represented in (9), there is a chance that the 

𝑖th node in the visible layer is 1 or 0. Next, the free energy function is expressed in terms of a set of samples 

that meet the requirements of an independent and comparable distribution: 𝐷=~ϑ1, ϑ2, ϑ3,..., ϑn}. The 

characteristics 𝜃={X, 𝑎, 𝑏} must be learned, and the RBM Log‐likelihood gradient. In this case, ϑ and ℏ are 

defined as visible and concealed unit, respectively. The relationship weight between the visible and hidden 

layers is represented by 𝑊, the bias of the visible layer's neurons is shown by 𝑏′, and the relevant hidden 

layer bias is shown by 𝑐′ [22]. The energy calculated by the RBM network is shown as follows from the set 

of states (ϑ, ℏ): 
 

𝐸(ϑ, ℎ) = −𝑏′ϑ − 𝑐′ϑ − ℎ′𝑋ϑ, (2) 
 

𝐹(ϑ, ℎ ) = −𝑏′ϑ − ∑  log ∑ 𝑒
ℎ𝑖(𝑐

𝑖+𝑋𝑖𝑒𝑐𝑖+𝑋𝑖ϑ)
ℎ𝑖𝑖  (3) 

 

the variable of RBM is denoted by 𝜃 = {X, 𝑏′}, 𝑐′}. The joint probability density distribution of (ϑ, ℏ) can be 

achieved if the parameters are measured in accordance with the energy function: 
 

𝑃(ϑ, ℎ) =
1

𝑧(𝜃)
exp(−𝐸(ϑ, ℎ)) (4) 

 

=
1

𝑧(𝜃)
∏ 𝑒

𝑋𝑖𝑗𝑣𝑖ℎ𝑗  ∏ 𝑒
𝑏𝑖𝑗ϑ𝑖𝑖    ∏ 𝑒𝑐𝑗ℎ𝑗

𝑖   𝑖𝑗   

 

wherever the energy total is possible, the normalization factor is defined by (𝜃). It is created by categorizing 

the total energy sum of all possible states and the energy of a given condition as follows: 
 

𝑧(𝜃) = ∑ exp(−𝐸(ϑ, ℎ)) ,ℎ,ϑ  (5) 

 

𝑝(ℎ|ϑ) = ∏ 𝑝(ℎ𝑖|ϑ),𝑖  (6) 
 

𝑝(ℎ|ϑ) = ∏ 𝑝(ϑ𝑗|ℎ),𝑖  (7) 
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then, possibility of activation of 𝑗 𝑖ℎ hidden unit is: 
 

𝑝(ℎ𝑖 = 1|ϑ) =
𝑒𝑐𝑖+𝑋𝑖ϑ

1+𝑒𝑐𝑖+𝑋𝑖ϑ = 𝜎(𝑐𝑖 + 𝑋𝑖ϑ) (8) 

the activation probability of the 𝑗𝑡™ visible unit is defined as follows: as the architecture of RBM is uniform, 

the state of the hidden unit is represented and all visible unit activation states are autonomous [23]. 

 

𝑝(ℎ𝑖 = 1|ϑ) = 𝜎(𝑏𝑗 + 𝑋𝑗
′ℎ) (9) 

 

In (7) and (8) clearly show that 𝑐𝑖 and 𝑏𝑖 are related bias scores. 

 

𝐹(ϑ) = −𝑏′ϑ − ∑ (log (1 + 𝑒(𝑐𝑖+𝑋𝑖ϑ))𝑖  (10) 

 

The accurate in-depth features of real data are achieved by superposing a multilayer RBM, which is 

known as the DBN. A DBN's structure is implied by Figure 3. Subsequently, the weight is achieved through 

the utilization of the unsupervised greedy algorithm (GA) [23], [24]. Variables are used to train RBM at the 

beginning. Subsequently, the GA is applied to achieve the desired weight without supervision. Variables are 

used to train RBM at the beginning. The variables of the first layer of RBM are then trained layer by layer, 

with the outcome of the unseen layer serving as input for both the first and second layers of RBM [25], [26]. 

Furthermore, the resulting hidden layer has been connected to the Softmax regression classification, and the 

gradient descent (GD) technique is used for fine-tuning (FT). Figure 3 shows the structure of DBL+ Transfer 

learning. 
 

 

 
 

Figure 3. Technique for DBL+transfer learning 

 

 

4. RESULT AND DISSCUSSION 
The new fusion-based segmentation method gives satisfactory output which is input to our proposed 

classification strategy. The DBNAAF work has been thoroughly addressed for the classification of TIRDAS 

score based on the examination of other measures. Additionally, the DBNAAF is calculated using the DDTI 

dataset and dataset2 in conjunction with the deep convolutional neural network (DCNN), you only look once 

v3 dense multireceptive fields (YOLOV3-DMRF), DBN, bidirectional gated recurrent unit (Bi-GRU), deep 

maxout, and recurrent neural network (RNN). Our proposed DBNAAF performance is excellent in term of 

sensitivity, specificity and NPV parameters. Moreover, it not gives good result in binary classification, it also 

gives good accuracy for multiclass classification. 

Table 2 elaborate how our proposed method outperforms satisfactory for all performance metrics. 

Our proposed method compared with conventional and popular methods with all necessary quality measures. 

Bi-GRU and DCNN performs well but for all parameter except precision. But our proposed methods give 

excellent outcome in all parameters. 

Figure 4 shows graphical analysis shows how our proposed DBNTL classification technic has good 

outcome well by comparison with popular conventional methods. DBN and Bi-GRU performs well in 

accuracy and specificity but sensitivity is not good. But our proposed methodology gives good result in all 

performance parameters.  
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Table 2. Performance analysis of proposed DBNTL+FPIU-Net method with conventional methods 
Parameter DBN RNN YOLOv3-DMRF DEEP-MAXOUT DCNN Bi-GRU Proposed DBNTL 

Sensitivity 88.94 89.01 86.31 86.70 86.85 87.00 97.28 
Specificity 89.63 88.20 86.22 87.49 87.82 87.54 97.22 

NPV 89.21 90.23 90.89 90.67 90.34 90.32 98.00 

Accuracy 92.23 92.00 90.53 92.83 91.91 91.33 99.64 
Precision 85.60 87.65 88.09 86.89 88.26 86.37 97.10 

 

 

 
 

Figure 4. Graphical analysis of all methods with selected quality measures 

 

 

5. CONCLUSION 

In order to identify and categories thyroid nodules, this study presented a novel DBA based deep 

learning assisted multi-classification method. The bilateral multiresolution technique was used to get a crisp 

image by removing the speckle noise. The collection of segments was then acquired using segmentation 

based on FPIU-Net. These segmentate image has been given to proposed DBNTL classifier to classify 

thyroid nodules. The experimental result shows that our proposed model give good outcome as compared to 

sate of art methodology. The proposed model got 97.28, 97.22, 98.00, 99.64, 97.10, sensitivity, specificity, 

NPV, accuracy, precision respectively. Radiologists can avoid misdiagnosis due to overwork by using our 

proposed CAD approach as a trustworthy second opinion. Moreover, it might provide valuable 

recommendations for junior radiologists who lack sufficient clinical experience. 
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