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 Though a myriad of changes take place in a software system during 

maintenance, behavioral changes carry the bulk of the reasons for software 

modifications. In assessing the impact of the changes made in the software, 

static source code analysis can be a little complex depending on the reason 

for the expedition. Despite the works done so far, little focus has been 

directed on the potential of changed methods during static source code 

analysis, in assessing the impact of the changes made in software. This study 

investigates a method-level static source code analysis technique that would 

generate information on the methods affected by changes made in the 

software. The work analyzed three Java projects. The results indicate an 

improvement in leveraging on the knowledge of edited methods in change 

impact assessment during regression testing. The approach enhances code 

review efforts in light of assessing operational behavior impacted by the 

changes made. 
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1. INTRODUCTION 

Static source code analysis is a quality assurance measure used in examining a program’s source 

code without executing the program [1]. The goal of the various static source code analysis tools varies based 

on the objective of analysis they are expected to perform [2] and the programming languages they support [3]. 

Among the objectives of static source code analysis, first is control flow analysis, that examines the sequence 

of instructions executed in a program to identify potential defects [4]. Second, data flow analysis that 

examines how data is flowing through a program to identify faults such as uninitialized variables,  

null pointers, and buffer overflows [4]–[7]. Third, code review that involves a manual inspection of the 

source code by a team of expert programmers to unearth logic errors, syntax flaws, and security 

vulnerabilities among others [8], [9]. Fourth, code metrics analysis measuring various characteristics of the 

code such as complexity, coupling, and cohesion [10], [11]. The fifth approach proposed in previous research 

is pattern-matching techniques that examines the code to identify issues like violation to coding standards 

and best-practices, that have the potential of introducing defects in the code [12]–[14]. All these five 

approaches have one thing in common: identification of potential defects in the program. 

Although static source code analysis has received significant attention for decades, there is little 

empirical evidence on method-level analysis geared towards assessing the impact of the changes made on the 

software. From the literature searches, no research has applied the method-level static source code analysis in 
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assessing the impact of the changes made to a software’s operational behavior. It is this motivation that 

compels this study to investigate the possible usage of method-level static source code analysis in revealing 

method-level change knowledge that would expose the system’s behavior affected by the changes made in a 

software system. 

Method-level source code analysis is a variant of targeted source code analysis approach. Using 

targeted code analysis [15], code sections that require special attention can be identified and a retrieval of key 

code targets information [16] can ease the process of mapping tests to target code sections. Alterations in a 

code block that has been modified can also be uncovered [17]. At the method level, an analysis of the 

changes made to individual methods is done to assess the quality of the changes made in the system [18]. 

Recent research shows a significant increase into the development of automated tools for static source code 

analysis like FindBugs [3] and extract method feature [19]. Both extract method refactoring and composite 

method refactoring [20] tools, help improve program understandability and comprehension supported by an 

empirical study on the characteristics of method extractions in Java [21]. 

Software developers prefer source code information on method levels in code analysis tasks [22]. 

CodeTracker in [23] presents an approach of tracking the history of software code commits by generating 

commit histories for methods and variables. Its usage is in the raw examination of commit histories for given 

methods or variables. The user has to input the method or variable of interest. A recent study by [22] 

explored the practicality of studying the changes made in a method laying the more emphasis on the value of 

changed methods in light of examining the overall impact of changes made on the system’s functionality. 

However, their approach was based on the user’s input of a particular method to study the changes that have 

taken place on a given method after several code commits affecting the method. 

Other than focusing on expertscode analysis issues, upcoming industry practitioners on trainings for 

writing good computer programs stand to benefit [24] on the issue of method-level source code analysis.  

In most cases, software systems grow by adding new methods and editing of the existing methods [25]. Also, 

maintenance tasks involve correcting errors generated by faults introduced in the functionality modifications. 

To understand the complexity of a change, we can investigate the number of unedited methods that rely on 

the logic of edited methods that implicitly induces a change in the unedited methods. Also, knowledge of 

edited methods boosts code review activities [26] in the software development industry. Decomposing source 

code into function-level partitions [27] allows developers  to investigate the code at the function level.  

An Android malware detection tool leverages on method-level correlation relationship of application’s API 

calls makes use of the behavior of the software in various calls in exposing malicious activities in the API [28]. 

 

 

2. METHOD 

In this study, three programs were sampled for investigation. The first program was the prototype 

developed for data gathering through the static analysis of the source code. The prototype mimics a 

continuous software development scenario where changes are committed on a daily basis. The study also 

used JSoup version 1.15.4 and version 1.15.3, and Univocity parser version 2.8.4 and version 2.8.3 in the 

experiments. Both JSoup and Univocity parser programs are open-source products available in github public 

repository and accessible under Eclipse Public License. JSoup and Univocity parser samples were 

downloaded on 14th December 2023. These three program samples were chosen to represent practical 

situations in the software industry where programs are changed for various reasons. 

A software system was defined as consisting of a chunk of behavior denoted as a set of methods. 

Using basic notations, this research defined a program, P as: 

 A set of classes forming P: C – {c1, c2, c3, …} 

 Each class consists of a set of methods CxM  – {cxm1, cxm2, cxm3, …} 

 A set of methods M forming P: CM – {CxMn} where x refers to a specific class and n refers to a specific 

method in the given class. 

 Hence the program P was defined as a set of methods: M – {m1, m2, m3, …} 

When the software behavior changes, the changes are implemented in a method. The attributes of a 

class may also change. However, a change in the class attributes will be reflected in the methods where the 

variables are utilized. Following the system definition properties above, a change in the software system can 

be shown as a change in a set of methods denoted as M’. M’ is further defined as M’ – {C’xM’n }  where C’x 

refers to a changed class and M’x refers to a changed method in the class. 

The study took two versions of a software source codes as input the modified version of the 

software and the presumed original version of the software. To perform the method level analysis, the study 

first cloned the repository containing the earliest program version and the one with the latest edits in a private 

working space. The study then carried the analysis process to extract edited methods, new methods and the 
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unedited methods associated with the edited methods. The study presents algorithms for extracting target 

methods from the source code. The algorithms use Java syntax for method definition in extracting the target 

methods. 

 

2.1.  Identification of changed classes and newly added classes 

The study generates a checksum for the original and the edited versions of classes. The 

identification involves a differencing technique. Where the binary checksums for the changed class and the 

original class differ, the changed class is marked for further analysis. The changed class files and the new 

class files form the list of candidate classes for further analysis [29]. In cases where no class was edited or 

added, there is no proceeding with further analysis as this a good conclusion that no system behavior was 

modified. 

 

2.2.  Extraction of changed methods and new methods 

From the pool of the new and changed class files, changed methods in each class were identified. 

The changed methods here include new methods in the edited classes. To keep track of the extracted 

methods, the algorithm creates method files from both the edited/and new classes and the old classes. A 

comparison of the two set of method files was made to identify the changed methods and the new methods 

thereby generating a list of all the edited methods. Also, an extract of all the methods in the new classes was 

made. The two lists formed one large list of changed methods that was an indication of the possible 

percentage level of change on the software’s behavior implemented in the new system. The extraction of 

changed methods and new methods can be seen in Algorithms 1 and 2. 

 

Algorithm 1. Extracting changed methods 
Input:   Input original program version (V) and edited program version (V’)  

Output:  List of edited methods 

Step 1: Create method files for each method in V, V (m) 

Step 2: Create method files for each method in V’, V’ (m) 

Step 3: For each method m’ in V’(m)  

Step 4:       search match m in V(m) 

Step 5:        if m’ has changed  

Step 6:       M’ ← Add method m’ 

Step 7: end for 

Step 8: return M’ 

 

Algorithm 2. Extracting new methods 
Input:   Input original program version (V) and edited program version (V’)  

Output:  List of newly added methods 

Step 1: get methods in V, V (m) 

Step 2: get methods in V’, V’ (m) 

Step 3: For each method m’ in V’(m)  

Step 4:       if no matching method m in V(m) 

Step 6:       Mnew ← Add method m’ 

Step 7: end for 

Step 8: return Mnew 

 

2.3.  Extraction of unedited methods associated with changed methods 

For each of the edited method, the research established all the methods in the system calling it. 

These were the associated methods. Some edited methods would be associated with other edited methods or 

with non-edited methods in the program. The study generated a distinct list of the unedited methods 

associated with the edited methods, can be seen in Algorithm 3. 

 

Algorithm 3. Extracting unedited methods associated with the changed methods 
Input:   Input original program version (V) and edited program version (V’)  

Output:  List of unedited methods calling an edited method 

Step 1: get unedited method files in V’ 

Step 2: get edited method names in V’, V’ (m) 

Step 3: For each method m in V’(m)  

Step 4:       for each unedited method file mu in V’ (m) 

Step 5:            if m is called in method file mu 

Step 6:          Mu ← Add method mu 

Step 7:     end for 

Step 8: end for 

Step 9: return Mu 
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3. RESULTS AND DISCUSSION 

This study’s change impact analysis concentrated on the method-level. Three cases were examined 

by identifying affected methods. The study presents the results in three cases as shown in Table 1. The study 

adopts the words changed methods as edited methods + new methods, and affected methods as changed 

methods + unedited methods associated with edited methods. In Table 2, the changed methods for one of the 

sampled programs, JSoup, is presented. Table 3 shows, for the sample program JSoup, each edited method 

with the methods associated to it, both edited and unedited methods. 

 

 

Table 1. Summarized results of the changes investigation 
Item Prototype JSoup UnivocityParser 

No. of classes in the edited program 16 59 183 

No. of classes in the original program 13 58 183 

No. of edited classes 7 19 6 
No. of new classes 3 1 0 

No. of methods in the program 86 980 1482 

No. of edited methods 19 64 49 
No. of methods in the new classes 11 13 0 

No. of new methods in edited classes 32 7 0 

No. of unedited methods associated with edited methods 4 68 37 
No. of affected methods 66 152 86 

 

 

Table 2. JSoup list of edited classes and their changed methods 
Class Edited methods New methods 

CDataNode text  

Cleaner clean, isValid  

Collector collect, head, tail  
Comment setData  

Consumer   

DataNode setWholeData  
Document body, createElement expectForm, forms 

Element after, appendNormalisedText, appendText, appendWholeText, 

className, classNames, cssSelector,  
data, endSourceRange, forEach,  

getAllElements,  

getElementsByAttribute,  
getElementsByAttributeStarting,  

getElementsByAttributeValue, 

getElementsByAttributeValueContaining, 
getElementsByAttributeValueEnding, 

getElementsByAttributeValueNot, 

getElementsByAttributeValueStarting,  
getElementsByClass,  

getElementsByIndexEquals, getElementsByTag, 

getElementsContainingText,  
hasText, head, ownText, parent, parents, prependElement, 

tagName, tail, text, wholeOwnText, 

 

HttpConnection connect, cookies, encodeUrl  
LeafNode   

Node attr, forEachNode, getDeepChild,  

hashCode, indent, removeAttr,  
replaceChild, sourceRange 

isNode, normalName 

Parser   

QueryParser   
Safelist isSafeAttribute, removeAttributes  

Selector   

TextNode clone, lastCharIsWhitespace, splitText  
TokenQueue consumeCssIdentifier, consumeElementSelector,  

unescape consumeToIgnoreCase, 

consumeEscapedCssIdentifier, 

escapeCssIdentifier, 

matchesCssIdentifier 
Validate fail  

XmlDeclaration getWholeDeclaration  

New classes 
BuildEntities  persist, d, toString, compare, 

compare, main 
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Table 3. JSoup sample unedited methods calling edited methods 
Edited method Edited and Unedited methods calling the edited method 

text Document: title, Element: appendElement,  
Element: children, Element: getAllElements,  

Element: insertChildren, Element: wholeOwnText,  

Elements: eachText, Elements: val, Evaluator: matches,  
HtmlToPlainText: head, ListLinks: main 

clean Cleaner: isValid 

isValid Cleaner: clean 
collect Element: getAllElements, getElementsByAttribute,  

getElementsByAttributeStarting, getElementsByAttributeValue, 

getElementsByAttributeValueContaining,  
getElementsByAttributeValueEnding,  

getElementsByAttributeValueMatching,  

getElementsByAttributeValueNot,  
getElementsByAttributeValueStarting,  

Element:getElementsByClass,  

getElementsByIndexEquals,  

getElementsByIndexGreaterThan,  

getElementsByIndexLessThan,  

getElementsByTag,  
getElementsContainingOwnText,  

getElementsContainingText,  
getElementsMatchingOwnText,  

getElementsMatchingText, 

Selector: select, 
head Cleaner: isValid, HtmlToPlainText: getPlainText,  

NodeTraversor: filter, NodeTraversor: traverse 

tail HtmlToPlainText: getPlainText, NodeTraversor: filter, traverse, 
consumeElementSelector QueryParser: byTag 

consumeCssIdentifier QueryParser: byClass, byId, byTag 

replaceChild Node: replaceWith, wrap 
sourceRange Cleaner: createSafeElement, createSafeElement 

endSourceRange Cleaner: createSafeElement 

getElementsByClass Element: getElementsByTag 
getElementsByTag Document: normaliseStructure 

 

 

Class and method changes represent the overall changes implemented in the system. However, 

method changes represent operational changes effected in the system. A class change where no method 

changes were done is considered insignificant with regard to regression testing. Edited and new classes 

represent a significant component change. Figure 1 is a prototype sample, more details Figure 1(a) shows 

30% of the classes were edited and 13% newly-added. Figure 1(b) shows 69% of the methods were changed 

and 4% of the unchanged methods were affected by the changes made giving a total of 73% of the methods 

affected by the changes made. The prototype sample presents a case of a software underdevelopment where 

changes are frequent. Figure 2 explains a JSoup sample, more details Figure 2(a), 33% of edited classes and 

2% of new classes show that at least a third of the system was edited. However, the changes with real impact 

on operational behavior are in the method changes. In this Jsoup sample as shown in Figure 2(b), 16% of the 

methods were affected by the changes implemented. From 35% of the class changes to 16% of the 

operational impact shows that several changes concentrated on a few classes. As shown in Table 2, the class 

“Element” has the largest number of methods edited. Classes like Consumer, LeafNode, Parser, and 

QueryParser do not have either an edited or a new method. Figure 3 Univocity parser sample, more details 

Figure 3(a) shows only 3% of the classes were edited and no new class was added. Figure 3(b) shows that of 

the 1,482 methods in the sample, 3% (49 methods) were edited and 2.5% (37 methods) of the unedited 

methods were associated to the edited methods totaling to 5.5% of the affected methods. 

Our approach largely considered one key software artefact in a program, the method. The list of 

affected methods ensures that no change escapes the investigation’s test dragnet. Programmers can use the 

list in navigating the code. Functionality dependencies exposed would also help developers put more 

emphasis on the code that needs extra attention due to its widespread impact [30]. Where developers and 

testers are intended to check each method at a time as proposed in [22], [23], our approach presents an 

improvement in that all the methods of interest are presented to the developers for easy navigation. To expose 

the indirect effects on the methods that were not edited, this study generates the methods not edited but 

whose reliance on the results of the edited methods makes them impacted by the changes. This ensures that, 

after the changes are integrated in whole system, all the possible operational anomalous behavior will be 

unearthed especially where the changes made in the modified components had adverse effects on the 

unchanged components or where  the changed code sections are utilized in the unchanged components [10]. 
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(a) (b) 

 

Figure 1. Comparing changes made in the prototype sample classes and changes made in the prototype 

methods (a) prototype class changes and (b) prototype method changes 

 

 

  
(a) (b) 

 

Figure 2. Comparing changes made in the class for JSoup software sample and changes made in the methods 

(a) JSoup class changes and (b) JSoup method changes 

 

 

  
(a) (b) 

 

Figure 3. Comparing changes made in the class and changes made in the methods  

(a) Univocity parser class changes and (b) Univocity parser method changes 

 

 

4. CONCLUSION 

The aim of this study was to investigate the possibility of using method-level static source code 

analysis in gathering knowledge of the software operational behavior impacted by the changes made in the 

software system. The research has found that method changes paint a picture of the system behavioral 

changes that represent the eventual impact of the changes made on the system’s operations. Results of the 

study suggests that changes in a class may not necessarily call for a regression test exercise especially where 

the changes made do not affect the methods in the class. Since changes affecting the behavior of the system 

stand at the core of the software regression testing, the research establishes an effective change impact 

assessment in the overall software under examination. The work presents an improved and simplified 
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approach of analyzing changed source code at the method-level for identifying the changed methods in a java 

program. The study also, indirectly contributes to the reduction of time and effort that would be spent in 

understanding change impacts on the changes made in a software operation. In the future work, the study 

shall evaluate the impact of changes made in software on its system specifications coupled with an 

investigation on optimization of regression tests selection based on the knowledge of the functionality 

affected by the changes made in the system. 
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