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 The limitation of medical image data in open source is a big challenge for 

medical image processing. Medical data is closed because of confidential 

and ethical issues, also manual labeling of medical data is an expensive 

process. We propose a new augmentation method named MetaLung 

(Meticulous affine-transformation-based lung cancer augmentation method) 

for lung CT image augmentation. The key feature of the proposed method is 

the ability to expand the training dataset while preserving clinical and 

instrumental features. MetaLung shows a stable increase in image 

segmentation quality for three CNN-based models with different 

computational complexity (U-Net, DeepLabV3, and MaskRCNN). Also, the 

method allows in reduce the number of False Positive predictions. 
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1. INTRODUCTION 

Lung cancer is one of the most lethal forms of cancer, contributing significantly to global cancer-

related mortality. Lung cancer's severity often results from late-stage diagnoses, as the disease may not 

manifest symptoms until it has progressed. Despite advances in treatment modalities, the overall prognosis 

for lung cancer remains challenging, underscoring the importance of prevention, early detection, and ongoing 

research efforts to improve outcomes for those affected. There is a significant problem with the timely 

classification of lung cancer and subsequent patient management. The application of artificial intelligence in 

tasks related to lung cancer diagnosis can significantly improve indicators and enhance survival through 

timely diagnosis. The confidentiality of medical data poses a major barrier to its public domain use. 

Additionally, it is crucial to note that data labeling, an essential step in training artificial intelligence models, 

is a costly process that demands the expertise of qualified clinicians. 

Computer vision engineers apply data augmentation techniques to increase the dataset's size and 

variability, avoiding overfitting of neural networks. There are two main approaches to generating new images 

to improve the quality of image processing: the application of affine transformation to make changes in 

existing images and drawing new images. Generative adversarial networks (GAN) [1] are a powerful tool for 

new instance generation. GANs excel at generating realistic data by training a generator network to create 

data instances that are indistinguishable from real ones by a discriminator network. They were applied for the 

generation of computed tomography images of liver [2] and lung cancer [3]. Toda et al. [3] have also applied 

GANs to increase the quality of lung cancer detection. The authors of LCDAE: data augmented ensemble 
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framework for lung cancer classification [4] proposed a hybrid method that allows to increase in the dataset 

of histopathological lung images [5] and uses them for multiclass classification between three types of lung 

cancer: adenocarcinoma, benign, squamous cell carcinoma. The LCDAE includes free main parts. The first 

one is generative model LDCGAN (LDCGAN). LSCGAN is standard GAN architecture, the generator 

network transforms random vectors into images, while the discriminator assesses the authenticity of 

generated and real data through adversarial training. The application of GAN allows to increase the dataset 

from 15,000 to 45,000 images. 80% of all images are saved for training and validation steps, while the 

remaining 20% is fed to data augmented ensemble model DA-END (DA-ENM). DA-ENM is a combination 

of affine transformation, such as random horizontal flip, erosion, contrast, brightness, saturation, and rotation. 

The last step of DA-ENM is data normalization, which is necessary for the correct training of the neural 

network. The last part of hybrid data augmentation (HDA). HAD is the combination of the first two parts, 

which allows receiving a significant increase in image classification. The quality of LCDAE for lung cancer 

classification was proved with 5 convolutional neural networks (DenseNet121 [6], GoogleNet [7], 

ResNet101 [8], VGG19_BN, VGG16_BN, VGG16 [9]) at least by 4.94% for VGG19_BN and maximum by 

19.96% for GoogleNet. The histopathological image received by biopsy is not recommended for all potential 

lung cancer patients. The preliminary step is computed tomography screening. The authors of the next 

observed article [3] proposed an application of semi‐conditional InfoGAN [10] for lung CT generation. The 

authors used the center of each lesion as an input. The authors first extracted volume of interest (VOI) as a 

preprocessing step. The VOI is a cubic region with sides equal to twice the diameter of the lesion, aiming to 

encompass information from the neighboring structures while constraining the scope of the analysis area. 

Then the center slides of each VOI were collected in the dataset. The dataset of original images consists of 

7644 2-dimensional CT scans with 3 possible types of cancer (Adenocarcinoma, Squamous Cell Carcinoma, 

Small Cell Lung Cancer, 2,548 scans per class) provided by Fujita Health University Hospital. The dataset is 

closed because of ethical reasons. The authors of InfoGAN proposed an application of latent code instead of 

random vectors as an input. It involves incorporating additional variables into the generator's space, allowing 

the model to learn disentangled and interpretable features. These latent codes influence the generation 

process, enabling the generator to produce outputs where specific codes correspond to meaningful and 

understandable characteristics. An application of InfoGAN allows for increasing average accuracy for the 

classification of lung cancer lesions for 3 lung cancer types (Adenocarcinoma, Squamous Cell Carcinoma, 

Small Cell Lung Cancer) from 34.2% to 57.7%. Also, the authors provided a comparison of InfoGAN with 

Wasserstein GAN (WGAN) [11] with an average accuracy of 54.7%.  

Although GANs are potent instruments for new instance generation, their application presents 

several challenges. Firstly, many images in the training set are required for effective GAN training. Secondly, 

GANs demand significant computational power as they involve two deep networks internally. Also, it is 

difficult to control and evaluate the resulting images of GAN. Especially for medical data generation because 

the parameters of generated instances have a direct effect on the final disease. In the medical field is the 

distribution between different types of instances on the medical image. Hounsfield Units in lung CT scans 

measure the radiodensity of tissues, aiding in the differentiation between air, lung parenchyma, and 

pathological conditions based on their attenuation characteristics. On the lung computer tomography image, 

the cancer has a value near 0 in Hounsfield Units, while the calcinates with the same form and location have 

a value significantly higher. So, for the control of lung cancer augmentation, it is significantly important to 

control this distribution, because its breaking could cause the incorrect training of the model when features of 

the disease could be extracted incorrectly. The main problem with this is that it is difficult to catch before 

real-life implementation, so it is better to prevent it. Also, as evident from the observation, lung cancer 

classification quality could be significantly improved by the application of data augmentation techniques. 

However, image classification provides the type of illness. By the use of image segmentation, we can check 

not only the class of the possible illness but also the location and radiological features of the affected by 

cancer area.  

We proposed a novel lung cancer augmentation method MetaLung (Meticulous affine-

transformation-based lung cancer augmentation method) which could be applied for lung cancer 

segmentation. The method is constructed based on the combination of six affine transformation techniques: 

mirroring the image, replacing cancer for free space, rotating the image, rotating cancer, adding noise to 

image, and adding noise to cancer which were preliminary tested with the same convolutional-based models. 

An application of affine transformation allows to increase in the size and variability of the train set at least by 

5 times. While usual affine transformation allows image changes, without changing the position of cancer 

among other lung instances, we also proposed replacing cancer for free space of the lung, as a sub-method of 

MetaLung, which allows the generation of new images with different locations of lung cancer among other 

lung cancer instances. Table 1 provides the main advantages of MetaLung augmentation method. 
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Table 1. Advantages of MetaLung 
 Advantage Description 

1 Saving the distribution 
between different 

instances on CT images. 

CT image contains instances of different types: lung area, bones, and fats. Some of them, for 
example, cancer and calcinates, could have similar forms, however the density is different. The 

mixture between them could cause incorrect diagnostics in the future. 

2 Low computational 
complexity. 

Computed aided diagnostics should reduce the burden on the medical sector. The problem of timely 
medical diagnosis is most common in developing countries, in which the economic component is a 

crucial factor. Therefore, it is necessary to use less expensive models and methods. 

3 Reducing false positive 
results. 

Processing computed tomography images in the case of pulmonary patients is an intermediate step 
before prescribing a biopsy for the final diagnosis of cancer. However, a biopsy is an invasive 

procedure that can cause harm to the patient, so its use in cases where there is no need should be 

minimized. An application of MetaLung shows a stable increase in precision for all observed 
models.  

4  Increasing in size and 

variability in train set 

An application of MetaLing shows the stable increase in DICE and intersection over union (IoU) for 

all observed models. 

 

 

To prove the stability of MetaLung for lung cancer segmentation tasks we specifically collect the 

dataset of Kazakstani local patients. The dataset contains 972 labeled CT scans with corresponding cancer 

masks in DICOM format. Then we trained three convolutional neural networks (U-Net [12], DeepLab V3 

[13], Mask RCNN [14]) with different computational complexities and the number of trainable parameters 

for lung cancer segmentation task with and without the application of MetaLung. We used 4 metrics for the 

evaluation if image segmentation: DICE, IoU, Precision, and Recall. MetaLung shows a stable increase in 

segmentation quality for all of the observed deep-learning models. We also opened in public the data set 

which combines local Kazakhstani data with LIDC-IDRI. The dataset could be used for lung cancer 

classification and detection models [15].  

 
 

2. METALUNG: METICULOUS AFFINE-TRANSFORMATION-BASED LUNG CANCER 

AUGMENTATION METHOD 

There are various methods to augment the training dataset, such as GANs or affine transformations. 

We do not use GANs due to several difficulties:  

a. GANs require a diverse training dataset  

b. A lot of computational resources  

c. Medical professionals should additionally verify the generated images 

CT images contain a lot of instances, such as lung area, bones, and fats. Also, there are air, water, 

and instances. The standard format for CT images is DICOM. The density of each pixel calculated in 

hounsfield units (HU) Figure 1 provides the distribution between different lung instances on CT images in 

HU. So the value of air on the DICOM image is approximately near -1000HU, Lung area near -500HU. Lung 

cancer has a similar form to calcinates, which are not dangerous for human beings. However, in the CT 

image, both instances have serious differences in HU value.  

 

 

 
 

Figure 1. The distribution between lung instances 

 

 

Saving the distribution between instances on CT images is crucial for new CT image generation 

because a mixture between them could mix values on different instances. We combined 6 affine 

transformation methods, including mirroring the image, replacing cancer for free space, rotating the image, 

rotating cancer, adding noise to the image, and noise to cancer, with random parameters that do not break the 

distribution in the density of lung instances on CT image. The description of affine transformation methods 

combined in MetaLung is provided in Table 2.  
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Table 2. Affine transformation methods used for comparative analysis 
N Method name Description Random parameters 

1 Mirroring the 
image 

All CT images are provided in [512, 512] format. The image is mirror-
flipped according to the vertical central line with the x-axis 128. 

n/a 

2 Replacing cancer 

for free space 

Lung and vessels on CT images are preliminarily segmented via a 

thresholding algorithm. It allows us to get information about the free space 
from cancer and the vessels area of the lung. The cancer is flipped from the 

central point to 180 degrees and moved to the free area of the opposite side 

of the lung if it existed. Only in case there is no free space on the opposite 
part, the cancer is moved to the same side of the lung. An example of the 

application of the second method is provided in Figure 2. This method is 

not applicable to the image in case there is not enough free space to move 
the cancer because of vessels, calcinates, or other lung structures. 

n/a 

3 Rotating the image The whole image is rotated to random angle from 0 to 90. 𝑎𝑛𝑔𝑙𝑒 ∈ [0,90] 
4 Rotating cancer The cancer area is rotated to a random angle from 0 to 90. Other parts of the 

image are not changed and saved as it was. 
𝑎𝑛𝑔𝑙𝑒 ∈ [0,90] 

5 Adding noise to 

the image 

The noise with the random value from 0 to 20 is summarized in the whole 

image. We do not use a big value for noise generation because all instances 

(lung, bone, cancer, vessels) have fixed value in HU on the CT image. So, 

we could not apply extreme changes to the image because we want to save 
this distribution on the image. The same values are used for Method 6. 

𝑛𝑜𝑖𝑠𝑒 ∈ [0,20] 

6 Adding noise to 

cancer 

The noise with the random value from 0 to 20 is summarized to the cancer 

area only.  

𝑛𝑜𝑖𝑠𝑒 ∈ [0,20] 

 

 

MetaLung augmentation method allows to generate at least 5 images from 1. The method used as an 

input CT image in HU with a corresponding binary mask with lung cancer. The method operates with 2D CT 

slices with standard side [512, 512]. An output of MetaLung is the set of new CT images with new masks. 

Adding noise to the image and adding noise to cancer do not require the generation of a new mask, because 

the location of the cancer is not changed. Replace cancer to free space is the novel method used in MetaLung. 

It allows the generation of new CT images with different locations of lung cancer among other lung CT 

instances. However, this method does not apply to all cases, because it replaced the cancer with a space 

without any vessels, that could not exist. The pseudocode of the algorithm is provided above. Also, the 

application and visualization of the MetaLung Method for one CT example is available by the link [16]. 
 

Algorithm 1. MetaLung (CT image, cancer mask) 
  FUNCTION Mirroring the image (CT image, cancer mask) 

   new CT image = mirror flip (CT image) 

   new cancer Mask = mirror flip (cancer mask) 

   RETURN new CT image, new cancer mask 

  FUNCTION Replacing cancer for free space (CT image, cancer mask) 

   RoI = CT image * cancer mask 

   IF (check vessels on the opposite side == True) 

    new CT image = replace RoI with free part 

    generate new cancer mask 

    RETURN new CT image, new cancer mask 

    ELSE IF (check vessels on the same side == True) 

     new CT image = replace RoI with free part 

     generate new cancer mask 

     RETURN new CT image, new cancer mask 

  FUNCTION Rotating the image (CT image, cancer mask) 

   angle = random (min = 1, max = 90) 

   new CT image = rotate (CT image, angle) 

   new cancer mask = rotate (cancer mask, angle) 

   RETURN new CT image, new cancer mask 

  FUNCTION Rotating the cancer (CT image, cancer mask) 

   angle = random (min = 1, max = 90) 

   new cancer mask = rotate(cancer mask, angle) 

   old RoI = CT image * cancer mask 

   new RoI = flip (CT image, angle) * new mask 

   new Ct image = replace(old Roi, new Roi) 

   RETURN new CT image, new cancer mask  

  FUNCTION Adding noise to the image (CT image, cancer mask) 

   noise = random array (min = 0, max = 20, size = [512,512]) 

   new CT image = noise + CT image 

   RETURN new CT image, cancer mask 

  FUNCTION Adding noise to cancer (CT image, cancer mask) 

   noise = random array (min = 0, max = 20, size = [512,512]) 

   new CT image = noise * cancer mask + CT image    

  RETURN new CT image, cancer mask 
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3. METHOD  

We proposed a novel method for lung cancer augmentation MetaLung Meticulous affine 

transformation-based lung cancer augmentation method. The method is applicable for increasing the size and 

variability of a training set of computed tomography images with lung cancer. MetaLung could be used to 

increase the quality of training models for segmentation. To check the stability of the proposed method we 

used three convolutional-based models for lung cancer segmentation which were trained with a similar 

distribution between train and test sets. The pipeline of the lung segmentation framework is shown in Figure 2. 

The results of training models without data augmentation were used as baseline results. Then we applied 

MetaLung to increase the size of the train set and retrain the models. We used the same hardware and test set for 

baseline models and models with MetaLung augmentation. All of the provided steps have been provided [16]. 

 

 

 
 

Figure 2. Pipeline of lung cancer segmentation framework 

 

 

3.1.  Data collection 

We collected data from Kazakhstan lung cancer patients at various stages. The data was provided by 

the Kazakh Research Institute of Oncology and Radiology [17]. All data was anonymized before the usage. 

Due to a lack of data, we supplemented it with information from the publicly available LIDC – IDRI dataset 

[18]. All the data was annotated in a specific manner. Since we decided to tackle the segmentation task, a 

medical professional manually outlined the polygons containing cancer in the images. Additionally, each 

polygon was assigned a value according to lung-RADS.  

Lung-RADS is a system used for categorizing and reporting lung cancer screening results. There are 

four classes which depend on the size of the affected area. The general information about the lung-RAGS 

System and the distribution between the data in the dataset are provided in Table 3. As it is shown in Table 3, 

LR4B has the biggest size of the nodule and LR2 is the smallest one correspondingly. Because LR4A and 

LR4B have a large size is it easier to diagnose them. So, the classification among Lung-RADS would be used 

in model evaluation. 

 

 

Table 3. Description and number of samples according to Lung-RADS system 
Class according to Lung RADS Size Recommendations Number of images in the dataset 

LR2 4-6 mm 1 year control 142 
LR3 6-8 mm 6 month control 138 

LR4A Less than 1.5 mm 3 month control 177 

LR4B more than 1.5 mm biopsy is recommended 515 

 

 

The dataset consists of 972 images from 71 patients. The dataset contains of CT slice, serial number, 

binary mask with cancer area, corresponding lung RADS class, and patient ID. All data was anonymized 

because of ethical considerations. CT images were provided in DICOM format. CT images were taken on 

four possible equipment: SIEMENS, GE MEDICAL SYSTEMS, TOSHIBA, UIH.  

 

3.2.  Data splitting 

The original dataset with all CT images from each patient contains information about unique patient 

ID. We split the data based on the number of patients by the way when all labeled CT images with lung 

cancer could belong to a train or a test set only. The data also was labeled according to the Lung-RADS 

System as well with 4 possible classes (LR2, LR3, LR4A, LR4B). We used 4 patients for each class for the 

test set and the remaining 55 for to train set. We saved only CT slices with lung cancer and continue to work 

in 2D space. We did not take into account the patient ID for the next experiments and worked with each slide as 

with a separate image. The train set consists of 708 images and corresponding masks, and the test set contains 

264. The dataset could be available [15]. Exploratory data analysis of test set could be available [16].  
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3.3.  Converting the image to hounsfield unit 

All CT images have been provided in DICOM format. DICOM format allows to contain information 

with a maximum pixel value much bigger than [0, 255], so it contains information about the different types of 

instances on computed tomography images. HU in DICOM represent the quantitative measure of 

radiodensity in a medical image, allowing for the standardized characterization of tissue attenuation based on 

X-ray attenuation coefficients. CT images were taken on four possible equipment: SIEMENS, GE 

MEDICAL SYSTEMS, TOSHIBA, UIH. The data is presented in DICOM format of size [512,512]. Since 

the CT images were collected using various medical equipment, they are not standardized by default. So all 

CT scans should be converted to Hounsfield Units for further calculations as in (1). 

 

𝐻𝑈 =  
𝜇𝑋−𝜇𝑤𝑎𝑡𝑒𝑟 

𝜇𝑤𝑎𝑡𝑒𝑟−𝜇𝑎𝑖𝑟 
∗ 1000 (1) 

 

Where 𝜇𝑤𝑎𝑡𝑒𝑟 and 𝜇𝑎𝑖𝑟  are linear attenuation coefficients for water and air under standard conditions. 

Figure 3 shows the changes in density distribution from the original DICOM image after converting 

HU. Figure 3(a) shows the histogram of the density distribution of one CT image before converting the image 

to HU. Figure 3(b) shows the density distribution after standardization the DICOM image to HU. As it is 

shown in Figure 3(a), the main part of the image has the value -1000HU which belongs to air.  

 

 

  
(a) (b) 

 

Figure 3. Histogram of DICOM image (a) before converting to HU and (b) after converting to HU 

 

 

3.4.  Lung segmentation 

To increase the result of model training thresholding-based segmentation was applied to train and 

test set both to delete all non-related to the lung parts. It should be mentioned that this step is optional and 

could be skipped. Also, we did not evaluate the quality of lung segmentation.  

Although external factors could influence the CT image and lead to noise appearance, the lung has a 

very big distance from the bone area in HU. This factor allows segmentation of the lung area via the 

thresholding method without additional application of neural network to reduce computation complexity. The 

block scheme of lung segmentation is provided in Figure 4. As the received binary mask has the same size as 

the input image it could be multiplied with CT to get the lung area only. Figure 5 shows the lung 

segmentation by the thresholding method. The result of the lung segmentation algorithm from the original CT 

image shown in Figure 5(a) is provided in Figure 5(b). 

 

 

 
 

Figure 4. Block scheme of the lung segmentation method  
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(a) (b) 

 

Figure 5. CT images (a) original and (b) after lung segmentation 

 

 

3.5.  Data normalization 

Data normalization is a crucial preprocessing step for deep neural networks involving the scaling of 

input data to a standard range, often between 0 and 1. Normalization helps CNNs converge faster during 

training, mitigates issues related to varying input scales, and promotes better generalization by ensuring 

consistent input representations across the dataset. For all of the next experiments (2) was used for image 

normalization. 
 

Norm(img) =
img−min(img)

max(img)−min(img)
 (2) 

 

Where img is the original image. 

 

3.6.  Contrast limited adaptive histogram equalization CLAHE  

Contrast limited adaptive histogram equalization (CLAHE) [19] is a widely used image 

enhancement technique in medical image processing. Application of CLAHE shows an increase of lung 

illness classification based on CT and X-ray images [20]. It addresses the challenge of uneven illumination 

and varying contrast levels present in medical images. By adaptively dividing the image into smaller regions 

and applying histogram equalization independently to each, CLAHE avoids over-amplification of noise while 

enhancing local contrast. This makes it particularly valuable for highlighting subtle details in medical images, 

aiding clinicians in diagnosis. The non-linear nature of CLAHE makes it well-suited for scenarios where 

different regions of an image may require distinct contrast adjustments, enhancing the overall interpretability 

of medical imagery. CLAHE could be described by (3).  
 

𝐶𝐿𝐴𝐻𝐸(𝑖𝑚𝑔) =  𝐼𝑛𝑡𝑒𝑟𝑝(𝐶𝑙𝑖𝑝𝐻𝑖𝑠𝑡𝐸𝑞(𝑖𝑚𝑔)) (3) 
 

Where img is an input image. 

𝐶𝑙𝑖𝑝𝐻𝑖𝑠𝑡𝐸𝑞 is involves performing histogram equalization on the image, but with a constraint on the contrast 

amplification to avoid over-enhancement. 

𝐼𝑛𝑡𝑒𝑟𝑝 represents an interpolation function. 

 

3.7.  Lung cancer segmentation models 

3.7.1. MASK RCNN for lung cancer segmentation  

Mask region-based convolutional neural network (R-CNN) is a deep learning architecture primarily 

designed for object detection. It extends the Faster R-CNN [21] framework by incorporating an additional 

branch for predicting segmentation masks alongside bounding box coordinates and class labels. The 

architecture consists of three main components: a backbone network (feature extractor like ResNet [8]), a 

region proposal network (RPN) [21] for generating candidate object proposals, and the segmentation mask 

branch responsible for fine-grained pixel-level predictions. Mask R-CNN utilizes a two-stage process, first 

generating region proposals and then refining them for precise object localization and segmentation. The 

architecture's flexibility allows it to handle tasks such as object detection, instance segmentation, and 

keypoint estimation, making it a versatile solution for a variety of computer vision applications. MASK 

RCNN shows state-of-the-art results for different medical image processing tasks [22].  

 

3.7.2. U-Net  

U-Net is a convolutional neural network architecture designed for semantic segmentation tasks in 

medical image processing. Its distinctive U-shaped architecture consists of a contracting path to capture 

context and a symmetric expansive path to enable precise localization. The model's skip connections facilitate 
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the fusion of low-level features with high-level contextual information, aiding in capturing fine details. The 

network's ability to handle limited data through data augmentation and transfer learning further contributes to its 

popularity in various image segmentation applications. U-Net is widely employed in medical image processing 

when the ability of the neural network to train on a small dataset is significantly important [23].  

 

3.7.3. DeepLab V3 

DeepLabv3 is a state-of-the-art semantic segmentation architecture designed for image 

segmentation. The network used atrous (dilated) convolutions to effectively capture multi-scale contextual 

information without increasing computational complexity. DeepLabv3 further integrates a dilated spatial 

pyramid pooling module, enabling the model to capture context at multiple scales. Finally, it employs a 

decoder module to refine segmentation predictions, producing highly detailed and accurate segmentations. 

DeepLabv3 has demonstrated exceptional performance in various computer vision tasks [24]. 

We used CNN-based models with different computational complexity and architecture features to 

check the stability of MetaLung in the different circumstances. The number of trainable parameters is 

responsible for computational complexity of the neural network. The number of trainable parameters for 

observed models is shown in Table 4.  

 

 

Table 4. Number of trainable parameters for observed models 
Model Number of parameters 

U-Net 4,39E+07 
DeepLab V3 1,82E+07 

Mask RCNN 3,96E+07 

 

 

3.8.  Model evaluation  

We used 4 metrics for evaluation of the quality of image segmentation. DICE, as in (4) and, IoU, as 

in (5) have been used for evaluation the similarity between ground true and predicted masks. Image 

segmentation could be described as pixel-wise segmentation problem. It allows to calculate precision, as in 

(6) and recall, as in (7) to evaluate the distribution between false positive and false negative predictions 

among one predicted mask. Precision focuses on minimizing false positives, measuring the accuracy of 

positive predictions among those predicted as positive. Recall, on the other hand, aims to minimize false 

negatives, assessing the model's ability to capture all actual positive instances by minimizing the instances 

incorrectly predicted as negative. In the context of CT image diagnostics for lung cancer detection, precision 

is crucial as it helps minimize false positive predictions. Reducing false positives is particularly essential 

because an erroneous prediction may lead to unnecessary and invasive procedures such as biopsy, which can 

be traumatic and highly invasive. 
 

DICE =  
2∗|X∩Y|

|X|+|Y|
 (4) 

 

IoU =
|X∩Y|

|X|∪|Y|
 (5) 

 

Precision =
True Positives

True Positives+False Positives
 (6) 

 

Recall =
True Positives

True Positives+False Negatives
 (7) 

 

3.9.  Hardware 

We used the same equipment for experiments with all baseline and models with an application of 

MetaLung. All experiments have been done on: NVIDIA A100 80GB GPU with CUDA version 11.7, paired 

with an AMD EPYC 7663 56-Core Processor for CPU tasks, RAM 1,5 Ti. The hardware equipment has been 

temporary provided by Institute of Information and Computational Technologies (IICT), Almaty, Kazakhstan. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Visual explanation of MetaLung augmentation method for single lung cancer CT image 

An application of MetaLung allows to generate 5 or 6 new images from one. An input of MetaLung 

is an original CT image with a corresponding binary mask with lubg cancer. Figure 6 provides an input CT 

image of MetaLung. Figure 7 shows the ground true mask with labeled cancer area. Figure 8 shows the labeled 
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part in the CT image for better visualization. Figures 9 to 20 show the transformation of the original image after 

the application of MetaLung. Figures 9 to 11 show changes in the original CT image and ground true mask after 

Mirroring the image. Figures 12 to 14 show resulted data after the application Replacing cancer to free space. 

Figures 15 to 17 show updated data after image rotation. Figures 18 to 20 show changes after cancer rotation.  
 

 

 
 

 
 

 
 

Figure 6. Original CT image Figure 7. Original ground true 

mask 

 

 

Figure 8. Labeled cancer area 

 
 

 
 

 
 

Figure 9. CT image after mirroring 

the image 

 

 

Figure 10. Mask after mirroring 

the image 

 

 

Figure 11. Labeled area after 

mirroring the image 

 

 

 
 

 
 

 
 

Figure 12. CT image after 

replacing cancer for free space 

 

 

Figure 13. Mask after replacing 

cancer for free space 

 

 

Figure 14. Labeled area after 

replacing cancer for free space 

 

 

 
 

 
 

 
 

Figure 15. CT image after rotating 

image 

 

 

Figure 16. Mask after rotating 

the image 

 

 

Figure 17. Labeled area after 

rotating the image 

 

 

   
 

Figure 18. CT image after rotating 

cancer 

 

Figure 19. Mask after replacing 

rotate cancer 

 

Figure 20. Labeled area after 

rotating cancer 
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We visualize the CT image, mask, and labeled area to mirroring the image, replacing cancer for free 

space, rotating the image, and rotating cancer because it allows to catch the changes in lung cancer location 

in 2-dimensional space. Also new mask has been generated for all of the provided methods. However, we 

used histogram visualization for adding noise to the image and adding noise to cancer, because it is 

impossible for the human eye to check the small changes in density change with the random value from 0 to 20. 

An application of adding noise to the image is shown in Figure 21. Figure 21(a) shows the histogram of the 

original CT image. Figure 21(b) shows the histogram of a new CT image after the application of Noise to the 

image. An application of adding noise to the cancer area is shown in Figure 22. Figure 22(a) provides the 

histogram of the lung cancer area only. Figure 22(b) provides the histogram of the lung cancer area after the 

application of noise to cancer.  

 

 

  
(a) (b) 

 

Figure 21. Histogram of CT image (a) original and (b) CT image after adding noise to the image 

 

 

  
(a) (b) 

 

Figure 22. Histogram of cancer area only (a) original CT image and (b) after adding noise to cancer 

 

 

4.2.  Application of MetaLung to increase the size and variability of dataset with lung cancer CT  

        images 

An application of the MetaLung allows us to increase the train set from 708 to 4,865, which is 6.87 

times more than in the original set. This number also could be increased by the combination and permutation 

of affine transformations with each other. Figure 23 shows the distribution among cancer locations and the 

number of changes because of increasing the number of images and corresponding masks. We summarized 

all masks of the original image and constructed a heatmap based on the received results and received 

heatmap shown in Figure 23(a). Then we applied the same to the dataset updated by MetaLung. The 

distribution is shown in Figure 23(b). Also, as it is shown in Figure 23(b), an application of MetaLung allows 

for to equalization of the distribution between cancers in the left and right lungs in the training dataset, thus 

making the training set more balanced and increasing the diversity. The increase in the size and diversity of 

training data leads to an increase in the quality of medical image processing.  
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(a) (b) 

 

Figure 23. Heatmap of cancer distribution (a) original train set and (b) extended train set by MetaLung 

application 

 

 

4.3.  Impact of application of MetaLung for lung cancer segmentation  

First, we trained three convolutional-based models (mask RCNN, U-Net, and Deeplab V3) without 

data augmentation for comparison reasons. We used these results as a baseline for the next experiments. Then 

we applied seven augmentation techniques including the MetaLung to generate new images to increase the 

train set. We used 4 metrics for the evaluation of segmentation results: DICE, IoU, precision, and recall. We 

used DICE and IoU to evaluate the similarity between ground true and predicted masks. And precision and 

recall for evaluation of the distribution between false positive and false negative predictions. All weights for 

models could be found [25]. The results for baseline models and models with the application of MetaLung 

are shown in Table 5. Also, we calculated DICE separately for all of the lung-RADS classes to evaluate 

which of the classes is the most difficult for diagnosis. The DICE score calculated for each lung-RADS class 

is shown in Table 6.  

 

 

Table 5. Average results if metrics for lung cancer segmentation 
Model DICE IoU Precision Recall 

 Baseline MetaLung Baseline MetaLung Baseline MetaLung Baseline MetaLung 
U-Net 0.3708 0.4004 0.312 0.3418 0.8175 0.8676 0.359 0.3684 

DeepLab V3 0.3308 0.4136 0.269 0.3498 0.7906 0.8634 0.3177 0.3817 

Mask RCNN 0.5117 0.6004 0.4609 0.5361 0.5372 0.6864 0.5093 0.5896 

 

 

Table 6. DICE metrics for lung cancer segmentation among Lung RADS classes 
Model LR2 LR3 LR4A LR4B 

 Baseline MetaLung Baseline MetaLung Baseline MetaLung Baseline MetaLung 

U-Net 0.1997 0.1346 0.365 0.36 0.1979 0.3655 0.6127 0.5497 

DeepLab V3 0.0645 0.0458 0.3417 0.3889 0.1773 0.3971 0.5813 0.5755 

Mask RCNN 0.0 0.2665 0.2259 0.4032 0.7226 0.7501 0.5961 0.6475 

 

 

4.4.  Discussion 

Although an application of CAD systems can significantly increase the speed and the quality of lung 

cancer detection, the problem of data deficit presents a significant barrier to realizing the full potential of 

these systems. Traditional data augmentation approaches, such as GAN or affine transformations allow a 

significant increase in the size and the variability of the dataset for the next deep learning model training.  

However, they do not take into account specific radiological features of lung cancer, such as the density in 

HU, which does not allow to fully control the process of decision making of neural network.  

We proposed a novel method MetaLung for lung cancer data augmentation, which takes into 

account the density distribution of different instances, such as lung area, fat, cancer, and calcinates, on lung 

CT images. An application of MetaLung allows to increase in the size and the variability of the train set and 

increases the quality of lung cancer segmentation, which were proven with three convolutional neural 

networks (U-Net, Mask RCNN, and DeepLab V3) with different architecture and the number of trainable 

parameters based on DICE, IoU, precision, and recall metrics in comparison with baseline models without 

data augmentation techniques. However, it should be noted that despite MetaLung showing high results on 

the entire dataset for all three considered models, the segmentation quality can be improved for individual 

classes according to Lung-RADS. Additionally, the quantity of generated images may be increased using the 

proposed method by combining the employed transformations. Also, the method is applicable for CT images 
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in DICOM format only, because it contains the information about the human organs in Hounsfield Units, 

while the standard format, such as PNG or JPG with RGB format, breaks the density distribution by itself.  

Our study demonstrates the proposed MetaLung data augmentation method for lung cancer 

segmentation. We worked with positive cases with existing lung cancer only. We assume that the proposed 

method also is applicable for lung cancer classification on the CT image. 

The use of augmentation methods for processing medical data is inherently complicated by the fact 

that it is necessary to strictly control the generated results, since they can have a further negative impact on 

the diagnosis, even if quality metrics show an increase. In solving problems of disease detection, data is 

usually collected for one type of disease or several, but the number of such diseases in real life is much 

higher. We proposed a novel data augmentation MetaLung which allows not only an increase in image 

segmentation quality, but saves the radiological differences between lung cancer and other instances 

presented on lung CT image.  

 

 

5. CONCLUSION 

We introduce MetaLung, a novel data augmentation technique designed to augment the size and 

enhance the variability of CT image datasets focusing on lung cancer. MetaLung combines previously 

unused affine transformations with a groundbreaking method that replaces cancerous regions with free space. 

Notably, our approach employs strict boundaries for all random transformations applied within MetaLung. 

The efficacy of MetaLung was evaluated using three CNN-based neural networks: U-Net, DeepLabV3, and 

Mask RCNN. Our method demonstrates significant improvements in DICE, IoU, precision, and recall 

metrics for lung cancer segmentation. Additionally, we have made our meticulously labeled dataset publicly 

available, specifically curated for lung cancer segmentation and classified in accordance with the lung 

reporting and data system (Lung-RADS). We posit that our newly proposed method holds promise for 

enhancing lung cancer classification tasks as well. 
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