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Abstract 
In many applications, denoising is necessary since point-sampled models obtained by laser 

scanners with insufficient precision. An algorithm for point-sampled surface is presented, which combines 
fuzzy c-means clustering with mean shift filtering algorithm. By using fuzzy c-means clustering, the large-
scale noise is deleted and a part of small-scale noise also is smooth. The cluster centers are regarded as 
the new points. After acquiring new point sets being less noisy, the remains noise is smooth by mean shift 
method. Experimental results demonstrate that the algorithm can produce a more accurate point-sample 
model efficiently while having better feature preservation. 
 
Keywords: point-sampled model, mean-shift procedure, fuzzy c-means 

 
Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 

 
 
1. Introduction 

Point-sampled models are normally generated by sampling the boundary surface of 
physical 3D-scanning devices. Despite the improvement of scanning accuracy, the data is 
invariably noisy. Moreover, the increasing use of 3D scanners has implied a growth in the 
complexity of the scanned models. Therefore, it is crucial that noisy models need to be 
denoised or smoothed before performing any subsequent geometry processing such as 
simplification, reconstruction and parameterization. There is a challenge to remove the 
inevitable noise while preserving the underlying surface features in computer graphics. In 
particular, fine features are often lost if no special treatment is provided [1, 2]. 

In recent year, a variety of denoising methods have been intruduced, such as the 
Laplacian operator [3], anisotropic diffusion [4, 5], diffusion of the normal field [6], and locally 
adaptive Wiener filtering [7]. A mean-shift-based anisotropic denoising algorithm [8] is proposed 
for point-sampled surfaces. Taking into account the vertex normal and curvature as the range 
component, the algorithm extend mean shift filtering to 3D surface smoothing. By clustering 
adjacent sample points of similar local modes, the method also provides a meaningful 
segmentation of the point model. The neighbors of each sample point are collected under 
spatial and range constraints. Finally, the proposed trilateral point filtering algorithm can remove 
noise while preserve geometric features. Although the method is efficient, oversmoothing will be 
produced when the mesh is suffered from large-scale noise.  

In this paper, a two-stage point clouds denoising method is proposed, which combines 
fuzzy c-means with the mean-shift-based anisotropic denoising of point-sampled surfaces. This 
algorithm can handle the large-scale and small-scale noise and be formulated for mesh-based 
geometry and even for general 3D geometry.  
 
 
2. Fuzzy c-means  

Fuzzy c-means (FCM) is a famous method of clustering which allows one piece of data 
to belong to two or more clusters. It is based on minimization of the following objective function: 
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Where m is any real number greater than 1, μjk is the degree of membership pj in the cluster k, 
pj is the jth  d-dimensional points, ck is the cluster d-dimensional center of the cluster,   is any 

norm expressing the similarity between any measured data and the cencter. 
This paper adopts the improved method of the fuzzy clustering [9, 10], which defined a 

fuzzy weighting coefficient, it makes short distances become much shorter and long distances 
become much longer. So the performance of the clustering becomes better clustering. The 
detail procedures of the fuzzy clustering algorithm are given in [11].  

 
 

3. Fuzzy c-means Clustering with Mean Shift Filtering Algorithm 
The main idea of our algorithm is that, firstly the noisy data points will be pre-processed 

by an improved fuzzy c-means clustering method. For each data point, we detect the number of 
the neighboring point in the given sphere in order to determine if it is noise or not. If the number 
of the neighboring point is less than the given threshold, the point is a noise; otherwise we will 
cluster the points in the sphere and regard the cluster center as the new point, which can filter 
the noise near the point sets. This process will preserve some small-scale noise. Using the 
vertex normal and the curvature as the range component and the vertex position as the spatial 
component, the local mode of each vertex on point-based surfaces is computed by a 3D mean 
shift procedure dependent on local neighborhoods that are adaptively obtained by a kdtree data 
structure. Clustering pieces of point-based surfaces of similar local mode can provide 
meaningful model segmentation. Then, a trilateral point filtering scheme is applied based on the 
adaptively clustered neighbors. The scheme can adjust the position of sample points along their 
normal directions. Finally the noise is reduced from point-sampled surfaces successfully while 
preserving geometric features. 

 
3.1. The Fuzzy c-means Algorithm for Large Scale Noise 

We define that s is the surrounding sphere, r is the radius of s , and size is the given 
threshold of number of close points in the surrounding sphere s and mi is the number of close 
points in the surrounding sphere s of point pi . 

Figure 1. Small-scale noise partly filtered and Large-scale noise deleted by FCM. The 
parameter size is defined as 3. The red points are noise. (a) The second point is noise, m2=2, 

m2<size, we deleted it. The second point is noise, m3=3=size, so it is moved to clustering center 
of points in the sphere by clustering method. (b) The first and third points are noise. Because 
the number of close points in the surrounding sphere is larger than size, we regard them as 

sample points 
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The following is the pseudo-code for applying fuzzy c-means clustering to a single point: 
 
Large-scale DenoisePoint (point pi) 
{kij} = neighborhood (pi) 
For i: =1 to N 
If (mi<size) 
Delete pi 
Else 
Call FCM ( ) 
End 
ci=fuzzy c-means clustering center of pi 
Return new point qi=ci 

 
In Figure 1, we can see that large-scale noise is deleted and small-scale noise partly 

filtered by FCM algorithm. But FCM can’t delete small-scale noise, it only partly smooth them. In 
the next section we smooth them by bilateral filter.        

 
3.2. Estimation of Normal Vector and Curvature  

The normals and curvatures of the point-sampled geometry can be estimated by 
various methods to estimate [12,13]. Assume pj, j=1, 2,…, m is a subset of the original 
measuring point set P={p1, p2,…, pm}, based on the theory of principal component analysis 
(PCA), the 3×3 covariance matrix of pj could be defined as follow: 
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Where C is a symmetric positive semi-definite matrix, and the centroid of pj is 
1
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normal of pi is chosen to be the unit vector ei,1, which corresponds to the minimal eigenvalue of 
Ci . 

 
  ni = ei,1                                                                                                          (3) 

 
Pauly et al. [14]  showed that surface variation is closely related to mean curvature, and 

here the curvature on pi is taken as the surface variation, 

 
Hi = λi,1 / (λi,1+λi,2+λi,3)                                                                                     (4) 

 
Where λi,j , j = 1, 2, 3 are eigenvalues of Ci and satisfy λi,1 ≤ λi,2 ≤ λi,3. 
 
3.3. Mean Shift Denoising  

Since the spatial and range domains of 3D geometry are slightly different from those of 
images, 3D position of a vertex is usually regard as spatial information, but in this paper we 
regard the normal and curvature of the local surface as range information or feature space 
information. We extend the mean shift algorithm to 3D domain directly. 

We assume that the data points pi are the generalized points of the input raw point 

model 3P R , and  the spatial position information vi＝(xi, yi, zi) and range information including 
the normal vector ni and the mean curvature Hi of vertices are inclued in the vector components 
of pi, which can be written as: 

 
pi=(vi, ni, Hi)                                                                                                         (5) 

 
With i = 1, 2, . . . , n, and n being the number of points in P. Here the dimension of vector pi is 7. 
The k nearest neighboring points of generalized points pi are denoted by N(pi)={qi,1, qi,2,…, qi,k}. 

 Thus, the mean shift vector of pi can be expressed as:    
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Where g(·) could be either a Gaussian kernel or an Epanechnikov kernel; pi

r=(ni,Hi)is the range 
part of pi, and M(pi) is called the mean shift point associated with pi, and M(pi) could be 
initialized to coincide with pi, Mv(pi) is the mean shift vector associated with M(pi). Then we 
define the mean shift procedure as the repeated movement of data points to the sample means, 
written as: 
 

M(pi)：＝M(pi)＋Mv(pi)                                                                                   (7) 
 

By running the procedure for all i = 1, 2,…,∞, each data point iterates to a local mode in 
the joint spatial range domain, and the mean shift procedure has provided a stable local mode 
detection for the point-sampled model. 

 
3.4. Anisotropic Denoising Algorithm for Small Scale Noise 

The detailed mean shift denoising algorithm consists of four processing stages. 
Step 1. Initialization. Construct a kdtree structure for the point model and search 

neighbors { s
ijq } for each vi in the spatial domain, then initialize range component r

ip  by principal 

component analysis of the spatial neighbors { s
ijq }. The range bandwidths  1 2,r r

rh h h＝ are 

usually defined as positive values related to normal and curvature, respectively; for formulation 
convenience, we write hr directly. 

Step 2. Mean shift procedure. Repeat the mean shift procedure discussed above until 
convergence.  

Step 3. Clustering. Build clusters of points whose modes are similar. Generally, the 
neighborhood size k is an essential parameter for good shape smoothing results. Pauly et al. 
[15] suggest we select a k in the range from 6 to 20 in the spatial domain. 

Step 4. Vertex estimation. After updating the range component of pi and its neighbors, 
we apply trilateral filtering in the influence region associated with a fixed local mode. Compared 
with bilateral filtering, we not only separate spatial and range signals to determine the local area 
with geometric coherence, but also introduce a curvaturerelated kernel to smooth high gradient 
regions efficiently.Our approach is slightly different from the trilateral normal filtering proposed in 
[16, 17]. 

The curvatures are considered as second-order properties of the 3D geometry, and the 
performance of the curvaturerelated kernel for the regions near the salient ridge and ravine 
structures is satisfactory. 
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Where  G   is a Gaussian kernel, di is the distance of ǁvi-

s
ijq ǁ, hi is the projection of 

the vector (vi-
s
ijq ) onto the normal ni, and ei is the inverse of the curvature difference between vi 

and s
ijq . 

Step 5. Adaptive neighbors. For large point data sets, the selection of neighbors is a 
trade-off between computational time and smoothing quality. When choosing a small and 
uniform spatial size of a neighborhood, it costs less in computational time, but smooths the 
model poorly; on the other hand, if we choose a large and uniformly spaced neighborhood, the 
model is oversmoothed. We use the kdtree to search for the k nearest neighbors, for instance k 
= 12, instead of a neighboring spatial ball, which is unfortunately dependent on the sampling 
density of the point model. Furthermore, our clustering scheme provides an adaptive neighbor 
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searching method, where different influence regions are used adaptively to remove noise from 
vertices. Applying trilateral filtering to the adaptive neighborhoods greatly improves the 
smoothing capabilities of the mean shift filter in high gradient regions. Although the algorithm we 
present is ordinarily non-iterative whilst denoising, we can also use the resulting adaptive 
neighbors as inputs to estimate range information, then iteratively perform the four steps of the 
algorithm to make the point model smoother. 
 
4. Experimental Results and Analysis 

Using a PC of Intel core2 Q9550 and 8GB memory, this paper points of different models 
and predecessors of the denoising algorithms experiment and compared, We implemented the 
point clouds denoising algorithm as described in the previous section and gave our results, and 
our algorithm and previous algorithms were compared. 

A comparison to the mean shift smoothing approach is shown in Figure 3. Figure 3(a) 
random noise is added to the moai model (the number of the noise is 6543, and the number of 
the point is 20000). Figure 3(b) is the results using the mean shift point clouds denoising 
method. In Figure 3(c) the noise deleted by FCM with parameter size=6. In Figure 3(d) small-
scale noise smoothing by mean shift point clouds denoising method. We can see that our 
results of the two models are better than the mean shift point clouds denoising method while 
handling the large-scale noise and the mean shift point clouds denoising method will produce 
oversmoothing in sharp features. 
 
 
5. Conclusion 

 This paper has presented a two-stage point cloud denoising method which combining 
fuzzy c-means with mean shift filtering approach. Our algorithms have a good result while 
working with unorganized and large-scale noisy point sets. But it has a disadvantage that the 
improved FCM will partly smooth sharp feature while clustering. In Figure 3(d), we may see hat 
the second point moves towards its close points. In the future, we hope to improve our approach 
in order to preserve the sharp features of models better. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 2. Noisy point deleted by our algorithm. (a) The noisy point clouds, (b) Large-scale noise 
deleted by FCM, (c) Smallscale noise smoothing by mean shift point clouds denoising method, 

(d) The model feature is preserved 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3. Comparison with mean shift point clouds denoising method for the moai. (a) is the 

noisy point clouds, (b) is the result using mean shift approach, (c) is Large-scale noise deleted 
by FCM, (d) shows noise smoothing by mean shift  point clouds denoising 
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