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 Power quality is improved by utilizing solar inverters in electrical grids and 

this study probes it. A combination of the solar power system with wind 

energy management using the multi-objective particle swarm optimization 

(CMOPSO) algorithm is employed in this system. Control calculations are 

based on Clark and reverse Clark transformations and facilitated by a phase-

locked loop (PLL) circuit. STATCOM helps maintain voltage levels and 

mitigate power quality issues. Power quality (PQ) monitoring tracks voltage 

variations and noise. Conversely, the study addresses challenges in 

integrating renewables using the multi-objective multi-verse optimization 

(MOMVO) algorithm. MATLAB is used for control, monitoring, and 

analysis. Results show voltage distortion, but the proposed method achieves 

92% higher efficiency, demonstrating its effectiveness. This validates the 

importance of photovoltaic (PV) technology for integrating renewable 

energy sources. 
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1. INTRODUCTION 

Increasing interest in solar power (SPV) fuels development in sustainable energy sources. SPV is 

vital for remote communities, but integrating it into weak AC grids brings power quality (PQ) challenges. 

Rigorous testing and validation are necessary to assess the effectiveness of PV solar inverters in mitigating 

power quality issues. The growing integration of energy sources, particularly solar-based power, into the 

electrical network poses significant trials allied to the quality of power [1]–[5]. Pidikiti et al. [6] proposed a 

crossover framework that alleviates voltage droop/swell, unbalance, and voltage series infusion, which 

affects wind-associated enrolment generators. Das et al. [7] proposed a PV framework that dynamically 

powers and reduces harmonic distortions using predator-prey-based fire-fly optimization, fuzzy tracking, and 

adaptive perturb. Benabdelkader et al. [8] proposed an effective control approach for a grid-connected single-

phase PV system that improves power quality and operates with a maximum power point tracking (MPPT) 

controller. Paramasivam et al. [9] proposed a PV-dynamic voltage restorers (DVR) that relieves voltage hang 

and swell, interferences, and uneven blackouts using a single MOSFET switch and three inductors with a 

second-order summed-up integrator-based unit vector layout control. Okwako et al. [10] proposed a 

counterfeit brain network regulator that improves control intricacy and relieves power quality issues using a 

brain organization to control a shunt dynamic channel of the unified power quality conditioner (UPQC) [11]. 

The research aims to understand how PV solar inverters can effectively address power quality issues, 

ensuring a smooth integration of solar energy into existing electrical frameworks [12], [13]. 

https://creativecommons.org/licenses/by-sa/4.0/
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2. PROPOSED RESEARCH METHOD 

The comprehensive experimental design integrates real-world scenarios to assess the presentation 

and capabilities of PV solar inverters in addressing power quality challenges. This approach involves using 

advanced measuring tools to track the inverter's impact on various power quality factors. These 

measurements provide a thorough assessment of the device's performance, ensuring an accurate evaluation of 

its effectiveness. Also, the data collected from these experiments will be analyzed to identify any potential 

areas for improvement and to validate the inverter's reliability and efficiency under different operating 

conditions. 
 

2.1.  Experimental setup 

In this experiment, solar panels connected to the power grid are investigated. The setup includes 

monitoring the grid handles alongside the solar energy. Also, measurements of voltage, current, and power 

are conducted to analyze the system's performance. This comprehensive approach ensures a thorough 

evaluation of the solar panels' integration with the power grid. 
 

2.2.  Multi-objective particle swarm optimization 

This algorithm is designed to solve problems with multiple conflicting objectives, such as 

maximizing energy production, minimizing costs, and reducing environmental impact in renewable energy:  
 

{
𝑉 − max 𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), …… . . 𝑓𝑛(𝑥)]𝑇

𝑠. 𝑡                              𝑋 ∈ 𝑅𝑚                                
 (1) 

 

where V-max denotes vector maximization; 𝑓𝑘(𝑥)(𝑘 = 1,2, … … , 𝑛 denotes the sub-objective of the vector 

objective function f(x), each sub-objective vector is maximized to the extent possible; x is the answer to the 

problem and 𝑋 ∈ 𝑅𝑚 is the constraints then boundaries of MOP: 
 

𝑣𝑖(𝑡 + 1) = {
𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1𝑖(𝑡)(𝑦𝑖𝑡 − 𝑥𝑖(𝑡))              𝑖𝑓  𝑟3 < 𝛿

𝜔𝑣𝑖(𝑡) + 𝑐2𝑟2𝑖(𝑡)(𝑦𝑖𝑡 − 𝑥𝑖(𝑡))           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

where δ is a parameter to control the exploration-exploitation trade-off, and r3 is a number randomly chosen 

from [0, 1]. Then, for each particle 𝑝𝑖 , 𝑖∈ {1, . . . , ns} in swarm, two particles randomly picked from an elite 

set of size γ and the elite particle of objective vector has a smaller angle with 𝑝𝑖 ’s objective vector is the 

winner and 𝑝𝑖  is the loser. For each winner-loser pair, the following equations are applied to create a new 

particle 𝑝𝑖: 
 

𝑣𝑖
′ = 𝑟1𝑖 + 𝑟2𝑖(𝑥𝜔 − 𝑥𝑖) (3) 

 

𝑥𝑖
, = 𝑥𝑖 + 𝑣𝑖

,
 (4) 

 

where, 𝑟1 and 𝑟2  are two vectors randomly selected from 𝑛𝑥, 𝜔 is the index for the winner (the selected elite 

particle). The ordinary particles are indexed using i, i ∈ {1, . . . , 𝑛𝑠}. The polynomial mutation is then 

applied to 𝑥 0 𝑖.  
 

2.3.  Controller  

It helps to manage electricity flow in power grids. They act like switches for high-voltage lines, 

adjusting power flow to make the grid more stable and efficient. Interline power flow controllers (IPFCs) can 

also address issues like voltage fluctuations and imbalances.  

 

2.3.1. Interline power flow controllers and phase-locked loop circuit 

IPFC is a multi-terminal FACTS and the framework explains how IPFCs can improve the solidity 

and consistency of power grids. A key IPFC model is displayed in Figure 1, IPFC of two converters of the 

calculated model is explained as: 

 

𝑃𝑖 = 𝑉𝑛
2𝑔𝑛𝑛 − 𝑉𝑖𝑉𝑛[𝑔𝑖𝑛 cos(𝜃𝑛 − 𝜃𝑖) + 𝑏𝑖𝑛 sin(𝜃𝑛 − 𝜃𝑖)] + 𝑉𝑛𝑉𝑠𝑒𝑖𝑛

[𝑔𝑖𝑛 sin(𝜃𝑛 − 𝜃𝑠𝑒𝑖𝑛
) −

𝑏𝑖𝑛 cos(𝜃𝑛 − 𝜃𝑠𝑒𝑖𝑛
)] (5) 

 

𝑄𝑖 = −𝑉𝑖
2𝑏𝑖𝑖 − ∑  𝑛=𝑗,𝑘 𝑉𝑖𝑉𝑛[𝑔𝑖𝑛 sin(𝜃𝑖 − 𝜃𝑛) + 𝑏𝑖𝑛 cos(𝜃𝑖 − 𝜃𝑛)] − ∑  𝑛=𝑗,𝑘 𝑉𝑖𝑉𝑆𝑒𝑖𝑛

[𝑔𝑖𝑛 sin(𝜃𝑖 −

𝜃𝑆𝑒𝑖𝑛
) − 𝑏𝑖𝑛 cos(𝜃𝑖 − 𝜃𝑆𝑒𝑖𝑛

)] (6) 
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𝑃𝑛𝑖 = 𝑉𝑛
2𝑔𝑛𝑛 − 𝑉𝑖𝑉𝑛[𝑔𝑖𝑛 cos(𝜃𝑛 − 𝜃𝑖) + 𝑏𝑖𝑛 sin(𝜃𝑛 − 𝜃𝑖)] + 𝑉𝑛𝑉𝑆𝑒𝑖𝑛

[𝑔𝑖𝑛 sin(𝜃𝑛 − 𝜃𝑆𝑒𝑖𝑛
) −

𝑏𝑖𝑛 cos(𝜃𝑛 − 𝜃𝑆𝑒𝑖𝑛
)] (7) 

 

𝑄𝑛𝑖 = 𝑉𝑛
2𝑏𝑛𝑛 − 𝑉𝑖𝑉𝑛[𝑔𝑖𝑛 sin(𝜃𝑛 − 𝜃𝑖) + 𝑏𝑖𝑛 cos(𝜃𝑛 − 𝜃𝑖)] + 𝑉𝑛𝑉𝑆𝑒𝑖𝑛

[𝑔𝑖𝑛 sin(𝜃𝑛 − 𝜃𝑆𝑒𝑖𝑛
) −

𝑏𝑖𝑛 cos(𝜃𝑛 − 𝜃𝑆𝑒𝑖𝑛
)] (8) 

 

As there are no fundamental frameworks, expecting a lossless converter, the dynamic power provided by one 

converter rises to the dynamic power expected by the other: 

 

𝑅𝑒 (𝑉𝑆𝑒𝑖𝑗
𝐼𝑗𝑖
∗ + 𝑉𝑆𝑒𝑖𝑘

𝐼𝑘𝑖
∗ ) = 0  (9) 

 

𝑉1=𝑉1˪ 𝜃1(1=i,j,k) and 𝑉1, 𝜃1 is  magnitude and angle of 𝑉1. Where, 𝑉𝑆𝑒𝑖𝑛
 is the complex manageable series-

infused voltage source which addresses the series emolument of the converter.  

Figure 1 illustrates the circuit representation detailing the topology of the phase-locked loop (PLL) 

and the mathematical model of the IPFC. Figure 1(a) showcases the PLL's configuration, crucial for 

synchronizing signals in various applications. Figure 1(b) depicts the IPFC's mathematical framework, 

essential for controlling power flow in interconnected AC transmission lines. 

 

 

  

(a) (b) 

 

Figure 1. Representation of circuit for PLL and IPFC mathematical model (a) topology of the PLL [14] and 

(b) IPFC mathematical model [15] 

 

 

The framework explains an issue with IPFCs, devices that manage electricity flow in power grids 

the grid is synchronized with these devices, and a common tool (PLL) for this can cause instability: 

 

𝑤𝑖 − 𝑤0 = 𝐾𝑑𝐾𝑣𝑐𝑜𝑠 (𝜃𝑖 − ∅0) (10) 

 

∅0 = 𝜃𝑖 − 𝑐𝑜𝑠−1 𝑤𝑖−𝑤0

𝐾𝑑𝐾𝑣
  (11) 

 

𝑣𝑐 =
𝑤𝑖−𝑤𝑜

𝐾𝑣
 (12) 

 

the Dc signal 𝑣𝑐 that changes the VCO frequency from its central value 𝑤0 to the input signal angular 

frequency𝑤𝑖 , i.e: 

 

𝑤𝑖𝑛𝑠𝑡 = 𝑤0 + 𝐾𝑣𝑣𝑐 = 𝑤𝑖   (13) 

 

also, represented as: 

 

∅0 = 𝜃𝑖 − 𝑐𝑜𝑠−1 𝑤𝑖−𝜃0

𝐾𝑑𝐾𝑣
 (14) 

 

the product 𝐾 = 𝐾𝑑𝐾𝑣  is mentioned as the loop again. When the difference |𝑤𝑖 − 𝜃0| exceeds the loop again 

𝐾 in a sinusoidal characteristic for the lock that can no longer maintain the loop falls out of the lock.  
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2.3.2. STATCOM device for the power controller 

STATCOMs are guardians of stable voltage in power grids and act like first responders, swiftly 

reacting to voltage fluctuations. STATCOMs handle single-handedly larger voltage swings or emergencies 

like faults, they call on backup from other compensators.  

 

∆𝑉2 = |𝑉2 − 𝑉2
𝑡𝑎𝑟𝑔𝑒𝑡

| = 𝑏∆𝑄1 + 𝑎∆𝑄2 (15) 

 

STATCOM is the capacity limit situation in the target voltage (𝑉2
𝑡𝑎𝑟𝑔𝑒𝑡

) of controlled by only 

STATCOM. Figure 2 represents the proposed work aimed at addressing power quality issues in photovoltaic 

(PV) systems. The process begins with a solar PV system connected to a Cuk converter, managed by a 

controller [16]–[18]. The system utilizes high-penetration renewable integration (HPRI) and multi-objective 

multi-verse optimization (MOMVO) algorithms to ensure high-penetration without loss of power quality. 

Additional components include IPFC, Clark and reverse Clark transformations, PLL circuit, and a 

STATCOM device for maintaining optimal voltage levels [19], [20]. Competitive algorithms like CMOPSO 

enhance the system's efficiency. 

 

 

 
 

Figure 2. Representation of the proposed work 

 

 

2.4.  High-penetration renewable integration and multi-objective multi-verse optimization 

High-penetration renewable integration (HPRI) focuses on integrating large amounts of energy 

sources like solar and wind into existing power grids.  

 

𝑇𝑎 = 𝑇𝑚 − 𝑇𝑒 = 2𝐻
𝑑∆𝑤𝑚

𝑑𝑡
  (16) 

 

(𝑇𝑎) describes the relation between activation temperature. MOMVO is a new algorithm inspired by the 

concept of multiple universes [21], [22]. The problem of optimizing a grid at a smaller scale is typically 

framed in the following formula: 

 

𝑓(𝑥) =

[
 
 
 
 
𝑓1(𝑥)

𝑓2(𝑥)
....

𝑓𝑛(𝑥)]
 
 
 
 

                       𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜   (
𝐺(𝑥) ≤ 0

𝐻(𝑥) = 0
)  (17) 

 

where, 𝑥 = [𝑥1, 𝑥2, 𝑥3, … …… . , 𝑥𝑚] is the control vector, and 𝑓(𝑥) = 𝑓1(𝑥), 𝑓2(𝑥), … …𝑓𝑚(𝑥) are the 

objective functions' values.  
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3. EXPERIMENTATION RESULT DISCUSSION 

Experimental validation of utilizing a PV solar inverter to reduce problems with the quality of 

power in electrical systems denotes advancing sustainable energy solutions. MATLAB allowed for precise 

control of the inverters and detailed monitoring of power quality metrics. The system configuration for the 

simulation is mentioned in the Table 1. This research work was done using MATLAB of version R2023a 

with the processor of core i3@ 3.5 GHz and the RAM of DDR3-6 GB. 

 

 

Table 1. Simulation system configuration 
MATLAB Version R2023a 

Operating system Windows 10 home 

Memory capacity 6 GB DDR3 

Processor Intel Core i3 @ 3.5 GHz 

 

 

Figure 3 illustrates the simulation design of a control system for the PV system, to analyze the 

performance of the PV system under different conditions. Figure 4 outlines the recurrence conveyance in 

hertz (Hz) with a dominating worth of 68%. The crucial recurrence addresses the essential wavering in the 

power signal, and in this specific circumstance, it has a size of 68%.  

 

 

 
 

Figure 3. Schematic diagram of the simulation setup [23]–[25] 

 

 

 
 

Figure 4. Frequency distribution and harmonic content analysis in power system 
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Figure 5 analyses how varying irradiance levels affect PV panel output. Figure 5(a) shows power 

output current curve, and Figure 5(b) shows PV panel output voltage curve. They show a clear correlation 

between irradiance and both voltage and power output. As irradiance increases, the voltage produced by the 

PV panel also decreases. 

 

 

  
(a) (b) 

 

Figure 5. Impact of irradiance on photovoltaic panel performance (a) power output current curve and  

(b) PV panel output voltage curve 

 

 

Figure 6 depicts the PV system characteristics under series connection and varying irradiance 

conditions. Figure 6(a) shows the PV-emulator output voltage curve, detailing voltage outputs across 

different irradiance levels. Figure 6(b) displays the current-voltage (I-V) curve, illustrating how current 

varies with voltage under varying irradiance conditions. 

 

 

 

 

(a) (b) 
 

Figure 6. Photovoltaic system characteristics of series connection and irradiance (a) PV-emulator output 

voltage curve and (b) current-voltage (I-V) curve 

 
 

Figure 7 provides a detailed representation of the electrical features of a PV system under different 

irradiance conditions. At an irradiance level of 970 W/m², the PV system exhibits a voltage of 0.3365 V with 

a corresponding power output of 0.3365 W. Under 750 W/m², the voltage and power values increase to 

0.3618 V and 0.3618 W. 

Figure 8 presents a comprehensive analysis of photovoltaic system performance. Figure 8(a) 

showcasing voltage curve variations and Figure 8(b) shows a comparative evaluation of different techniques. 

This visual depiction offers insights into the system's operational efficiency and the effectiveness of various 

methodologies employed in enhancing performance. 
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Figure 7. Performance for varied irradiance conditions in photovoltaic system 

 

 

 

 

(a) (b) 
 

Figure 8. Photovoltaic system performance analysis (a) voltage curve and (b) comparison of techniques 

 

 

Figure 9 depicts the impact of irradiance on photovoltaic system characteristics. Figure 9(a) shows 

the voltage-power curve and Figure 9(b) shows the voltage-current curve. These graphs highlight how 

irradiance changes impact the electrical characteristics of the system, crucial for understanding performance 

under varying environmental conditions. As irradiance reduces from 1 kW/m² to 0.25 kW/m², voltage drops 

from 0.9031 V to 0.2213 V, and power output follows the same trend. 

 

 

 

 

(a) (b) 
 

Figure 9. Irradiance on photovoltaic system voltage and current (a) voltage-power curve and (b) voltage-

current curve 

 

 

3.1.  Comparative analysis  

A comparison of several procedures for enhancing the quality of power in electrical systems, 

including particle swarm optimization (PSO), UPQC, low voltage ride through (LVRT), and a newly 

proposed approach is implied in this study. Figure 10 compares the effectiveness of various techniques for 

enhancing power quality and voltage stability in electrical systems. It reveals that the proposed approach 

achieves the highest efficiency (92%) compared to PSO at 76.0%, UPQC at 89%, and LVRT at 78%.  
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Figure 10. Comparative efficiency analysis of power optimization techniques 

 

 

4. CONCLUSION 

Utilization of PV solar-based inverters for mitigating quality issues of power in electrical systems is 

a crucial step towards sustainable energy solutions is concluded in this research. The proposed method 

achieved 92% efficiency, indicating its effectiveness in enhancing power quality. Explore challenges of 

integrating solar power, such as intermittency, grid stability, and infrastructure compatibility. Algorithms like 

developing advanced control and grid management strategies for these challenges are addressed. Future 

research can focus on addressing challenges such as intermittency, grid stability, and compatibility with 

existing infrastructure, and developing advanced control algorithms and grid management strategies. 
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