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 To optimize the operational availability of the series-parallel system and 

provide useful insights for maintenance planning, the study attempts to 

investigate the availability of a ball mill unit. These four different 
components make up the ball mill production system: “drum,” “ring-gear,” 

“gearbox,” and “electric motor.” There is a chain mechanism connecting all 

four components. The “ring gear” and “electric motor” components are 

composed of two independent units, one of which serves the desired purpose 
and the other is maintained in cold standby. The “drum” and “gearbox” of 

the components each contain only one unit. Therefore, a novel mathematical 

model is designed and implemented in this work by assuming arbitrary 

repair rates and exponentially distributed failure rates using the Markov 
process and Chapman-Kolmogorov equations. This study explored the 

availability with a normalization method and used genetic algorithm 

techniques to optimize ball mill availability. Putting this article into practice 

is of great benefit when developing an appropriate maintenance program. 

Through this, the study achieves maximum production. To investigate the 

behavior of several performance characteristics of the ball mill production 

system, numerical results and corresponding graphs are also specifically 

created for specific values of subsystem parameters, such as failure rate, and 
repair rate to increase the system’s overall efficiency. 
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1. INTRODUCTION 

The ball mill is an essential apparatus utilized in diverse industries for finely grinding materials.  

The apparatus is comprised of a cylindrical structure featuring a slender exterior, facilitating the manipulation 

of substances via the interplay of spherical particles. The operational process of the mill encompasses 

rotational motion, collision forces, and the reduction of materials. It is necessary to carry out a real-time 

evaluation of system reliability to identify faults and risks and make necessary modifications to the airflow 

system. A genetic algorithm is implemented to optimize the efficiency of a series-parallel production system 

in a rock gold processing plant. It compares the best availability found by the genetic algorithm tool to the 

steady-state availability (SSA) found by Markov analysis, focusing on the rates of subsystem failure and 

repair. Production management can use the results to design maintenance plans that will improve system 

performance. 

Since the mid-1980s, reliability analysis methods have become widely recognized as essential tools 

for managing and operating complex mining systems. The examination of this study will contribute to the 

understanding of innovative methodologies and applications developed to improve the stability of 

https://creativecommons.org/licenses/by-sa/4.0/
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engineering systems and make products more secure, efficient, and long-lasting [1]. Mining machine 

construction continued regularly thereafter. Moreover, other researchers collaborated on different subsystems 

inside the mining system. Methods for collecting and analyzing data are used in the reliability modeling of 

surface mining equipment. There are also models for the dependability and maintainability of mobile 

underground haulage equipment [2], [3]. Using a test system with sensor devices to identify abnormal states 

and a control module to initiate maintenance activities, by investigating the connection between operating 

conditions and wall vibration, the research proposes a simulation model for comprehending the vibration 

characteristics of an operational ball mill [4], [5]. LHD machines are used to collect ore or waste rock from 

mining locations and transfer it to trucks or ore passes based on the distance. These works utilized graphical 

and analytical methods to model probability distributions for analyzing failure data. Some articles have 

provided reliability assessments of repairable mining machinery [6], [7]. Furthermore, using simulation 

studies, the total mass balance and particle size distribution of the grinding and classification processes in 

gold ore mineral processing plants may be predicted [8]. This study investigates a crushing facility’s 

reliability in the Jairam bauxite mine in Iran. It focuses on how to schedule maintenance for the plant 

according to its reliability features [9]. It also looks at how reliable drum shearer machines are when used to 

make decorative mortars with pigments from acid mine irrigation [10], [11]. The study looks at how genetic 

algorithms can be used to model and improve CO2 cooling systems in fertilizer plants, screening units in 

paper plants, mine production systems that are based on reliability, and the availability and profit analysis of 

B-Pan crystallization and feeding systems in the sugar industry [12]-[16]. The study suggests a real-time 

monitoring strategy for surface roughness parameters in milling control. It proves that raising the inclination 

angle has no appreciable impact on roughness indices, thereby increasing uptime [17]. The document 

examines rooftop solar photovoltaics with coherence threshold systems and fault tree analysis of large-scale 

solar photovoltaic systems [18]. Machine learning with a physics background for applications in system 

safety and reliability [19]. The presented paper discusses the implementation of artificial neural networks and 

vibration detectors to track a ball mill’s fill level [20]. An advanced plan or strategy called an “optimization 

model for wastewater treatment process” is used to treat wastewater (also known as sewage or filthy water) 

as effectively and efficiently as feasible [21]. Mathematical models and availability analyses of screw and 

leaf spring manufacturing facilities are the focus of this article [22], [23]. Reliability performance gauges 

how adaptable a hydroelectric power plant is to shifting demands, how well it maintains itself, and how well 

it identifies areas for development through routine assessments that guarantee dependable operation [24]. 

Using the Boolean function technique and neural network approach, the research assesses the profitability 

and dependability of a steam turbine generator power plant [25]. Goldberg and Holland [26], [27] have made 

significant contributions to the field of computer science, specifically in the domain of database systems. 

However, there is no commonly acknowledged connection between him and the introduction or elucidation 

of genetic algorithms. The present study focuses on investigating the heat transmission behavior and thermal 

breakage characteristics of the charge within ball mills [28]. 

The study investigates the significant area of improving the efficiency and recovery rate in a rock 

gold processing facility, with a specific emphasis on optimizing the operations of its ball mill. To achieve this 

objective, a highly advanced real-time control system has been carefully developed. This system not only 

enhances operational efficiency but also serves as a comprehensive collection of approaches, available to 

guide subsequent attempts in this field. At the foundation of this research lie comprehensive studies designed 

to assess and contrast various performance optimization methodologies. The use of genetic algorithms in 

conjunction with MATLAB tools is a significant method, especially for determining the most effective repair 

and failure rates for a series-parallel system. Although earlier research has examined the diverse functions of 

ball mills in different situations, there is a clear lack of information regarding their availability dynamics.  

The main objective of this work is to clarify tactics aimed at attaining optimal availability, which is a crucial 

aspect closely associated with the improvement of predictive models. By using a comprehensive 

methodology, this research aims to enhance operational efficiency in the processing plant and facilitate 

progress in the wider field of mineral processing. 

This study investigates how to use Chapman-Kolmogorov equations and Markov processes to 

increase the availability of ball mills. It extensively analyzes the effectiveness and efficiency of the system by 

using genetic algorithms and their extensions. Through the process of determining when repairs are most 

effective or by accurately predicting system faults, it can ascertain the failure and repair rates. The goal of the 

study is to build a knowledge-based system and an optimization model to address issues in collecting design 

data. The results provide insightful information for plant management, enabling the creation of strong 

maintenance plans and providing optimization techniques to successfully support system performance. 

The introduction provides a concise overview of the research, while the literature review examines 

the performance of ball mills. The section on experimental methodology provides a concise overview of the 

various components and procedures required for conducting experiments. The analysis of performance using 
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experimental data is conducted in the results and discussion section, while the conclusion section 

demonstrates the enhanced availability resulting from the implementation of innovative techniques. 

 

 

2. PROPOSED METHOD 

2.1.  Normalizing method 

This strategy involves the conversion of raw scores or values into probabilities through the process 

of normalization. Occasionally, it is necessary to convert a set of variables into probabilities that have a total 

of 1 to do probabilistic calculations or comparisons. Commence with unprocessed scores or numerical values. 

These may refer to the fitness ratings of genetic algorithms or preference scores for decision-making.  

The raw scores should be normalized to obtain the likelihood. The raw scores should be divided by the sum 

of all the raw scores. This process generates proportions of values that collectively equal 1, thus establishing 

a probability. The scores should be normalized to obtain the likelihood. Each value represents the likelihood 

of an event or outcome. This method is employed in the fields of optimization, decision theory, and machine 

learning. It employs a probability scale to standardize scores. 

 

2.2.  Genetic algorithm 

The genetic algorithm toolbox employs matrix functions in MATLAB to construct a comprehensive 

collection of tools that facilitate the implementation of various genetic algorithm techniques. The genetic 

algorithm toolbox is a compilation of routines, primarily written in m-files, that execute the fundamental 

operations in genetic algorithms. The genetic algorithm, a probabilistic search algorithm, was created in 1975 

based on the principles of genetic evolution [26]. The phenomenon emerged during the 1970s and 1980s, 

subsequently extending its reach across several industries. The genetic algorithm demonstrates efficacy in 

addressing the series-parallel availability optimization problem due to its ability to efficiently manage non-

linearity or discontinuity. In 1989 identified three primary operators in his examination of the genetic 

algorithm process, namely mutation, crossover, and reproduction [27]. 

The fundamental mechanism of genetic algorithms is based on the principles of evolution found in 

nature. It involves several key components, including the gene framework, selection, population, crossover, 

mutation, and the formation of new individuals inside the chromosomes. Figure 1 depicts the sequence of the 

genetic algorithm procedure. Adapted to the principles of natural selection and evolution, genetic algorithms 

are a subset of optimization algorithms. 

 

 

 
 

Figure 1. Flow diagram for a genetic algorithm 

 

 

They are utilized to identify approximations of solutions to challenging search and optimization 

issues. A genetic algorithm’s fundamental steps are as follows: 

 Set the genetic algorithm’s parameters to their initial values. 

 Create the starting population at random and get the coded strings ready. 

 Determine each person’s fitness level within the elderly population. 

 Use the older population to create the mating pool. 

 Pick two parents at random from the mating pool. 
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 Construct two offspring by performing the crossover of the parents. 

 Alter if necessary. 

 Add the new population to the child strings. 

 Determine each person’s fitness level within the new population. 

 From the old and new populations, create the population that fits you the best. 

 Till the best individuals in the newly formed population correspond to the ideal value of the performance 

function (system availability), keep completing steps 4 through 10 in the process. 

 

 

3. METHODS 

A vibrating feeder, crusher, belt conveyor, vibrating screen, ball mill, spiral classifier, gold 

centrifugal concentrator, shaking table, flotation machine, and gold melting furnace system are standard on 

each rock gold machine. Machine specs vary by manufacturer. This article identified four primary 

subsystems using ball mill machine operation manuals, maintenance data, and field observations. A drum 

ball mill with a drum, ring gear, gearbox, and electric motor used these series-connected pieces. Figure 2 

provides a comprehensive diagram of the ball mill production system. 

 

 

 
 

Figure 2. Flow chart of a ball mill system 

 

 

3.1.  Components of the proposed 

Ball mills grind or blend materials for mineral dressing, rock gold, coatings, explosives, stoneware, 

and selective beam printing. It uses impact and attrition to reduce ball size by striking them as they fall from 

the shell. A ball mill’s performance depends on its drum, ring gear, gearbox, and electric motor. These are 

defined in detail and placed series-parallel in each unit. 

 
3.1.1. Drum (U) 

It has one unit. The ball mill’s cylindrical housing is known as the drum. The steel shell of the drum 

is shielded from abrasion by a manganese steel alloy plate. Rubber may alternatively be used in place of 

manganese steel as armor. A rapid and total breakdown of the system might result from its failure. 

 

3.1.2. Ring gear (V) 

A gear ring is attached to the drum’s outside edge. It serves to rotate the drum. In this subsystem, 

two ring gears are employed in parallel. While one is being used, the other is on cold standby. A machine’s 

partial failure can reduce the system’s operating capacity, but a major failure will result in the unit’s complete 

failure. 

 

3.1.3. Gear box (W) 

A gear box is a mechanical apparatus utilized for the transmission of power from an electric motor 

to a ball mill. The primary objective of this is to streamline the transfer of electrical energy. The gearbox 

plays a crucial role in the management of speed and torque throughout this period. To attain the desired 

outcome, the gearbox has a structured arrangement of shifts, bearings as well, casing, and pulleys. 

 

3.1.4. Electric motor (X) 

An electric motor turns the drum. A gearbox follows the motor drive system before a ring gear.  

The motor is typically equipped with a variable-speed drive (VSD) to regulate the ball mill’s rpm. Two 

electric motors have been used in parallel. While one is being used, the other is on cold standby. A machine’s 

partial failure can reduce the system’s operating capacity, but a major failure will result in the unit’s complete 

failure. 
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3.2.  Assumptions 

 For a specific amount of time, a restored item functions just as well as a brand-new one. 

 The rates of failure and repair exhibit a regular pattern and are significantly non-correlated. 

 There is no waiting period before repairs can begin because there are sufficient repair facilities. 

 Standby units have the same capabilities and characteristics as active units.  

 System malfunction and repair occur in an exponential distribution.  

 Service comprises replacement and/or repair.  

 System could operate at a lower capacity or efficiency.  

 No system breakdowns co-occur. However, different subsystems within a system or unit may fail 

simultaneously. 

 

3.3.  Notations 

𝑃0(𝑡): represent probability that at time t all subsystems are in good working states. 

𝑃𝑖 ′ (𝑡): first order derivative of the probabilities. 

𝑃𝑖 (t): represent probability function that the unit is in a particular state at a time ‘t’. 

U, V, W, X: represent effective states of the drum, ring gear, gearbox, and electric motor. 

u, v, w, x: represent faulty states of the drum, ring gear, gearbox, and electric motor. 

𝜃1, 𝜃3, 𝛿1, 𝛿3: respective mean constant failure rates and repair rates of the ring gear, and electric motor. 

𝜃2, θ4, 𝛿2, δ4: respective mean constant failure rates and repair rates of drum, and gearbox. 

 

3.4.  Mathematical modeling 

Probabilistic concepts are utilized to simulate the performance of a ball mill unit when it is being 

studied for SSA. With the help of the transition diagram shown in Figure 3, developed the Chapman-

Kolmogorov differential equations: 
 

𝑃0
, (𝑡) + ∑ 𝜃𝑖

4
𝑖=1 𝑃0(𝑡) = 𝛿1𝑃1(𝑡) + 𝛿3𝑃2(𝑡) + 𝛿2𝑃10(𝑡) + 𝛿4𝑃11(𝑡)  (1) 

 

𝑃1
,(𝑡) + ∑ 𝜃𝑖

4
𝑖=1 𝑃1(𝑡) + 𝛿1𝑃1(𝑡) = 𝜃1𝑃0(𝑡) + 𝛿3𝑃3(𝑡) + 𝛿4𝑃6(𝑡) + ∑ 𝛿𝑖𝑃𝑖+3

2
𝑖=1 (𝑡) (2) 

 

𝑃2
, (𝑡) + ∑ 𝜃𝑖

4
𝑖=1 𝑃2(𝑡) + 𝛿3𝑃2(𝑡) = 𝜃3𝑃0(𝑡) + 𝛿1𝑃3(𝑡) + ∑ 𝛿𝑖𝑃𝑖+5

4
𝑖=2 (t) (3) 

 

𝑃3
, (𝑡) + ∑ 𝜃𝑖

4
𝑖=1 𝑃3(𝑡) + 𝛿1𝑃3(𝑡) + 𝛿3𝑃3(𝑡) = 𝜃3𝑃1(𝑡) + 𝜃1𝑃2(𝑡) + ∑ 𝛿𝑖𝑃𝑖+11

4
𝑖=1 (t) (4) 

 

𝑃𝑖
′(𝑡) + 𝛿𝑗𝑃𝑖(𝑡) = 𝜃𝑗𝑃0(𝑡), Where i = 10,11     j= 2,4 (5) 

 

𝑃𝑖
′(𝑡) + 𝛿𝑗𝑃𝑖(𝑡) = 𝜃𝑗𝑃1(𝑡), Where i = 4,5,6      j= 1,2,4 (6) 

 

𝑃𝑖
′(𝑡) + 𝛿𝑗𝑃𝑖(𝑡) = 𝜃𝑗𝑃2(𝑡), Where i = 7,8,9      j= 2,3,4 (7) 

 

𝑃𝑖
′(𝑡) + 𝛿𝑗𝑃𝑖(𝑡) = 𝜃𝑗𝑃3(𝑡), Where i = 12,13,14,15      j= 1,2,3,4 (8) 

 

With initial conditions at time t=0,  𝑃𝑖(𝑡) = 0 𝑓𝑜𝑟 𝑖 ≠ 0, 𝑃𝑖(𝑡) = 1  𝑓𝑜𝑟 𝑖 = 0 (9) 
 

 

 

 
 

Figure 3. Transition diagram of ball mill 
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3.5.  Steady state availability 
A system reliability study estimates the likelihood that a system will be operational and usable under 

steady-state conditions using SSA. Here are several SSA benefits: risk management, performance 

monitoring, comparisons, and prediction steady state availability analysis evaluates, manages, and improves 

complex system dependability and availability for efficient, sustainable operations across industries. 

The ball mill system must be operational for an extended period. To determine the ball mill system’s 

steady state or long-term availability, all differentials (1) to (9) must have d/dt = 0 as the time constant.  

By setting t and d/dt=0, it is possible to examine the system’s SSA. From (1) to (9), these are the limiting 

probabilities. Solving these equations, we get:  
 

P1 = K3P0                        P6 =  T4K3P0                           P11 =  T4P0  

P2 = K1P0                        P7 =  T2K1P0                           P12 =  T1K2P0 

P3 = K2P0                        P8 =  T3K1P0                           P13 =  T2K2P0 

P4 = T1K3P0                    P9 =  T4K1P0                           P14  =  T3K2P0  

P5 = T2K3P0                    P10 =  T2P0                              P15  =  T4K2P0 
 

Where,  
 

𝐾1 =
𝜃3(𝛿1+𝛿3+𝜃1+𝜃3)

(𝜃1+𝛿3)(𝛿1+𝛿3)+(𝜃3𝛿3−𝜃1𝛿1)
,             𝐾2 =

(𝜃1+𝛿3)

𝛿1
𝐾1 −

𝜃3

𝛿1
,         𝐾3 =

𝜃1+𝛿3𝐾2

𝛿1+𝜃3
 

 

𝑇1 =
𝜃1

𝛿1
           𝑇2 =

𝜃2

𝛿2
          𝑇3 =

𝜃3

𝛿3
            𝑇4 =

𝜃4

𝛿4
 

 

Use of a normalizing condition, where the total of all state probabilities equals one, we get: 
 

∑ 𝑃𝑖  
15
𝑖=0 = 1  

{𝑃0 + 𝐾3𝑃0 + 𝐾1𝑃0 + 𝐾2𝑃0 + 𝑇1𝐾3𝑃0 + 𝑇2𝐾3𝑃0 + 𝑇4𝐾3𝑃0 + 𝑇2𝐾1𝑃0 + 𝑇3𝐾1𝑃0 + 𝑇4𝐾1𝑃0 + 

𝑇2𝑃0 + 𝑃0 + 𝑇1𝐾2𝑃0 + 𝑇2𝐾2𝑃0 + 𝑇3𝐾2𝑃0 + 𝑇4𝐾2𝑃0} = 1 

𝑃0 = [1 + (𝐾1 + 𝐾2 + 𝐾3) + 𝐾1(𝑇2 + 𝑇3 + 𝑇4) + 𝐾2(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4) + 𝐾3(𝑇1 + 𝑇2 + 𝑇4) + 𝑇2 +
 𝑇4]-1 

 

By adding together all the probabilities for the full functioning and decreased capacity states, the 

steady state availability (Av.) of the ball mill is now determined. i.e.  
 

𝐴𝑉𝑠 = P0 + P1 + P2 + P3 

𝐴𝑉𝑠 = P0[ 1 +  K1 + K2 + K3]  (10) 

 

3.5.1. Availability using study state probability 

Based on the findings of the study, it is possible to reliably evaluate the availability of the ball mill 

by examining the rates of its initial failure and repair, as presented in Table 1. By applying mathematical 

references such as (10) to this dataset, we can support the operational reliability and sustainability of the 

dataset. 

The identification of each action plan, or repair priority, is included in (10) availability (𝐴𝑉𝑠), which 

also contains all potential failure occurrences. For the ball mill, this model may be used to develop strategic 

maintenance plans. For various failure and repair rate combinations, various availability levels can also be 

determined. Additionally, the evolutionary algorithm used in this work seeks to determine the appropriate 

availability for a ball mill unit. 

 

 

Table 1. Study state availability with failure and repair rate 
Failure rate (𝜽) Repair rate (𝜹) Availability (𝑨𝑽𝒔) 

.0002 .030  

.003 .20 0.896746 

.0003 .030  

.002 .02  

 

 

3.5.2. Availability using a genetic algorithm 

To determine the ideal ball mill component failure and repair settings, the optimization technique 

uses fixed-point integers. Adhering to standards enhances dependability and efficiency by optimizing system 
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performance and availability. The intended availability, often known as the performance index, sets repair 

and failure rates and modifies settings. A genetic algorithm looks at the relationship between ball mill 

availability and population size, crossover frequency, and generations. Tables 2 and 3 consider the maximum 

and minimum failure and repair rates, as well as genetic algorithm parameters. 
 

 

Table 2. Max. and Min. failure and repair rate 
parameters 𝜃1 𝜃2 𝜃3 𝜃4 𝛿1 𝛿2 𝛿3 𝛿4 

Min. .0002 .003 .0003 .002 .030 .20 .030 .02 

Max. .006 .007 .007 .006 .70 .60 .70 .60 

 

 

Table 3. GA parameters 
Population size Generation size Crossover rate Mutation rate 

90 90 .09 .015 

 

 

Table 4 shows the relationship between generations and ball mill unit availability when considering 

subsystem failure and repair rates. This data lets you assess failure and repair rates and optimize ball mill unit 

availability. In the simulation, we optimize system performance across 10–100 generations. Ball mill 

availability varies by generation, as shown in Figure 4. A peak system performance of 98.00% indicates 

reliability and efficiency. The uptime-to-downtime ratio indicates the system’s likelihood of working 

properly. We need optimal failure and repair rates to keep performing well. By the 70th generation, these 

rates will maximize system efficiency (98.00%). This configuration reduces downtime and fixes issues 

quickly. θ1 = 0.0020, θ2 = 0.0041, θ3 = 0.0034, θ4 = 0.0045, δ1 = 0.5672, δ2 = 0.4245, δ3 = 0.0466, and δ4 

= 0.4803 represent failure and repair rates. System performance throughout generations depends on these 

traits. 
 

 

Table 4. Effect of number of generations on availability of the ball mill using genetic algorithm 
Generation size 𝐴𝑉𝑔𝑎 𝜃1 𝜃2 𝜃3 𝜃4 𝛿1 𝛿2 𝛿3 𝛿4 

10 0.8146 0.0039 0.004 0.0059 0.0053 0.3336 0.3579 0.6743 0.0247 

20 0.9671 0.0025 0.005 0.0044 0.0023 0.1256 0.4617 0.1763 0.0891 

30 0.9723 0.0005 0.0037 0.0037 0.0055 0.5434 0.254 0.0735 0.41 

40 0.9625 0.003 0.005 0.0024 0.0033 0.6391 0.3801 0.5316 0.1274 

50 0.9661 0.0007 0.0038 0.004 0.0046 0.6593 0.2161 0.1397 0.2741 

60 0.9779 0.0021 0.0034 0.0057 0.0036 0.4691 0.4267 0.0321 0.3978 

70 0.98 0.002 0.0041 0.0034 0.0045 0.5672 0.4245 0.0466 0.4803 

80 0.9624 0.0018 0.0063 0.0049 0.0044 0.2893 0.2262 0.6991 0.4034 

90 0.9515 0.0015 0.0034 0.0019 0.0056 0.1756 0.3918 0.6392 0.1324 

100 0.9775 0.0028 0.0055 0.0043 0.0047 0.2093 0.3695 0.5655 0.5607 

 

 

 
 

Figure 4. Availability v/s number of generation 
 

 

Table 5 shows the relationship between population size and ball mill unit availability when 

considering subsystem failure and repair rates. This data lets you determine the ideal ball mill unit 

availability combination of failure and repair rates. As much as possible, the simulation includes population 

sizes of 10–100. Figure 5 shows ball mill population sizes. System performance reached 98.64%, 

demonstrating reliability. This percentage indicates system availability and dependability by showing the 

possibility that the system will work as intended, or its duration. Knowing the optimal system failure and 

repair rates is key to great performance. According to research on state probability, tuning these parameters 

will reduce system downtime. We will solve the issues immediately. At a population size of 30, the effective 

failure and repair rates are θ1 =.0038, θ2 =.0034, θ3 =.0029, θ4 =.0022, δ1 =.3659, δ2 =.3727, δ3 =.6984. 
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Table 5. Effect of population size on availability of the ball mill using genetic algorithm 
Population size 𝐴𝑉𝑔𝑎 𝜃1 𝜃2 𝜃3 𝜃4 𝛿1 𝛿2 𝛿3 𝛿4 

10 0.9146 0.0008 0.0037 0.001 0.004 0.1595 0.5584 0.0964 0.0456 

20 0.9744 0.0034 0.0061 0.0024 0.0027 0.2571 0.2841 0.3718 0.5457 

30 0.9864 0.0038 0.0034 0.0029 0.0022 0.3659 0.3727 0.6984 0.4907 

40 0.9794 0.003 0.0066 0.0012 0.0036 0.6513 0.567 0.5081 0.3786 

50 0.9771 0.0022 0.0067 0.0011 0.0049 0.4631 0.5333 0.2968 0.4549 

60 0.9627 0.005 0.0043 0.004 0.0059 0.398 0.3322 0.445 0.2292 

70 0.9758 0.0046 0.0047 0.0036 0.0048 0.6817 0.3311 0.5913 0.4487 

80 0.978 0.0057 0.0031 0.0027 0.0047 0.2186 0.2922 0.5065 0.3823 

90 0.975 0.0036 0.0056 0.0006 0.0034 0.3324 0.2964 0.5091 0.5166 

100 0.9764 0.0018 0.0059 0.0012 0.0053 0.1229 0.4353 0.2753 0.4879 

 

 

 
 

Figure 5. Availability v/s population size 
 

 

Table 6 details how population size impacts ball mill unit availability in failure and repair scenarios, 

including all sections. Looking at this data, we may establish which failure and repair rates enhance ball mill 

unit availability. In the simulation, the crossover probability ranges from 0.10 to 0.90. Figure 6 indicates the 

crossover likelihood for ball mill availability. The system’s 98.76% performance indicates reliability and 

efficiency. This percentage indicates the system’s availability and dependability by indicating its likelihood 

of functioning properly. To get this high performance (98.76%), failure and repair rates must be optimal. 

Rate crossover probability is 0.40, with θ1 =.0023, θ2 =.0061, θ3 =.0054, θ4 =.0029, δ1 =.0470, δ2 =.2137, 

δ3 =.1672, and δ4 =.1030. 
 

 

Table 6. Effect of crossover probability on availability of the ball mill using genetic algorithm 
Cross over Av 𝜃1 𝜃2 𝜃3 𝜃4 𝛿1 𝛿2 𝛿3 𝛿4 

0.1 0.9482 0.0031 0.0044 0.004 0.0054 0.1757 0.5596 0.5463 0.1143 

0.2 0.9723 0.0004 0.0056 0.0059 0.0022 0.5509 0.2398 0.6412 0.4637 

0.3 0.9801 0.0024 0.0032 0.0006 0.0041 0.2696 0.2364 0.2382 0.5903 

0.4 0.9876 0.0023 0.0061 0.0054 0.0029 0.047 0.2137 0.1672 0.103 

0.5 0.9709 0.0018 0.0058 0.0048 0.0056 0.5886 0.3297 0.0788 0.5001 

0.6 0.9681 0.0017 0.0067 0.0062 0.0042 0.2733 0.2664 0.4234 0.5311 

0.7 0.9571 0.0045 0.0032 0.0025 0.0024 0.5583 0.5992 0.3935 0.0609 

0.8 0.967 0.001 0.0057 0.0038 0.0054 0.6194 0.3662 0.4615 0.2972 

0.9 0.9836 0.0049 0.0059 0.0033 0.0022 0.4833 0.5017 0.4307 0.4485 

 

 

 
 

Figure 6. Availability v/s Crossover probability 
 

 

4. RESULTS AND DISCUSSION 

Table 7 contains both the genetic algorithm and the study-state normalizing techniques. This table 

provides a comparison of the availability of both techniques. When compared to the steady state availability 

discovered through Markov analysis, the effectiveness of the genetic algorithm is approximately 9.64% 

higher in terms of system availability. 
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Table 7 Comparison between genetic algorithm-optimized availability and SSA 
Ball mill 𝐴𝑉𝑠/𝐴𝑉𝑔𝑎 𝜃1 𝜃2 𝜃3 𝜃4 𝛿1 𝛿2 𝛿3 𝛿4 

SSA 0.8967 .0002 .003 .0003 .002 .030 .20 .030 .02 

Optimized availability 0.9876 0.0023 0.0061 0.0054 0.0029 0.047 0.2137 0.1672 0.103 

 

 

 Genetic factors like population size, crossover probability, and mutation are commonly manipulated in 

simulations. 

 The simulations are conducted over various generations, ranging from 10 to 100, with a maximum 

availability of 98.00% observed at a population size of 70. 

 Sample sizes for the simulations vary from 10 to 100 populations, with a maximum availability of 

98.64% achieved for a population size of 70. 

 Continuous alteration of genetic factors, including population size, generation rate, and mutation 

frequency, is explored in the simulations. 

 The range of crossover probabilities tested spans from 0.10 to 0.90, with a maximum availability of 

98.76% observed at a crossover probability. Availability refers to the ratio of system’s functionality to its 

availability for use. 

 Redundancy, planned preventive maintenance, and good intrinsic design are effective strategies for 

maintaining the corresponding failure rates. 

 To achieve optimal repair rates, it is necessary to improve the proficiency of maintenance professionals 

through training, ensure an adequate workforce, and motivate them to meet the desired goals. 

 

 

5. CONCLUSION 

The purpose of this study is to investigate the application of genetic algorithm approaches in the 

application of mathematical modeling and performance optimization to a ball mill production system. 

Through the selection of potential failure and repair rate values, we conclude that the optimal system 

availability is 98.76%. Comparing the genetic algorithm to the Markov analysis, the genetic algorithm results 

in a 9.64% increase in system availability, which in turn makes the system both faster and more efficient. 

This maximizes the efficiency of the ball mill system in a rock gold processing plant; this kind of outcome is 

believed to be of great assistance. This research contributes to the subject of reliability engineering for 

industrial systems by illuminating various methods for locating faults, determining the level of uncertainty, 

doing sensitivity assessments, combining elaborate failure models, enhancing performance over time, and 

examining instances from real-world situations. My future work is on the development of a novel 

methodology for assessing the expenses related to the establishment of a rock-gold processing facility in 

preparation for the forthcoming initiative. 
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