
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 35, No. 1, July 2024, pp. 620~630

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i1.pp620-630  620

Journal homepage: http://ijeecs.iaescore.com

Multi-layer perceptron hyperparameter optimization using

Jaya algorithm for disease classification

Andien Dwi Novika, Abba Suganda Girsang
Department of Computer Science, Master of Computer Science, Bina Nusantara University Jakarta, Jakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Feb 2, 2024

Revised Feb 27, 2024

Accepted Mar 26, 2024

 This study introduces an innovative hyperparameter optimization approach

for enhancing multilayer perceptrons (MLP) using the Jaya algorithm.

Addressing the crucial role of hyperparameter tuning in MLP’s performance,

the Jaya algorithm, inspired by social behavior, emerges as a promising

optimization technique without algorithm-specific parameters. Systematic

application of Jaya dynamically adjusts hyperparameter values, leading to

notable improvements in convergence speeds and model generalization.

Quantitatively, the Jaya algorithm consistently achieves convergences at first

iteration, faster convergence compared to conventional methods, resulting in

7% higher accuracy levels on several datasets. This research contributes to

hyperparameter optimization, offering a practical and effective solution for

optimizing MLP in diverse applications, with implications for improved

computational efficiency and model performance.

Keywords:

Classification

Hyperparameter optimization

Jaya algorithm

Metaheuristic algorithm

Multilayer perceptrons
This is an open access article under the CC BY-SA license.

Corresponding Author:

Andien Dwi Novika

Department of Computer Science, Master of Computer Science, Bina Nusantara University Jakarta

Jakarta 11480, Indonesia

Email: andien.novika@binus.ac.id

1. INTRODUCTION

Artificial intelligence (AI) has become part of our lives. Some examples of AI that have been used

daily are AI-personal assistant (i.e. Siri and Alexa), smart home, and smart car. AI has brought many

conveniences to our lives. Machine learning, as a part of AI, has had massive growth since the first time it

was found. Machine learning has been involved in several fields, such as health, engineering, and art. Data

mining is the most machine learning application [1]. One of the main data mining techniques that is applied

in many different fields is classification. Classification is used to predict group membership for data [2]. In

its application, classification faced several problems and one of that is choosing the right value of

hyperparameter. Hyperparameter refers to parameters that cannot be changed during machine learning

training. Almost all machine learning algorithm has hyperparameter [3]. Hyperparameters significantly

impact the performance of machine learning models and directly affect the processes of training algorithms

[4]. Due to their impact on model performance and the uncertainty surrounding the ideal combination of

hyperparameter, the configuration has become a crucial and challenging aspect in the application of machine

learning algorithms [5].

Multilayer perceptron (MLP), a highly utilized machine learning method [6], falls under the

category of artificial neural networks (ANNs). It encompasses a range of hyperparameters, including hidden

layer quantity, neuron count, learning rate, activation function, optimizer, and batch size. Several studies

have proved that MLP with hyperparameter optimization has better performance than MLP without

hyperparameter optimization [5]-[9]. Hyperparameters could be tuned manually, but it has several

difficulties, such as a lot of hyperparameters to be tuned, model complexity, and time-consuming, also it

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Multi-layer perceptron hyperparameter optimization using Jaya algorithm for … (Andien Dwi Novika)

621

needs a deep understanding of machine learning usage and its hyperparameter value settings [10]. A

metaheuristic algorithm is one of a way to resolve manual tuning hyperparameter problems. The term

metaheuristic refers to a more complex heuristic that is suggested to solve a variety of optimization issues

[11]. Some examples of metaheuristic algorithms are genetic algorithm (GA), artificial bee colony (ABC)

algorithm, bat algorithm (BA), differential evolution (DE), whale optimization algorithm (WOA), firefly

algorithm (FA), genetic pattern research (GPS), biogeography-based optimization (BBO), and Jaya

algorithm.

Several studies have been conducted on hyperparameter optimization for MLP using metaheuristic

algorithm, one of which was conducted by [6]. The study optimized MLP hyperparameters using GA and

demonstrated significant improvements after hyperparameter optimization for MLP. Another study was

conducted by [7]. The study optimized MLP hyperparameters using DE and showed better results compared

to MLP without hyperparameter optimization. Dokeroglu et al. [12] also conducted research on

hyperparameter optimization for MLP using particle swarm optimization (PSO) for regression. The study

showed that hyperparameter optimization for MLP using PSO did not yield significant results compared to

MLP without hyperparameter optimization.

Metaheuristics are a useful tool for effectively searching the search space for ideal or nearly ideal

answers. Because of their tremendous efficiency, they are especially well-suited for hyperparameter

optimization issues that include huge configuration spaces [13]. All aforesaid optimization algorithms have

two parameters, and that is population size and number of generations. Apart from those two parameters,

almost all metaheuristic algorithms have algorithm-specific parameters. For example, crossover probability,

mutation probability, and selection operator in GA and initial weights in PSO. That algorithm-specific

parameter needs to be adjusted correctly to achieve the best outcome. On the other hand, incorrect

adjustment of these algorithm-specific parameters could lead to a rise in computing cost and local optima

entrapment [14].

Jaya algorithm is a metaheuristic algorithm and applies convenience and simplicity. Unlike other

metaheuristic algorithms, the Jaya algorithm does not have algorithm-specific parameters to obtain optimal

results [15]. Jaya algorithm is believed to be able to reduce computing time since it is a parameter-less

algorithm [16]. The Jaya algorithm was proposed by Yu et al. [17] and aroused interest from many parties.

This is due to the characteristics of the Jaya algorithm which is easy to use [18]. Several studies have proved

that Jaya algorithm has better performance than other metaheuristic method [14], [19]-[23].

In 2022, Alshutbi et al. [23] conducted a study on breast cancer classification using support vector

machine (SVM) with the Jaya algorithm employed for feature selection optimization. The SVM-Jaya

combination was compared with several other metaheuristic algorithms, including GA, CS, PSO, and DE.

The results indicated that SVM-Jaya outperformed other metaheuristic algorithms in optimizing feature

selection. Another study utilizing the Jaya algorithm was conducted by Wang et al. [21] in 2018. Their

research demonstrated that Jaya, when used as a training algorithm, yielded higher accuracy compared to

GA, PSO, GPS, BBO, ABC, and FA. These studies collectively suggest that Jaya produces superior results

compared to other metaheuristic algorithms. However, there has been no research utilizing Jaya as an

algorithm for hyperparameter optimization, particularly in MLP. Therefore, this study employs Jaya as the

optimization algorithm for searching the optimal hyperparameters.

The Jaya algorithm can also be applied in fields other than computer science, such as engineering.

One example is a study on power flow optimization conducted by [24], and research on surface grinding

optimization by [25]. in the same year, which demonstrates that the Jaya algorithm can outperform other

optimization methods. Goel et al. [26] also used Jaya algorithm for tuning of speed PI controller of DTC

induction motor drive.

The objective of this paper is to design a model for MLP hyperparameter optimization using the

Jaya algorithm (further referred to as MLP-Jaya) that focuses on low computational cost and without

complex algorithm-specific adjustment. To assess the performance of the MLP-Jaya, disease classification

testing will be conducted. This paper also provides a comprehensive analysis of several metaheuristic

approaches, such as MLP-GA and MLP-PSO.

2. METHOD

The research begins with data collection followed by dataset preprocessing. Preprocessing involves

label encoding and splitting the data into training, validation, and testing sets. The training and validation

data will undergo hyperparameter optimization using the Jaya Algorithm. The outcome of this process is

optimal hyperparameters, which will then be utilized in the testing phase. Subsequently, the testing results

will be evaluated. The research stages are illustrated in Figure 1.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 620-630

622

Figure 1. Research stages

2.1. Data collection

This research used 6 disease datasets. The datasets used in this research were all gathered for free

from a variety of resources, such as Kaggle and UCI machine learning. The six datasets used in this study are

provided in Table 1.

Table 1. Datasets
Code Dataset Number of attributes Number of rows

D1 Breast cancer wisconsin (diagnostic) 30 569

D2 Parkinson 24 195
D3 Chronic kidney disease 26 400

D4 Diabetes 9 768

D5 Heart disease 14 1025
D6 Glioma (Tasci et al., 2022) 24 839

2.2. Data preprocessing

Collected datasets will go through three stages of pre-processing, namely imputation, label encoding

and data splitting. Imputation is the process of filling in empty data in a dataset. Numerical data columns that

have empty values will have the average value calculated which will then be used to fill in the empty data

rows. Empty values in the categorical data column will be filled with the mode value in that column. Label

encoding is the stage of changing a categorized data column into a numeric data column. The purpose of

label encoding is so that the model can receive data because model can only accept numeric data. The last

step is data splitting. The data is divided into two parts, namely training and testing. Training data will be

used to train the model and will be used for hyperparameter optimization. Testing data will be used to assess

the performance of the trained model. 70% of the dataset becomes training data, 20% of the dataset becomes

testing data, and 10% of the dataset becomes validation data.

2.3. MLP-Jaya

MLP is a type of artificial neural network that consists of several layers and each layer consists of

several neurons. MLP is a model that can be used for regression, classification, and pattern recognition [27].

MLP was developed by Rumelhalt et al. in 1986, MLP is a type of supervised learning and has a

feedforward architecture [28]. MLP consists of three main layers, namely the input layer, hidden layer, and

output layer. Each layer is connected to the layers before and after it through weight. The input layer consists

of features from the dataset which will then be processed in the hidden layer. The results of hidden layer

processing will be displayed in the output layer.

The Jaya algorithm, introduced by Rao [25] is a metaheuristic algorithm that blends the

"survivability for the fittest" concept from evolutionary algorithms with the "follow the leader for searching

the optimal solution" idea from swarm intelligence. Derived from Sanskrit, the term "Jaya" translates to

victory, reflecting the algorithm's approach of converging toward optimal solutions and steering clear of

inferior solutions in each iteration [15]. The Jaya algorithm, categorized as a metaheuristic algorithm,

emphasizes convenience and simplicity. Unlike many other metaheuristic algorithms, Jaya does not rely on

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Multi-layer perceptron hyperparameter optimization using Jaya algorithm for … (Andien Dwi Novika)

623

algorithm-specific parameters to achieve optimal results. It is believed that Jaya can reduce computing time

due to its parameter-less nature. With two inputs, namely population and iteration, the Jaya algorithm

establishes the population randomly, and iteration represents the number of repetitions the algorithm must

undergo. MLP-Jaya is divided into two main processes, namely the hyperparameter optimization process and

the testing process. The detailed flow of MLP-Jaya is illustrated in Figure 2 and Table 2 describes the

hyperparameter that will be optimized.

Figure 2. MLP-Jaya flow

Table 2. MLP hyperparameter that will be optimized
Hyperparameter Range Interval Total

Learning rate [0.001 – 0.1] 0.001 100
Batch size [16 – 128] 1 113

Number of layers [1 – 5] 1 3

Number of neurons [10 – 100] 1 91
Optimizer [‘adam’:1, ‘sgd’:2] - 2

Activation function [‘logistic’:1, ‘tanh’:2, ‘relu’:3] - 3

The MLP hyperparameter optimization process using Jaya is as:

i. Step 1 Initialization. The initialization process is the process of determining the initial parameter values

for the Jaya algorithm. Jaya algorithm parameter used in this research are 20 population size and 50

iterations. After the initialization process, a random population will be generated equal to the population

size. Population consists of 20 hyperparameter set. Table 3 provides an illustration of the population.

Table 3. MLP-Jaya population illustration
Population 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

1 0.038 83 2 99 1 1

2 0.023 114 2 43 2 3

… …. … … … … …
20 0.055 16 3 58 3 1

Each population consist of 𝑋1 through 𝑋6, representing the hyperparameters to be optimized.

Specifically, 𝑋1 stands for learning rate, 𝑋2 stands for batch size, 𝑋3 stands for number of layers, 𝑋4 stands

for number of neurons, 𝑋5 stands for optimizer, and 𝑋6 stands for activation function. The optimizer and

activation function will be represented by integers and then converted to their respective real values.

ii. Step 2 Determine the best and worst fitness value. Each candidate in the population undergoes the MLP

training process to obtain an accuracy value from the validation set, which serves as the objective

function value. The candidate with the highest accuracy is deemed the best candidate, while the

candidate with the lowest accuracy is considered the worst candidate.

iii. Step 3 Population modification. Each candidate solution will have its value modified using (1).

𝑋′𝑗,𝑘,𝑖 = 𝑋𝑗,𝑘,𝑖 + 𝑟1,𝑗,𝑖(𝑋𝑗,𝑏𝑒𝑠𝑡,𝑖 − |𝑋𝑗,𝑘,𝑖|) − 𝑟2,𝑗,𝑖(𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖 − |𝑋𝑗,𝑘,𝑖|) (1)

𝑋𝑗,𝑘,𝑖 stands for 𝑗𝑡ℎ 𝑋 value of the 𝑘𝑡ℎ candidate in 𝑖𝑡ℎ iteration. 𝑋′𝑗,𝑘,𝑖 stands for updated value of

𝑋𝑗,𝑘,𝑖. 𝑟1,𝑗,𝑖 and 𝑟2,𝑗,𝑖 stands for the first and second random value for 𝑗𝑡ℎ variable in 𝑖𝑡ℎ iteration. 𝑋𝑗,𝑏𝑒𝑠𝑡,𝑖

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 620-630

624

stands for 𝑗𝑡ℎ 𝑋 value of the best candidate in 𝑖𝑡ℎ iteration and 𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖 stands for 𝑗𝑡ℎ 𝑋 value of the worst

candidate in 𝑖𝑡ℎ iteration. The best candidate is the candidate that has the highest accuracy and worst

candidate is the candidate that has the lowest accuracy.

iv. Step 4 MLP training to calculate modified solution fitness value. Step 3 produces a population with

modified candidates. MLP training is then performed again to obtain the fitness value of the latest

population.

v. Step 5 Update the population. If the modified population has a better fitness value, the initial candidates

will be replaced with the modified candidates using (1). Otherwise, the initial candidates will be

retained.

vi. Step 6 Iterations. Continue iterating through Steps 2 to 5 until the number of iterations is reached.

vii. Step 7 Store the optimized hyperparameters. The candidate with the highest accuracy in the final

iteration's population will become the best solution.

The first phase yields an optimal solution, comprising a combination of hyperparameters with the

highest accuracy value, deemed as optimized hyperparameters. These optimized hyperparameter values will

be employed for the testing phase. After concluding the testing phase, the evaluation stage begins. The MLP-

Jaya model's evaluation encompasses precision, recall, F1-score, and accuracy metrics. The MLP-Jaya

process will be iterated 10 times with varying populations and tested across 6 disease datasets to attain more

precise results. Fitness value and execution time from each iteration will be averaged.

2.4. Evaluation

The final stage involves assessing performance, employing metrics such as accuracy, precision,

recall, and F1-score for model evaluation. All these evaluation measures are derived from the confusion

matrix. A higher value in these metrics indicates a more accurate classification by the model. Confusion

matrix could be seen in Table 4. Precision, recall, F1-score, and accuracy will be calculated using (2) to (5).

Table 4. Confusion matrix
 Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)

Actual negative False positive (FP) True negative (TN)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (5)

3. RESULTS AND DISCUSSION

This study examined the influence of the Jaya algorithm on MLP hyperparameter optimization,

whereas previous studies have focused on the Jaya algorithm's effects on feature selection or its effects on

weight and bias optimization. The results demonstrate that the Jaya algorithm yields high accuracy when

utilized for optimizing MLP hyperparameters and Jaya algorithm could improve MLP accuracy (Table 5).

Table 5. Improvement in MLP-Jaya performance
Dataset MLP MLP-Jaya Performance improvement

D1 0.9342 0.9608 2.77%

D2 0.8103 0.8211 1.33%

D3 0.655 0.864 31.91%
D4 0.6351 0.8487 33.63%

D5 0.7556 0.8231 8.93%

D6 0.8262 0.7897 -3.33%

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Multi-layer perceptron hyperparameter optimization using Jaya algorithm for … (Andien Dwi Novika)

625

This section implements the proposed method's classification performance. Furthermore, MLP-

Jaya's performance compared with MLP-GA and MLP-PSO. Ten different random populations had been

used in ten experiments. Output from the experiments is optimized hyperparameter. Optimized

hyperparameter is a set of hyperparameters obtained from model with highest accuracy and lowest execution

time. Optimized hyperparameter from each model and each dataset shown in Table 6.

Table 6. Optimized hyperparameter

Dataset Model

Optimized hyperparameter

Accuracy Learning

rate
Batch size

Number of

hidden layers

Number of

neurons

Optim-

izer

Activation

function

D1 MLP-Jaya 0.093 68 1 71 Adam Relu 98.48%

MLP-GA 0.017 56 23 19 Adam Relu 96.49%

MLP-PSO 0.049 49 2 56 Adam Relu 98.25%
D2 MLP-Jaya 0.022 80 1 5 Adam Relu 87.18%

 MLP-GA 0.019 67 18 141 Sgd Relu 84.61%
MLP-PSO 0.026 46 3 48 Adam Relu 82.05%

D3 MLP-Jaya 0.011 38 2 129 Adam Relu 95%

 MLP-GA 0.003 51 13 24 Adam Relu 91.25%

 MLP-PSO 0.059 33 1 53 Adam Relu 92.5%
D4 MLP-Jaya 0.031 43 3 34 Adam Relu 76.62%

 MLP-GA 0.015 34 8 14 Adam Relu 77.27%

 MLP-PSO 0.046 39 2 59 Adam Relu 71.43%

D5 MLP-Jaya 0.001 98 10 7 Adam Relu 81.46%

 MLP-GA 0.013 20 9 10 Adam Relu 78.05%
 MLP-PSO 0.018 82 6 31 Adam Relu 80.97%

D6 MLP-Jaya 0.118 48 2 14 Adam Logistic 87.5%

 MLP-GA 0.007 60 11 22 Adam Relu 86.90%
 MLP-PSO 0.047 27 1 79 Adam Tanh 88.09%

Table 5 illustrates the improvement in MLP performance after hyperparameter optimization. These

results represent the average of 10 experiments conducted with different populations in the Jaya algorithm

and different random states in MLP without optimization. The results in Table 5 indicate an improvement in

MLP with hyperparameter optimization using Jaya across all datasets except D6. Significant improvement

after hyperparameter optimization is observed in D3 and D4. All features in dataset D6 are categorical data

that have been label-encoded, resulting in data containing only 0 or 1. Since the data is not continuous, MLP

with default hyperparameters is more appropriate.

Table 6 shows that from 4 from 6 datasets MLP-Jaya has the highest accuracy compared to MLP-

GA and MLP-PSO. Different datasets have different levels of accuracy, suggesting that the type of data has

an impact on how well the models work. D4 has lesser accuracy across all optimization methods, for

instance, whereas D1 and D3 typically have great accuracy, that is surpass 90%. The MLP-GA results show

some variation in hyperparameter values, and the achieved accuracy varies across datasets. It tends to use

moderate learning rates and batch sizes. The number of hidden layers and neurons is diverse, reflecting the

nature of the genetic algorithm's exploration.

Relu is consistently selected as the activation function and Adam is consistently selected as the

optimizer across all datasets and optimization techniques. This could imply that these decisions hold up well

when applied to various datasets and optimization techniques. Relu is widely employed in neural networks

for several reasons. It has been demonstrated to exhibit superior training performance across various

domains. Additionally, Relu contributes to accelerating the learning convergence in deep learning, a crucial

factor when training extensive and intricate neural networks [29]. The widespread utilization of the Adam

optimizer is attributed to its capacity for adaptive gain and swifter convergence in optimization algorithms,

especially within the realm of deep learning. In contrast to conventional optimization methods, Adam

dynamically adjusts the learning rate for each parameter independently, relying on the average of the first and

second moments of the gradients. This adaptability in learning rate and momentum enables Adam to expedite

convergence and diminish the likelihood of getting stuck in local optima, particularly in intricate

optimization landscapes characterized by a substantial number of parameters, as is often encountered in deep

learning models [30], [31]. The fact that different datasets have different optimized hyperparameters

emphasises how crucial hyperparameter tuning is to get the best results on tasks [32]. Table 7 shows average

accuracy and execution time comparison from 10 experiments. The experiments repeated 10 times with

different random populations to get more accurate result. MLP-Jaya outperforms the other algorithms in four

out of six experiments. In D5 case, MLP-Jaya had the maximum accuracy, but lost to MLP-PSO when the

accuracy is averaged from 10 experiments. The performance varies significantly across datasets for each

algorithm. For example, D1 and D3 show relatively high accuracy, while D4 consistently has lower accuracy

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 620-630

626

across all algorithms. MLP-Jaya tends to achieve high accuracy on D1, D3, and D5. MLP-GA generally

exhibits a broader range of accuracy, with higher standard deviation values. It achieves high accuracy on

some datasets (e.g., D1, D2, D3) but lower accuracy on others (e.g., D4, D5). In some cases, high standard

deviation values indicate that the algorithm's performance is sensitive to the choice of initial conditions or

randomness in the optimization process. Lower standard deviation values suggest more stable and predictable

performance.

Table 7. Accuracy and execution time comparison from 10 experiments

Dataset Model
Accuracy Avg. execution

time (minute) Max Min Average Std. Deviation

D1 MLP-Jaya 0.9848 0.9474 0.9608 0.0117 19.72

MLP-GA 0.9649 0.6228 0.8211 0.1708 23.1

MLP-PSO 0.9825 0.6228 0.864 0.1668 6.2

D2 MLP-Jaya 0.8718 0.8205 0.8487 0.0255 1.65

 MLP-GA 0.8462 0.8205 0.8231 0.0081 11.12
MLP-PSO 0.8462 0.641 0.7897 0.0671 2.3

D3 MLP-Jaya 0.95 0.65 0.7838 0.1422 2.94

 MLP-GA 0.9125 0.35 0.6425 0.1332 26.04

 MLP-PSO 0.9375 0.65 0.7638 0.1163 2.93

D4 MLP-Jaya 0.7662 0.5519 0.683 0.0673 12.5

 MLP-GA 0.7727 0.3571 0.6671 0.1128 17.53

 MLP-PSO 0.7143 0.3571 0.6246 0.1039 7.04

D5 MLP-Jaya 0.8146 0.7512 0.78 0.0167 12.23

 MLP-GA 0.7805 0.4976 0.5729 0.1144 34.58

 MLP-PSO 0.8098 0.4976 0.7166 0.1167 9.46

D6 MLP-Jaya 0.875 0.5298 0.7652 0.1553 7.49

 MLP-GA 0.869 0.5298 0.6759 0.1692 40.28

 MLP-PSO 0.881 0.4702 0.789 0.1464 9.97

MLP-GA consistently has the highest execution times, indicating that it requires more

computational resources to find solutions. The computational expense and time in genetic algorithms are

further influenced by the iterative execution of selection, crossover, and mutation processes on population

until a termination condition is satisfied, demanding substantial computational resources [33]. MLP-Jaya and

MLP-PSO demonstrate relatively lower execution times, with MLP-PSO being the most efficient in terms of

execution time. This finding contradicts [23], which states that the Jaya algorithm has a faster execution time

compared to PSO. The execution time in this study is heavily influenced by the MLP training process with a

sufficiently large number of layers, thereby causing the MLP to operate for a longer duration. Figure 3 shown

precision, recall, and f1-score for all models across all datasets. Figure 3(a) shown evaluation metrics for all

models on D1, Figure 3(b) on D2, Figure 3(c) on D3, Figure 3(d) on D4, Figure 3(e) on D5, and Figure 3(f)

on D6.

The results presented in Figure 3 are consistent with the results shown in Table 5. Across all

datasets, MLP-Jaya generally demonstrates higher precision, recall, and F1-score compared to MLP-GA and

MLP-PSO. MLP-GA tends to have lower precision and recall values compared to the other algorithms. This

suggests that there might be a trade-off between precision and recall in the solutions found by MLP-GA,

resulting in a compromise in f1-score and MLP-GA may struggle to find optimal solutions that balance

precision and recall effectively. Speed of convergence comparison for all models across all datasets can be

shown in Figure 4. Figure 4(a) shown speed of convergence for all models on D1, Figure 4(b) on D2, Figure

4(c) on D3, Figure 4(d) on D4, Figure 4(e) on D5, and Figure 4(f) on D6.

The convergence criterion in metaheuristics refers to the conditions under which a metaheuristic

algorithm is considered to have converged to a solution. MLP-Jaya consistently achieves convergence in

fewer iterations across most datasets. It reaches the convergence criterion (e.g., validation accuracy above

0.95 or 1.0) in either the first iteration or a very low number of iterations, makes it more suitable to real-time

application [34]. MLP-Jaya can achieve rapid convergence due to Jaya's ability to direct the population

towards the best solution and away from the worst solution [35].

MLP-GA tends to require more iterations to achieve convergence compared to MLP-Jaya. In the

cases of D1 and D3, MLP-GA achieves convergence in a relatively low number of iterations with

competitive validation accuracy. In D2, D4, D5, and D6, MLP-GA has the same validation accuracy from the

first iteration, but the accuracy obtained cannot approach the validation accuracy of MLP-Jaya and MLP-

PSO. MLP-PSO demonstrates a competitively fast convergence rate. MLP-PSO generally converges faster

than MLP-GA, but in some cases, it requires more iterations to converge compared to MLP-Jaya. In D1 and

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Multi-layer perceptron hyperparameter optimization using Jaya algorithm for … (Andien Dwi Novika)

627

D3, MLP-PSO converges relatively quickly, while in D5 and D6, it requires more iterations compared to

other datasets.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Evaluation metrics on (a) D1, (b) D2, (c) D3, (d) D4, (e) D5, and (f) D6

While MLP-Jaya often converges quickly, the corresponding validation accuracy varies across

datasets. In some cases, MLP-PSO achieves higher accuracy at convergence, as seen in D3 and D6. MLP-

GA, on the other hand, may not reach as high accuracy levels as MLP-Jaya or MLP-PSO on certain datasets.

The convergence speed and accuracy at convergence are influenced by the characteristics of each dataset. For

example, D3 and D6 show relatively faster convergence across all algorithms, while D2 and D4 may pose

challenges for convergence, especially for MLP-GA.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 620-630

628

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Speed of convergence comparison on (a) D1, (b) D2, (c) D3, (d) D4, (e) D5, and (f) D6

Despite its competitive performance, MLP-Jaya is susceptible to overfitting, much like other

metaheuristic algorithms. This is due to the heavy dependence of metaheuristic algorithms on the

initialization of the population. Random population initialization is utilized in this study because it adheres to

the implementation of the Jaya algorithm as outlined by [17]. Random initialization suffers from high

discrepancy and inefficient coverage of the search space. The discrepancy of the random numbers

significantly impacts the authenticity of the randomly generated solutions within the search spaces [36].

Additional and thorough investigations may be necessary to validate the impact of population initialization

on the performance of the Jaya algorithm.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Multi-layer perceptron hyperparameter optimization using Jaya algorithm for … (Andien Dwi Novika)

629

This study illustrates that the Jaya algorithm is more dependable compared to PSO and GA. Despite

its quick execution time, PSO frequently gets stuck in local optima solutions, whereas GA demands more

computational resources. This positions Jaya as a competitive option for optimization tasks, particularly for

real-time applications. This is because Jaya can achieve competitive results while quickly converging. Future

research studies could investigate the performance of the Jaya algorithm on real-time applications using

alternative methods of population initialization.

4. CONCLUSION

In summary, this paper investigates the utility of the Jaya algorithm for hyperparameter optimization

in the widely used MLP model. The proposed MLP-Jaya aims to create an efficient and straightforward

model, eliminating the need for intricate adjustments. Results indicate the superiority of MLP-Jaya over other

metaheuristic approaches (MLP-GA and MLP-PSO) in terms of accuracy (highest accuracy is 96.08% for

MLP-Jaya, 82.11% for MLP-GA, 86.4% for MLP-PSO in breast cancer Wisconsin dataset) across diverse

datasets. The algorithm demonstrates robustness, achieving competitive hyperparameter settings and faster

convergence (MLP-Jaya reaching convergence below 15 iterations), particularly beneficial for real-time

applications. Evaluation metrics such as precision, recall, and F1-score consistently favor MLP-Jaya,

highlighting its efficiency in execution time compared to MLP-GA and competitive performance against

MLP-PSO. In conclusion, MLP-Jaya emerges as a potent and streamlined hyperparameter tuning solution for

MLP, offering simplicity, parameter-less design, and reliable performance across various scenarios.

REFERENCES
[1] S. B. Kotsiantis, “Supervised machine learning: a review of classification techniques,” Informatica, vol. 31, pp. 249–268, 2007.
[2] G. Kesavaraj and S. Sukumaran, “A study on classification techniques in data mining,” in 2013 Fourth International Conference on

Computing, Communications and Networking Technologies (ICCCNT), Jul. 2013, pp. 1–7, doi: 10.1109/ICCCNT.2013.6726842.

[3] R. Andonie, “Hyperparameter optimization in learning systems,” Journal of Membrane Computing, vol. 1, no. 4, pp. 279–291, Dec.
2019, doi: 10.1007/s41965-019-00023-0.

[4] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter optimization for machine learning models

based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, 2019, doi:

10.11989/JEST.1674-862X.80904120.

[5] R. O. Ogundokun, S. Misra, M. Douglas, R. Damaševičius, and R. Maskeliūnas, “Medical internet-of-things based breast cancer

diagnosis using hyperparameter-optimized neural networks,” Future Internet, vol. 14, no. 5, p. 153, May 2022, doi:
10.3390/fi14050153.

[6] S. Sanders and C. Giraud-Carrier, “Informing the use of hyperparameter optimization through metalearning,” in 2017 IEEE

International Conference on Data Mining (ICDM), Nov. 2017, pp. 1051–1056, doi: 10.1109/ICDM.2017.137.
[7] J. Han, C. Gondro, K. Reid, and J. P. Steibel, “Heuristic hyperparameter optimization of deep learning models for genomic

prediction,” G3 Genes|Genomes|Genetics, vol. 11, no. 7, p. jkab032, Jul. 2021, doi: 10.1093/g3journal/jkab032.

[8] N. Lin, Y. Chen, H. Liu, and H. Liu, “A comparative study of machine learning models with hyperparameter optimization algorithm
for mapping mineral prospectivity,” Minerals, vol. 11, no. 2, p. 159, Feb. 2021, doi: 10.3390/min11020159.

[9] K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C.-H. Chen, “Hyperparameter tuning deep learning for diabetic retinopathy fundus image

classification,” IEEE Access, vol. 8, pp. 118164–118173, 2020, doi: 10.1109/ACCESS.2020.3005152.
[10] Z. Shen, Y. Zhang, L. Wei, H. Zhao, and Q. Yao, “Automated machine learning: from principles to practices,” Oct. 2018, doi:

arXiv:1810.13306v1.

[11] E. Uzlu, “Application of Jaya algorithm-trained artificial neural networks for prediction of energy use in the nation of Turkey,”
Energy Sources, Part B: Economics, Planning, and Policy, vol. 14, no. 5, pp. 183–200, May 2019, doi:

10.1080/15567249.2019.1653405.

[12] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation metaheuristic algorithms,” Computers &
Industrial Engineering, vol. 137, p. 106040, Nov. 2019, doi: 10.1016/j.cie.2019.106040.

[13] A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Optimized three deep learning models based-PSO

hyperparameters for Beijing PM2.5 prediction,” Knowledge Engineering and Data Science, vol. 5, no. 1, p. 53, Jun. 2022, doi:
10.17977/um018v5i12022p53-66.

[14] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing,

vol. 415, pp. 295–316, Nov. 2020, doi: 10.1016/j.neucom.2020.07.061.
[15] H. Das, B. Naik, and H. S. Behera, “A Jaya algorithm based wrapper method for optimal feature selection in supervised

classification,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3851–3863, Jun. 2022, doi:

10.1016/j.jksuci.2020.05.002.
[16] E. H. Houssein, A. G. Gad, and Y. M. Wazery, “Jaya algorithm and applications: a comprehensive review,” in Lecture Notes in

Electrical Engineering, Springer International Publishing, 2021, pp. 3–24.

[17] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, and J. Liang, “A performance-guided JAYA algorithm for parameters identification of
photovoltaic cell and module,” Applied Energy, vol. 237, pp. 241–257, Mar. 2019, doi: 10.1016/j.apenergy.2019.01.008.

[18] R. Venkata Rao, “Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems,”

International Journal of Industrial Engineering Computations, pp. 19–34, 2016, doi: 10.5267/j.ijiec.2015.8.004.
[19] R. A. Zitar, M. A. Al-Betar, M. A. Awadallah, I. A. Doush, and K. Assaleh, “An intensive and comprehensive overview of JAYA

algorithm, its versions and applications,” Archives of Computational Methods in Engineering, vol. 29, no. 2, pp. 763–792, Mar. 2022,

doi: 10.1007/s11831-021-09585-8.
[20] Y.-D. Zhang et al., “Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and

Jaya algorithm,” Multimedia Tools and Applications, vol. 77, no. 17, pp. 22629–22648, Sep. 2018, doi: 10.1007/s11042-017-5023-0.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 620-630

630

[21] S.-H. Wang, P. Phillips, Z.-C. Dong, and Y.-D. Zhang, “Intelligent facial emotion recognition based on stationary wavelet entropy and

Jaya algorithm,” Neurocomputing, vol. 272, pp. 668–676, Jan. 2018, doi: 10.1016/j.neucom.2017.08.015.
[22] P. Singh, K. K. Mishra, and P. Dwivedi, “Enhanced hybrid model for electricity load forecast through artificial neural network and

Jaya algorithm,” in 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Jun. 2017, pp. 115–120,

doi: 10.1109/ICCONS.2017.8250660.
[23] M. Alshutbi, Z. Li, M. Alrifaey, M. Ahmadipour, and M. M. Othman, “A hybrid classifier based on support vector machine and Jaya

algorithm for breast cancer classification,” Neural Computing and Applications, vol. 34, no. 19, pp. 16669–16681, Oct. 2022, doi:

10.1007/s00521-022-07290-6.
[24] W. Warid, H. Hizam, N. Mariun, and N. Abdul-Wahab, “Optimal power flow using the Jaya algorithm,” Energies, vol. 9, no. 9, p.

678, Aug. 2016, doi: 10.3390/en9090678.

[25] R. V. Rao, D. P. Rai, and J. Balic, “Surface grinding process optimization using Jaya algorithm,” in Advances in Intelligent Systems
and Computing, Springer India, 2016, pp. 487–495.

[26] N. Goel, S. Chacko, and R. N. Patel, “A parameter less stochastic optimization technique for tuning of speed PI controller of DTC

induction motor drive,” IAES International Journal of Robotics and Automation (IJRA), vol. 8, no. 2, p. 105, Jun. 2019, doi:
10.11591/ijra.v8i2.pp105-112.

[27] H. Ramchoun, M. Amine, J. Idrissi, Y. Ghanou, and M. Ettaouil, “Multilayer perceptron: architecture optimization and training,”

International Journal of Interactive Multimedia and Artificial Intelligence, vol. 4, no. 1, p. 26, 2016, doi: 10.9781/ijimai.2016.415.
[28] F. Ecer, “Comparing the bank failure prediction performance of neural networks and support vector machines: the Turkish case,”

Economic Research-Ekonomska Istraživanja, vol. 26, no. 3, pp. 81–98, Jan. 2013, doi: 10.1080/1331677X.2013.11517623.

[29] K. Hara, D. Saito, and H. Shouno, “Analysis of function of rectified linear unit used in deep learning,” in 2015 International Joint
Conference on Neural Networks (IJCNN), Jul. 2015, pp. 1–8, doi: 10.1109/IJCNN.2015.7280578.

[30] E. C. Seyrek and M. Uysal, “Performance analysis of MADGRAD, MirrorMADGRAD and ADAM optimizers on a CNN model in

the hyperspectral image classification,” in 2023 10th International Conference on Recent Advances in Air and Space Technologies
(RAST), Jun. 2023, pp. 1–6, doi: 10.1109/RAST57548.2023.10197855.

[31] Z. Fang, X. Xu, X. Li, H. Yang, and C. Gong, “SPGD algorithm optimization based on Adam optimizer,” in AOPC 2020: Optical
Sensing and Imaging Technology, Nov. 2020, p. 174, doi: 10.1117/12.2579991.

[32] H.-T. Vo, H. T. Ngoc, and L.-D. Quach, “An approach to hyperparameter tuning in transfer learning for driver drowsiness detection

based on Bayesian optimization and random search,” International Journal of Advanced Computer Science and Applications, vol. 14,
no. 4, 2023, doi: 10.14569/IJACSA.2023.0140492.

[33] P. S. Oliveto and C. Witt, “Improved time complexity analysis of the simple genetic algorithm,” Theoretical Computer Science, vol.

605, pp. 21–41, Nov. 2015, doi: 10.1016/j.tcs.2015.01.002.
[34] M. Psarakis, A. Dounis, A. Almabrok, S. Stavrinidis, and G. Gkekas, “An FPGA-based accelerated optimization algorithm for

real-time applications,” Journal of Signal Processing Systems, vol. 92, no. 10, pp. 1155–1176, Oct. 2020, doi: 10.1007/s11265-

020-01522-5.
[35] J. Yu, C.-H. Kim, A. Wadood, T. Khurshaid, and S.-B. Rhee, “Jaya algorithm with self-adaptive multi-population and Lévy flights for

solving economic load dispatch problems,” IEEE Access, vol. 7, pp. 21372–21384, 2019, doi: 10.1109/ACCESS.2019.2899043.

[36] J. O. Agushaka and A. E. Ezugwu, “Initialisation approaches for population-based metaheuristic algorithms: a comprehensive
review,” Applied Sciences, vol. 12, no. 2, p. 896, Jan. 2022, doi: 10.3390/app12020896.

BIOGRAPHIES OF AUTHORS

Andien Dwi Novika is presently a master's degree student in computer science at

Bina Nusantara University. Having earned her bachelor's degree in computer science from

Diponegoro University, she brings a wealth of academic knowledge to her current pursuit. She

has gained practical experience through various roles, including serving as an integration staff

at NicePay, a full stack developer intern at Maven Digital Asia, and a back-end developer

intern at Gagas Cipta Persada. She can be reached at: andien.novika@binus.ac.id.

Abba Suganda Girsang currently a lecturer in the Master of Information

Technology program at Bina Nusantara University in Jakarta. He earned his Ph.D. from the

Institute of Computer and Communication Engineering, Department of Electrical Engineering,

at National Cheng Kung University in Tainan, Taiwan, in 2014. His undergraduate degree is

from the Department of Electrical Engineering at Gadjah Mada University (UGM) in

Yogyakarta, Indonesia, in 2000. Subsequently, he pursued his master's degree in the

Department of Computer Science at the same university from 2006 to 2008. Throughout his

career, he gained experience as a staff consultant programmer at Bethesda Hospital in

Yogyakarta in 2001 and worked as a web developer from 2002 to 2003. He later joined the

faculty of the Department of Informatics Engineering at Janabadra University, serving as a

lecturer from 2003 to 2015. Additionally, he taught various subjects at different universities

from 2006 to 2008. Abba Suganda Girsang's research interests encompass swarm intelligence,

combinatorial optimization, and decision support systems. For further communication, he can

be reached at email: agirsang@binus.edu.

https://orcid.org/0009-0000-8055-4123
https://scholar.google.com/citations?user=cYL3y-4AAAAJ&hl=id&oi=ao
https://orcid.org/0000-0003-4574-3679
https://scholar.google.com/citations?user=TiS8QrkAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55513277600

