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 The future power of photovoltaic systems (PVS) is gaining significant 

attention due to its rising potential. This has resulted in a substantial amount 

of research emphasizing the importance of optimizing the PVS efficiency. 

However, the identification of PV cell model parameters remains a 

challenging task, mainly due to the characteristics of PV cells and their 

dependence on varying meteorological conditions. In this work, we present a 

novel methodology based on an improved new multi objective particle 

swarm optimization (NMOPSO) algorithm for the PV cell parameters 

identification. The main goal is to minimize the root mean square error 

(RMSE) and to calculate the series resistance (Rs) by means of its non-linear 

equation form. The applied algorithm uses an evolving and adaptive search 

strategy to enhance both speed of convergence for the parameter 

identification process precision. Through extensive simulations, we 

demonstrate that proposed approach outperforms current methods in terms 

of accuracy, precision, and PV parameters extraction. 
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1. INTRODUCTION 

Over several decades, the extensive use of fossil fuels has resulted in considerable environmental 

pollution [1]. To reduce environmental pollution, the integration of renewable energy sources is poised to 

play a pivotal role in the future. Among these sources, solar energy is anticipated to gain widely popular due 

to its ease of installation, zero emissions, sustainability, and economic viability [2]. 

Solar power stands out as one of the most abundant and accessible forms of clean energy [3], as it 

can be connected in diverse locations such as rooftops, streets, mountains, prairies, and other areas with 

visible sunlight [4]-[6]. It is an integral component of renewable energy sources for electricity generation, 

alongside green energies like hydropower, geothermal, and wind power. Furthermore, solar energy owns a 

notable advantage as it is non-exploitative and environmentally friendly, contributing to a more sustainable 

and eco-conscious future [3], [6], [7]. 

While previous studies have extensively explored the advantages and potential of solar energy as a 

renewable energy source, there still exist notable gaps in our understanding and application of this 

technology. The efficiency and performance of photovoltaic (PV) systems are significantly dependent on the 

precise estimation of PV cell parameters [8]. In the field of PV modules, the parameters estimation of PV 

cells is a challenge task due to its difficult behavior and the numerous of involved variables. This task 

https://creativecommons.org/licenses/by-sa/4.0/
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requires precise measurements to consider different factors such as non-linearity and variability among 

parameters. Furthermore, optimizing energy conversion efficiency within PV systems is based on accurate 

parameter estimation. Thus, accurate parameter estimation is pivotal for ensuring the optimal performance 

and sustainability of photovoltaic systems (PVS) in harnessing solar power. 

Researchers are continually striving to enhance the accuracy of their models. This involves 

improving the mathematical frameworks used to describe PV modules. A crucial aspect of this search is the 

evaluation of PV parameters. Some studies apply mathematical techniques, while others use numerical 

analyses to solve complex and non-linear equations. Notably, the integration of metaheuristic methods offers 

efficient solutions compared to traditional approaches, further enhancing the modeling accuracy of PV 

systems. 

Hussein [9], suggested an iterative technique based on the Newton–Raphson method to extract the 

single-diode parameters. The fundamental idea of this method is to establish four equations based on the 

remarkable points as functions of the five parameters. A closed-form expression is then derived to calculate 

the value of (Rs) while incrementing the ideality factor’s value. The approach used in [9] stands out for its 

improved computational results, representing a significant improvement in precision compared to existing 

literature. Ndegwa et al. [10], a precise and efficient analytical method was introduced for parameter 

prediction. This method, based on data provided by the manufacturer, aims to simplify the calculation 

technique for evaluating the ideality factor. The use of particle swarm optimization (PSO) in [11] led to the 

achievement of remarkably low root mean square error (RMSE) values in parameter extraction with 

minimum computation time. This performance significantly surpassed competing methodologies and 

computational algorithms. The findings shows the substantial potential of PSO in determining solar cell 

parameters. 

Saadaoui et al. [12], an innovative method based on the multiple learning JAYA algorithm is 

presented for extracting the parameters from PV models. This approach integrates adaptive weighting to 

accelerate the exploration of potential search spaces and improving the efficiency of parameter extraction 

techniques. Wang [13], suggested the use of the EPSO algorithm to minimize the mean squared error 

between measured and estimated data. Lidaighbi et al. [14] applied a hybrid analytical/iterative method, with 

the goal of minimizing disparities between calculated and experimental data, resulting in remarkable 

accuracy that outperformed other techniques. The improved firefly algorithm (IFA) was applied in [15] to 

proficiently extract the unidentified parameters of PV solar cells, precisely adjusting the global maximum 

power point (GMPP) in PV panels. This methodology introduced a novel approach to optimize energy 

production within PVS. Choulli et al. [16], a novel hybrid analytical/iterative methodology was applied to 

extract parameters of the single diode model (SDM). This technique is based on the Lambert function to 

resolve the nonlinear equation for (Rs). It leads to a significantly improved RMSE compared to other 

methods. The primary aim is to minimize the average error between simulated and experimental currents. 

Long et al. [17], used a hybrid algorithm, namely the grey wolf optimizer and cuckoo search 

(GWOCS), to address various optimization challenges associated with parameter extraction in four distinct 

PV solar cell models. This hybrid method not only aimed to elevate the overall optimization standards but 

also specifically developed the GWOCS to tackle global optimization problems and extract parameters from 

several solar PV cell models under different operating conditions, while attempting to solve the (Rs) equation. 

Sharma and Tripathi [18], compared to traditional methods, metaheuristic techniques have demonstrated 

superior performance. Due to their ease of implementation and efficiency, these methods are suitable for 

solving non-linear optimization problems as (Rs) equation. 

Our proposed method, based on new multi objective particle swarm optimization (NMOPSO) 

algorithm, introduced in 2022 [19], represents a novel approach that has demonstrated remarkable results in 

the domain of electric motors parameters optimization. This algorithm stands out for its ability to efficiently 

solve non-linear equations within minimal computation time. Notably, its application has surpassed the 

performance of conventional PSO and various enhanced PSO variants. The present study investigated the 

identification of the PV cell parameters by means of the NMOPSO algorithm. To achieve this goal, an 

optimization process, involving two objective functions, is applied. The first objective function aims to 

minimize the RMSE, while the second calculates the series resistance (Rs) by using its non-linear equation 

form. This technique is based on an adaptive and scalable search strategy. To evaluate the effectiveness of 

the proposed method, deep simulations, and comparisons with state of art techniques have been conducted. 

The remainder of this paper is structured as follows: the PV cell modelling based on SDM is described in 

section 2. In section 3, we define the optimization problem and introduce the used algorithm. The 

optimization results and the discussion are presented in section 4. Finally, we finish by a conclusion. 
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2. PV CELL MODELLING: SINGLE DIODE MODEL 

The use of the SDM shows a good accuracy in modelling electrical features of different PV 

cell/modules variants under various environmental conditions. As shown in Figure 1, this model consists of a 

parallel arrangement of a diode and a constant current source of energy. When exposed to sunlight, the PV 

cell produces a light current. This current is determined by applying the Kirchhoff’s law. 
 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ  (1) 

 

Where: 
 

𝐼𝐷 = 𝐼0 [𝑒𝑥𝑝(
𝑉+𝐼𝑅𝑠

𝑛𝑉𝑡
) − 1] (2) 

 

𝐼𝑠ℎ =
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
 (3) 

 

 

 
 

Figure 1. Equivalent circuit of SDM 
 

 

Consequently, we can modify (1) as: 
 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝(
𝑉+𝐼𝑅𝑠

𝑛𝑉𝑡
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
 (4) 

 

where (I0), (Iph), (n), (Rsh) and (Rs) represent: the saturation current of the diode, the photo-generated current, 

the diode ideality factor, the shunt, and Rs. The output voltage, (Vt), is expressed as (5): 
 

Vt =
𝐾𝑇

q
 (5) 

 

(T) is the PV module temperature in Kelvin, with 𝑞 = 1.602 ∗ 10−19𝐶 and 𝐾 = 1.3806 ∗ 10−23𝐽/𝑘 

 

2.1.  PV cell parameters identification methods 

2.1.1. Photocurrent (Iph) 

Based on manufacturer’s specifications regarding the short circuit condition at standard test 

conditions (STC), the calculation of the light-generated current (Iph) is performed. The obtained expression is 

calculated by using the short circuit conditions (V = 0; I = Isc) in (4). 

 

𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝( 
𝑅𝑠𝐼𝑠𝑐
𝑛𝑉𝑡 ) − 1] −

𝑅𝑠𝐼𝑠𝑐

𝑅𝑠ℎ
 (6) 

 

Since the value of (Rs)is exceptionally low [14], the following expression is derived: 

 

𝐼𝑝ℎ  =  
𝑅𝑠+𝑅𝑠ℎ

𝑅𝑠ℎ
𝐼𝑠𝑐 (7) 

 

2.1.2. Diode saturation current (I0) 

The expression is derived by substituting the open circuit conditions (I=0; V=Voc) in (4). 

 

𝐼0  =  
𝐼𝑝ℎ−

𝑣𝑜𝑐
𝑅𝑠ℎ

𝑒𝑥𝑝(
𝑣𝑜𝑐
𝑛 𝑉𝑡

)−1
 (8) 
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2.1.3. Parallel resistance (Rsh) 

In this study, we apply the (Rsh) in (9), originally given by [12]:  
 

Rsh =
VOC(exp(

Vmp+ImpRs 

nVt
)−exp(

IscRs 
nVt

))−Vmp(exp(
Voc
nVt

))−exp(
IscRs 

nVt
)

Imp(exp(
Voc
nVt

))−exp(
IscRs 

nVt
))−Isc(exp(

Voc
nVt

))−exp(
Vmp+ImpRs 

nVt
)

− Rs (9) 

 

2.1.4. The series resistance (Rs) 

To calculate the Rs in the SDM of a solar panel, the (10) can be used [14]: 
 

exp (
(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)−𝑉𝑜𝑐

𝑛𝑉𝑡
) =

𝑛𝑉𝑡𝑉𝑚𝑝(2𝐼𝑚𝑝−𝐼𝑠𝑐)

𝑉𝑚𝑝𝐼𝑠𝑐+(𝐼𝑚𝑝−𝐼𝑠𝑐)(𝑉𝑚𝑝−𝑅𝑠𝐼𝑚𝑝)−𝑛𝑉𝑡(𝑉𝑚𝑝𝐼𝑠𝑐−𝑉𝑜𝑐𝐼𝑚𝑝)
 (10) 

 

2.1.5. Diode ideality factor (n) 

In practice, the ideality factor (n) can be expressed as a function of the cell voltage, and it depends 

on temperature, cell’s PV module number, and voltage variations. In this study, a novel iterative method is 

introduced to calculate the ideality factor (n), based on the results shown in [14]. This approach enhances the 

reliability of calculating this parameter. It is expressed by (11). 
 

𝑛 = 𝑛0 + 0.01 𝑉𝑡 (11) 
 

Chegaar et al. [20], it was demonstrated that the ideality factor is contingent on the intensity of the 

irradiation, increasing linearly with radiation levels above 350 W/m2.Therefore, we can modify the (11) by: 
 

𝑛 = 𝑛0 + 0.01 𝑉𝑡   + 𝑘/𝐺      (12) 
 

where (n0) is the ideality factor initial value, (k) is a coefficient representing the influence of solar irradiance 

on (n), (G) is the solar irradiance. This relationship suggests that the ideality factor (n)can slightly change 

with variations in solar irradiance and temperature. Although these influences are relatively small, they 

contribute to achieving more accurate results. 

 

 

3. MULTI-OBJECTIVE OPTIMIZATION PROCESS  

Stochastic optimization algorithms play a key role in solving complex PV cell problems. In this 

section, the optimization problem is defined by introducing decision variables and specifying the two 

objective functions. The decision variables are derived from the parameters of the SDM circuit. 

Subsequently, two objective functions are identified: the first aimed to solve the nonlinear equation for the 

Rs, while the second aimed to minimize the (RMSE). 

To conduct simulations, we implemented the NMOPSO algorithm using “Eclipse” software and 

JAVA programming language. We extracted the parameters obtained from the NMOPSO algorithm and 

applied them to the circuit of the SDM using MATLAB/Simulink. This step was crucial in validating the 

results obtained from the optimization process. 

 

3.1.  Decision variables 

The decision variables of this optimization problem are the five parameters (Rs), (Rsh), (I0), (Iph), and 

(n). Table 1 provides the variation ranges for each parameter of each cell. 
 

 

Table 1. Decision variables 
 BP 5170 S STM640/36 Photowatt-PWP201 RTC Fr PVM752GaAs STM6 120/36 

Rs(Ω) [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] 
Rsh(Ω) [100,400] [100,600] [300,800] [0,100] [300,800] [100,400] 

I0(A) [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] 

Iph(A) [0,10] [0,10] [0,10] [0,5] [0,1] [0,10] 
N [1,2] [1,2] [1,2] [1,2] [1,2] [1,2] 

 

 

3.2.  Objective functions 

As previously mentioned, our study focuses on two objective functions: the first aims to minimize 

the RMSE for each PV cell, while the second aims to calculate the Rs. The equation determining the Rs is 
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nonlinear. Various methods have been explored in the literature to approximate (Rs), including the utilization 

of the Lambert function as referenced in [16]. In our work, we apply the NMOPSO algorithm. The 

expression for the first objective function is as follows: 
 

𝑓1 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑅𝑀𝑆𝐸) (13) 
 

the RMSE is given by: 
 

𝑅𝑀𝑆𝐸 =
1

𝑁
√∑ (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑐𝑎𝑙)2𝑁

𝑖=1  (14) 

 

(Imeasured) and (Ical) are the measured and estimated currents. 

The equation representing the Rs has a non-linear form. Therefore, to find Rs, it is necessary to 

simplify its expression at first. Based on (10), we can derive the following expression: 
 

𝑅𝑠 =
(𝑛𝑉𝑡 ln(

𝑛𝑉𝑡𝑉𝑚𝑝(2𝐼𝑚𝑝−𝐼𝑠𝑐)

𝑉𝑚𝑝𝐼𝑠𝑐+(𝐼𝑚𝑝−𝐼𝑠𝑐)(𝑉𝑚𝑝−𝑅𝑠𝐼𝑚𝑝)−𝑛𝑉𝑡(𝑉𝑚𝑝𝐼𝑠𝑐−𝑉𝑜𝑐𝐼𝑚𝑝)
)−𝐼𝑚𝑝(𝑉𝑚𝑝−𝑉𝑜𝑐))

𝐼𝑚𝑝
 (15) 

 

either:  
 

(𝑛𝑉𝑡 ln(
𝑛𝑉𝑡𝑉𝑚𝑝(2𝐼𝑚𝑝−𝐼𝑠𝑐)

𝑉𝑚𝑝𝐼𝑠𝑐+(𝐼𝑚𝑝−𝐼𝑠𝑐)(𝑉𝑚𝑝−𝑅𝑠𝐼𝑚𝑝)−𝑛𝑉𝑡(𝑉𝑚𝑝𝐼𝑠𝑐−𝑉𝑜𝑐𝐼𝑚𝑝)
)−𝐼𝑚𝑝(𝑉𝑚𝑝−𝑉𝑜𝑐))

𝐼𝑚𝑝𝑅𝑠
= 1 (16) 

 

for simplifying calculation, we assume two auxiliary variables (A) and (B) that respectively represent the 

numerator and the denominator of (16). The optimization algorithm aims to identify optimal values of Rs, 

ensuring that the ratio (A/B) approximates a value close to 1. Therefore, the second objective function can be 

expressed as (17). 
 

𝑓2 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (1 −  A/B) (17) 
 

3.3.  Used optimization algorithm 

The investigated method uses a recently developed algorithm known as NMOPSO [19]. This 

stochastic algorithm encompasses a randomized process for generating points within the search space, 

coupled with a heuristic facilitating convergence. In this approach, particles are represented as vectors 

navigating through a D-dimensional search space with the objective of aligning themselves with an optimal 

solution. Each particle is described by both a position (xid) and a velocity (vid). All particles in the swarm can 

communicate, establishing a global neighborhood of informants. Additionally, each particle maintains a 

memory that stores the best-visited position (pid) known as the “individual leader”, and the optimal position 

achieved within its neighborhood based on Pareto dominance (pg) known as the “global leader”. Indeed, the 

incorporation of the global neighborhood technique not only improves exploration of the search space but 

also facilitates more intelligent movement of particles, aiding in the discovery of optimal solutions. Certainly, 

the collaborative team behavior demonstrates greater insight compared to that of an individual particle, 

enabling a more sophisticated approach to the optimization process. To avoid getting trapped in local optima, 

the NMPSO algorithm monitors the position of an extra particle known as the “contemporary leader” (nid). 

This position is constantly updated by estimating two random particles in the swarm according to their 

crowding distance. The solution that is simultaneously non-dominated and less crowded between these 

particles is designated as the new contemporaneous particle. 

During its movement, the particle has multiple choices: it can continue along its current path (with 

its current velocity vid), return to its previously identified best position (pid), trail the best position identified 

by its neighborhood (pg), or advance towards the position of the contemporaneous particle (nid). The 

computation of the movement and the velocity of particles is determined by means of these four tendencies 

and considering a specific probability. The movement of particles is calculated using (18). 
 

𝑣𝑖𝑑(𝑡 + 1) = {

𝜔𝑑(𝑡)𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝑟2(𝑝𝑔 − 𝑥𝑖𝑑)𝑖𝑓𝑟𝑎𝑛𝑑( ) ≥ 𝜂

𝜔𝑑(𝑡)𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝑟2(𝑝𝑔 − 𝑥𝑖𝑑)𝑖𝑓𝑟𝑎𝑛𝑑( ) < 𝜂

+𝑐3𝑟3(𝑛𝑖𝑑 − 𝑥𝑖𝑑)

 (18) 

 

(ωd) is the inertia factor (ωd∈[ωmin,ωmax]), (c1), (c2), and (c3) are the learning factors, and (r1), (r2), and (r3) are 

a random numbers belonging to [0.1], determined following a probabilistic distribution. 
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The inertia factor and the learning factors are employed to govern the particle’s motion, striking a 

balance between exploitation and exploration within the search space. In this algorithm, an evolutionary 

strategy used to adjust the values of these factors. Indeed, this approach integrates the adaptive inertia factor 

technique and gives heightened importance to the intelligence of individual particles from the initial stages. 

As the process unfolds, NMOPSO then highlights the collective intelligence of the entire swarm in later 

stages. These factors are expressed as follows: 
 

𝜔𝑑(𝑡) = {
𝜔𝑚𝑎𝑥 𝑖𝑓𝑥𝑖𝑑(𝑡) > 𝑥𝑚𝑒𝑎𝑛

𝜔𝑚𝑖𝑛 −
(𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)×(𝑥𝑖𝑑(𝑡)−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑒𝑎𝑛−𝑥𝑚𝑖𝑛)
𝑖𝑓𝑥𝑖𝑑(𝑡) ≤  𝑥𝑚𝑒𝑎𝑛

 (19) 

 

𝑐1 = 0.5 + 2 × cos (
𝜋×(𝑡−1)

2×(𝑇−1)
) (20) 

 

𝑐2 = 0.5 + 2 × sin (
𝜋×(𝑡−1)

2×(𝑇−1)
) (21) 

 

 𝑐3 = 𝑐1 (22) 
 

where (xmin) is the minimum value of (xid), (xmean) is the mean value of (xid), and T is the maximum number of 

generations. 

Finally, this algorithm uses the mutation mechanism on two thirds of the particles and incorporates 

the crowding distance to enhance the diversity of solutions. Additionally, it utilizes an external archive to 

store the optimal solutions. The pseudocode for the NMOPSO algorithm is provided in algorithm 1. 
 

Algorithm 1. Pseudocode of NMOPSO 
1- Initialize the positions of the particles in the swarm 

2- Evaluate the particles 

3- Initialize the individual and the global leaders 

4- Compute the crowding distance for the global leaders 

5- Initialize the contemporary leaders 

7- Repeat 

8- For each particle do 

9-   Choose the global leader. 

10-  Update the velocity and position  

11-  Mutate particle based on a specified probability 

12-  Evaluate the particle 

13-  Update the individual leader. 

14- End for 

15- Update the global and contemporary leaders of particles. 

16- Send global leaders to the external archive. 

17- Compute the crowding distance for global leaders 

18- Until (maximum number of generations is reached) 

19- Return the external archive 
 

 

4. RESULTS AND DISCUSSION 

To evaluate the accuracy of our proposed method and quantify the variance between the obtained 

results and measurements, we apply the RMSE criterion. This criterion is determined for various solar cell 

configurations, including: 

− The BP 5170 S PV module uses 72 monocrystalline silicon cells connected in series, operating at a 

temperature of 25 °C with an irradiation of 1,000 W/m2. 

− The Photowatt-PWP 201 Polycrystalline solar modules consist of 36 cells connected in series, operating 

at a temperature of 45°C under an irradiation of 1,000 W/m2. 

− The STM6 40/36 and STM6 120/36, both working at STC at a temperature of 25 °C with an irradiation of 

1,000 W/m2. 

− The PVM 752 GaAs thin film cell, which operates at STC conditions, 25 °C temperature, and  

1,000 W/m2 irradiation. 

− The RTC France silicon solar cell, featuring a 57 mm diameter, operates at 33 °C temperature with an 

irradiation of 1,000 W/m2. 

The diverse configurations used for evaluating the accuracy of our method across a broad spectrum 

of solar cell types and environmental conditions. Moreover, accurately predicting the I-V curves of 

commercial PV modules is crucial to validate the accuracy of the algorithm used as a tool for characterizing 

the performance of these modules. The analyzed PV cells are defined with electrical characteristics which 

are: the number of cells in series (Ns), the maximum power current (Imp), the maximum power voltage (Vmp), 
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the short-circuit current (Isc), and the open-circuit voltage (Voc). These electrical characteristics are 

summarized in Table 2. Table 3 presents the results of the five parameters from the applied NMOPSO based 

technique for the tested six PV cells/modules. Based on these results, we can notice a good agreement 

between the experimental and the calculated data, proving the capability of our approach in determining the 

parameters of the SDM.  

 

 

Table 2. Electrical characteristics of the analyzed PV cells 
Electrical feature BP 5170 S STM6 40/36 Photowatt PWP201 R T C France PVM 752 GaAs STM6 120/36 

Vmp (V) 36 16.98 12.649 0.4507 0.8053 14.93 

Imp (A) 4.72 1.5 0.9120 0.6894 0.0937 6.83 
Voc (V) 44.2 21.02 16.778 0 .5728 0.9926 19.21 

Isc (A) 5 1.663 1.030 0 .7603 0.0998 7.48 

Ns 72 36 36 1 1 36 

 

 

Table 3. Optimization results 
 BP 5170 S STM6 40/36 Photowatt-PWP 201 RTC France PVM 752 GaAs STM6 120/36 

Rs(Ω) 0.0703778 0.3311865 1.1911289623 0.417162634 0.811289641 0.1781934744 

Rsh(Ω) 310.87934 561.50323 746.4801465 47.1474685 714.8837096 332.9372046 
I0(A) 1.83508109E-9 3.7497114E-6 1.31882751E-9 1.06120171E-7 4.574814706E-6 3.3688578E-6 

Iph(A) 4.5840218286 6.01105736 5.770375599 0.90047277 0.0860941433 6.011057366 

N 1.3255348 1.3151594 1.1911289623 1.63263594 1.20986271 1.268352761 

 

 

According to the obtained results, we can also notice, that the error between the measured current 

and the calculated one is nearly negligible, which shows the accuracy of the proposed method.  

The optimization outcomes achieved by the NMOPSO algorithm for minimizing RMSE are contrasted with 

alternative methods, each referenced accordingly. The results for the four solar cells are presented in  

Tables 4 to 6. 

For the PVM 752 GaAs listed in Table 4, the NMOPSO algorithm exhibits exceptional accuracy, 

gives a significantly lower RMSE (0.915 10-3) compared to alternative models. Similar conclusions are 

noticed for the STM6-40/36 cell, where NMOPSO surpasses other models with a lower RMSE (1.019 10-3) 

compared to other algorithms. Furthermore, for the Polycrystalline Photowatt-PWP 201 results illustrated in 

Table 5, NMOPSO maintains its remarkable accuracy with a minimal RMSE of (0.212 10-3). This 

performance notably exceeds the RMSE obtained with other techniques, confirming the NMOPSO’s 

effectiveness in estimating the characteristics of this polycrystalline solar module. For the solar cell -RTC 

France, NMOPSO demonstrates its superiority by achieving an impressively low RMSE of (0.14 10-3). 

Notably, NMOPSO outperforms alternative methods such as enhanced leader particle swarm optimization 

(ELPSO), conventional particle swarm optimization (CPSO), backtracking search algorithm (BSA), and 

artificial bee colony (ABC). Table 7 present the values of the second objective function, all of which 

converge to nearly zero. This convergence validates the accuracy of the Rs obtained, validating the efficacy 

of NMOPSO in solving the non-linear equation. 

 

 

Table 4. Calculated RMSE for PVM 752 GaAs and STM6-40/36 cells 
Model RMSE PVM 752 GaAs RMSE STM6-40/36 

NMOPSO 

Lidaighbi et al. [14] 
ELPSO 

CPSO 

BSA 
ABC 

0.915 .10-3 

1.865 .10-3 
25.40 .10-3 

25.40 .10-3 

2.14 .10-3 
2.04 .10-3 

1.019 .10-3 

1.903 .10-3 

2.18 .10-3 

2.18 .10-3 

3.62 .10-3 
2.39 .10-3 

 

 

Table 5. Calculated RMSE for polycrystalline photowatt-PWP 201 
Model RMSE Photowatt-PWP 201 

NMOPSO 
Kareem and Saravanan [21] 

Cubas et al. [22] 

Phang et al. [23] 
Lidaighbi et al. [14] 

0.212 .10-3 
6.54 .10-3 

2.94 .10-3 

3.549 .10-3 
2.164 .10-3 
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Table 6. Calculated RMSE for solar cell -RTC France 
Model RMSE solar cell-RTC France 

NMOPSO 
Lidaighbi et al. [14] 

Peng et al. [24] 

Louzazni et al. [25] 
Toledo et al. [26] 

Ishibashi et al. [27] 

Akbaba and Alattawi [28] 
Das [29] 

Lun et al. [30] 

Pindado and Cubas [31] 
Oulcaid et al. [32] 

BSA [33] 

ABC [33] 
GWOCS [17] 

MPSO [34] 

HCLPSO [35] 

0.14 .10-3 
0.886.10-3 

3.54 .10-3 

5.80 .10-3 
0.777 .10-3 

8.08010-3 

23.60 .10-3 

31.74 .10-3 

14.01 .10-3 

7.63 .10-3 
31.99 .10-3 

1.44 .10-3 

0.88 .10-3 
0.98 .10-3 

7.330 .10-3 

1.12 .10-3 

 

 

Table 7. Results of the second objective function 
 BP 5170 S STM6 40/36 Photowatt-PWP 201 RTC France PVM 752 GaAs STM6 120/36 

f2 0.000101 0.000098 0.00032 0.00011 0.00002 0.00001 

 

 

Concerning the computational time of several swarm optimization algorithms, we calculated the 

average time of the NMOPSO algorithm. We executed the algorithm ten times for each cell, and we evaluate 

the average performance. The results are presented in Table 8. Among all the studied algorithms, NMOPSO 

exhibits the shortest execution time, highlighting its rapid convergence. 

The comparison among diverse algorithms applied to specific cell types, including PVM 752 GaAs, 

STM6-40/36, Photowatt-PWP 201, and solar cell-RTC France, shows that the proposed method in this study 

tended the minimum RMSE values. To demonstrate the precision of the proposed algorithm, extensive 

simulations were carried out using MATLAB. Figure 2 serves as an example using the STM6 40/36 PV 

cell/module. After extracting the parameters values from the NMOPSO algorithm, we applied them within 

our Simulink model. The obtained simulation results are presented in Figures 3 to 6. These figures illustrate 

the I(V) curves extracted from the module datasheets under STC. 

 

 

Table 8. Run time 
 NMOPSO EPSO [13] IPSO [13] PSO [13] DE [13] ABC [13] 

Run time (second) 3.299 3.8990 4.768 4.484 9.318 11.12 

 
 

 
 

Figure 2. Simulation of STM6 40/36 PV cell/module 
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The red points on the graphs represent the experimental I(V) data collected directly from the 

datasheet. The continuous blue line, on the other hand, represents the simulated curves generated using the 

parameters extracted through the proposed method. From these figures, we can clearly notice that the 

simulated and experimental I(V) characteristics are practically identical. These figures also show a high 

degree of agreement between experimental and calculated data, validating the efficacy of the proposed 

method. 

This analysis includes the evaluation of diverse algorithms for different cell models, including an 

extensive variety of methods, such as analytical, numerical, and metaheuristic techniques. Our study submit 

an evaluation, comparing the NMOPSO-based approach against a spectrum of analytical methods in [14], 

[24]-[26], explicit models [28]-[31], and significant metaheuristic strategies such as the GWO in [32].  

By comparing the results of RMSE values for algorithms like ELPSO, CPSO, BSA, and ABC [33],  

the proposed algorithm turns to be the best. 
 

 

  
 

Figure 3. Curve I-V related PWP201 (T=45 °C, 

1,000 W/m2) 

 

Figure 4. Curve I-V related to PVM 752 GaAs (T=25 

°C, G=1,000 W/m2) 
 

 

  
 

Figure 5. Curve STM6 40/36 T=25 °C, G=1,000 

W/m2 

 

Figure 6. curve I-V curves related to RTC (T=33 °C, 

G=1,000 W/m2) 
 

 

Furthermore, NMOPSO-based algorithm outperformed other techniques not only in accuracy but 

also in execution time. Its ability to converge faster makes it an appealing and reliable tool for rapid and 

dependable parameter extraction in the PV domain. 

Overall, the comprehensive analysis underscores the robustness and effectiveness of NMOPSO, 

presenting it as a highly accurate method for characterizing and evaluating these specific types of cells within 

the field of solar energy research. This proposed approach not only improves the accuracy and efficiency of 

parameters extraction but also establishes a novel enhance PSO in the optimization of PV cell parameters. 

While our study establishes the application of the NMOPSO as a superior optimization strategy, future 

research can delve into its applicability in dynamic environmental conditions, scalability to larger solar 

energy systems, and integration with emerging technologies in the solar energy sector. 

 

 

5. CONCLUSION 

In the present work, we apply an innovative method based on the improved NMOPSO to accurately 

extract essential parameters of PV cells. Our approach focuses on minimizing the RMSE while precisely 

computing Rs. The proposed algorithm integrates an evolutionary search strategy, enhancing both 

convergence and the precision of parameter identification processes. 
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Recent observations suggest that the precision in parameter extraction significantly impacts the 

performance of PV cells. Our findings provide conclusive evidence that the NMOPSO algorithm is 

associated with enhanced accuracy in parameter extraction and minimal RMSE values. Through extensive 

simulations, our method significantly outperformed existing approaches. NMOPSO-based optimization 

technique demonstrated superior accuracy by minimizing RMSE values, enabling closer alignment between 

simulated and experimental data. This heightened accuracy is crucial for precise modeling and prediction of 

PV cell behavior. Furthermore, our approach was also applied for the determination of the Rs which is a 

critical parameter impacting PV cell efficiency. Indeed, the results highlight the effectiveness and superiority 

of our technique compared to existing approaches. Its accuracy and satisfying results make it a valuable and 

reliable technique for characterizing and determining PV cell parameters. Our study demonstrates the 

efficiency of evolutionary techniques in determining PV cells parameters for SDMs. Moreover, futures 

studies may explore the extension of the obtained findings to other models. 
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