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 Image classification is a critical task in the field of computer vision, and its 

importance has significantly increased over the past few years. Machine 

learning and deep learning techniques have demonstrated immense potential 

in this field. However, traditional image classification models require a vast 

amount of training data, which can be challenging and expensive to obtain. 

To overcome this limitation, researchers are turning to few-shot learning, 

which aims to classify images with limited training samples. This paper 

presents a detailed analysis of the field of image classification using  

few-shot learning. First, it investigates the use of data augmentation, transfer 

learning, and meta-learning methods in this field. Then, it introduces several 

commonly used datasets and evaluation metrics in few-shot classification, 

compares several classical few-shot classification methods, and summarizes 

the experimental results obtained from public datasets. Finally, this paper 

analyzes the current challenges in few-shot image classification and suggests 

potential future directions. 
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1. INTRODUCTION 

Image is a general term that refers to various graphics and visual representations, and it serves as the 

most common carrier of information in human social activities. People receive a wealth of visual information 

through their eyes, and image data possesses rich colors and a vast amount of information, playing an 

indispensable role in daily learning and work. However, due to the swift progress of the latest information 

technology, data has exploded, and analyzing data quickly and effectively has become a challenging task [1]. 

Image classification algorithms play a crucial role in numerous applications in various fields, such as satellite 

image recognition and traffic system control. Over the past few decades, image classification has found 

extensive applications in object recognition, scene understanding, facial analysis, and other domains [2]. 

With the emergence and application of deep learning technology, the efficacy of image classification in 

various fields has significantly improved. Image classification is essentially pattern classification, which aims 

to classify images into different categories based on their features while minimizing classification errors. 

Features are crucial in distinguishing objects from one another. One of the research tasks in image 

classification is extracting image features. Image features are unique structures that can be identified within 

an image, highlighting the distinctive characteristics of a particular object and differentiating it from others. 

Image classification distinguishes images based on their unique features, including natural features such as 

brightness, edges, texture, and color that can be perceived intuitively [3]. In traditional image classification 

https://creativecommons.org/licenses/by-sa/4.0/
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techniques, researchers mainly perform feature extraction on images, followed by feature combination and 

feature selection, and finally use discriminative classifiers. Traditional image classification algorithms 

traditionally rely on manual feature engineering to encode image features. Various feature extraction 

techniques have been proposed for traditional image classification, including histogram of gradients (HOG) [4], 

local binary pattern (LBP) [5], and scale-invariant feature transform (SIFT) [6]. 

Over the last few years, the field of image recognition has made significant strides with the help of 

sustained progress in artificial intelligence, the availability of large-scale datasets [7], and robust computing 

resources, particularly in deep neural network-based machine learning methods [8]. However, conventional 

machine learning approaches require a large dataset with annotations for model training [9], with the primary 

objective being to minimize errors on the verification set. In real-world scenarios, manual annotation of data 

requires a significant allocation of human and material resources and generally consumes substantial time.  

In many fields, it may be difficult to acquire significant quantities of data, such as medical images, remote 

sensing images, synthetic pore diameter radar images, and obtaining large amounts of data may be more 

challenging due to privacy, security, or moral concerns. When training data are limited, machine learning 

models used for training are prone to problems such as synthesis and generalization [10]. 

Few-shot learning addresses this issue by training models to learn from only a few examples, often 

as few as one or a few per class [11]. There are several problems in few-shot learning that urgently need to be 

solved. First is the problem of over-fitting. Because few-shot learning models have limited training data. 

They are vulnerable to overfitting, the model’s performance is good on the training set, causing it to 

memorize the training examples, but it is poor on the test set. To address the issue of overfitting, 

regularization techniques such as weight decay and discarding can be used to prevent model memory training 

examples. Another aspect is the dataset bias problem. Few-shot learning models are typically trained on a 

limited number of examples, thus making them more prone to bias in comparison to traditional machine 

learning models that operate on abundant datasets. For example, if the training set is biased toward some 

types of examples, the model can learn to identify examples of these types well but may not perform well 

with other types of examples. To solve this problem, you can redesign data sets and ensure the diversity of 

data types. 

The present work constitutes a comprehensive review article elucidating techniques pertinent to 

few-shot image classification. Moreover, various other studies have endeavored to explore and analyze 

strategies for classifying small samples from diverse perspectives, such as a survey of data augmentation-

based method [12], a survey of transfer learning method [13], and a survey of meta-learning [14]. For the 

classification of lung images, it is recommended to refer to the classification method based on the 

convolutional neural network [15]. There is also a survey on few-shot learning methods for remote sensing 

images [16]. The main distinction of this article from the survey above lies in its comprehensive coverage of 

few-shot image classification algorithms, particularly addressing the challenges encountered in this domain. 

The paper delves further into the intricacies of different algorithmic approaches, such as those based on data 

augmentation, transfer learning, and meta-learning. Furthermore, it meticulously discusses the complexities 

of the datasets used in few-shot learning research, evaluates various evaluation metrics, and compares 

experimental results to gain a deeper insight into the performance of different algorithms. By thoroughly 

examining these aspects, this paper contributes to a more nuanced understanding of the current status and 

future research directions in few-shot image classification. 

In this survey, we present several noteworthy contributions: 

− Novel classification scheme: our work categorizes methods for small-sample image classification into 

three distinct classes, delineated by the strategies and techniques employed to tackle the problem.  

These classes encompass methodologies centered around data augmentation, transfer learning, and meta-

learning techniques. 

− Thorough review: we have meticulously examined methods pertinent to small-sample image 

classification. Within each classification, we offer intricate descriptions of representative methodologies 

and elucidations of their interrelations, comparative analyses, and overarching summaries. 

− Abundant resources: throughout our investigation, we have curated many resources, including cutting-

edge methodologies, benchmark datasets, open-source code repositories, and exemplary applications. 

The following segments of the paper are structured in the following manner: section 2 introduces 

methods for few-shot image classification, outlining several typical approaches. In section 3 presents 

benchmark datasets for few-shot image classification and evaluations of various model algorithms. It also 

delineates three challenges encountered in few-shot image classification. Lastly, section 4 offers a conclusion 

to the paper. 
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2. METHOD 

Currently, there are three main approaches used for few-shot classification tasks: methods based on 

data augmentation, methods based on transfer learning, and meta-learning techniques. Data augmentation 

generates additional training data by applying various transformations to the existing data. Transfer learning 

leverages knowledge learned from a source task to aid in learning a target task with limited data.  

Meta-learning trains a model to adapt to new tasks with few examples quickly. 

 

2.1.  Methods based on data augmentation 

The scarcity of available data makes few-shot learning a difficult task, which makes it difficult to 

optimize neural networks. One of the most promising approaches to dealing with these challenges is to 

incorporate data augmentation or enhanced feature engineering techniques. The objective of data 

augmentation is to expand the training dataset by generating new samples, either unlabeled or synthetic.  

This can help increase sample volume and diversity [17]. Feature enhancement, on the other hand, involves 

adding new features to the feature space to increase sample diversity. There are generally three categories of 

data augmentation methods: label-free data-based enhancement, data-based enhancement, and feature-based 

enhancement. 

 

2.1.1. Methods based on label-free data 

Based on label-free data, the original few-shot dataset can be expanded using different methods. 

Machine learning involves categorizing techniques into three categories: supervised learning, direct push 

learning, and semi-supervised learning. A classifier is employed in supervised learning to predict labels for 

data that has no labels (label-free data), and these predicted labels are appended to the original dataset.  

Semi-supervised learning incorporates labeled and unlabeled data to improve the accuracy of classification 

models. Direct push learning generates synthetic samples by pushing existing samples toward the decision 

boundary, expanding the dataset with new samples that are different from the original data. 

The task of unsupervised few-shot learning is both difficult and full of potential. It involves 

extracting knowledge from training data that lacks explicit or labeled information, thereby reducing the cost 

of collecting and annotating data. Researchers have proposed various techniques to tackle this issue. Ji et al. [18] 

proposed a method that utilizes cluster analysis to construct pseudo labels for data in different clusters while 

employing meta-training optimization models. An approach for unsupervised few-shot learning was 

presented by Qin and colleagues in their study [19], it utilizes separation and enhancement techniques to 

generate diverse and representative samples for training the model. The framework pays careful attention to 

the differences in the distribution of the few-shot learning tasks, which helps alleviate overfitting and 

enhance the flexibility and generalization performance of the model. Wang et al. [20] proposed a  

self-training method to enhance the data by obtaining pseudo-labels without labeling samples and selecting 

highly confident samples using a new measure of pseudo-labels. 

Zhang and Mortazavi [21] presented a semi-supervised learning model utilizing model agnostic 

meta-learning (MAML) [22], which utilizes unlabeled data and label sample adjustment-related parameters 

to adapt the model. Wang and Hebert [23] introduced an unsupervised training stage to enable the top-level 

unit to learn from a vast amount of unannotated data, thereby separating it from the original specific category 

dataset. Ren et al. [24] developed a few-shot learning approach with a semi-supervised methodology that 

builds on the prototype network [25], by incorporating unannotated data into the training dataset to enhance 

the accuracy of the classification boundary and the overall effectiveness of the classification process. 

Transductive learning directly transfers knowledge gained during the learning stage to the given data, which 

allows the model to have better generalization capabilities by observing both training and test data. 

The direct push-type learning framework is utilized in a transductive propagation network that 

addresses a particular problem as presented by Liu et al. [26]. The labels assigned to the labeled samples are 

extended or applied to the unlabeled samples, after the forward pass through the neural network, the  

cross-entropy function is utilized to determine the loss. Subsequently, the relevant parameters are updated 

accordingly based on the outcome of the loss calculation. Hou et al. [27] introduced a cross-attention network 

that was developed using the direct push-type learning approach. When sampling the characteristics,  

the target object area is highlighted to make the distinctive features more prominent. Furthermore,  

they proposed a conversion reasoning algorithm that uses the available unlabeled data in an iterative manner 

to address the issue of data scarcity and enhance the feature optimization for each category. 

 

2.1.2. Methods based on synthetic data 

Data-driven methods can augment training data by generating synthetic labeled data. Goodfellow et al. [28] 

introduced a new method that involves simultaneously training two models. The first model is trained to 

generate samples, while the second model is trained to accurately distinguish between real samples and 

generated samples. Mehrotra and Dukkipati [29] introduced a novel approach for generating synthetic data 
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by using an adversarial residual network based on generative adversarial network (GAN) architecture. 

However, the generated samples are still not real data. Hariharan and Girshick [30] proposed a two-stage 

learning approach consisting of a pre-training stage and a few-shot learning phase. During the pre-training 

stage, a general model is learned on a large set of samples, and the few-shot learning phase fine-tunes the 

model on new categories. 

To tackle the problem of few-shot image classification, Xian et al. [31] presented a new network 

architecture known as F-VAEGAN-D2, which leverages the strengths of two popular deep learning 

techniques, the variational autoencoder (VAE) and GAN. Chen et al. [32] introduced a strategy for 

identifying and choosing high-probability samples from the training dataset and using neighboring classifiers 

to find multiple images that are likely to be in the same class, forming an expanded support set.  

By integrating the original features and transformed features of the samples, data augmentation is achieved. 

Finally, the expanded samples are used to calculate the classification loss and optimize the weights to 

generate a sub-network. 

 

2.1.3. Methods based on characteristic enhancement 

The two methods mentioned above, label-free data and data-based methods, aim to increase the 

expansion of samples by leveraging additional data information. In addition, few-shot learning can use 

feature-based enhancement methods to increase the diversity of samples by enhancing their characteristics. 

Dixit et al. [33] suggested employing the attributed guided augmentation (AGA) model for producing a 

synthetic data map. This method facilitates the acquisition of synthetic data features, which are then mapped 

onto a designated space, the encoder and decoder functions are utilized to generate a wide variety of sample 

images. 

The feature migration network (FATTEN) was introduced by Liu et al. [34]. This model comprises 

an encoder and decoder component that can track modifications in the motion trajectory triggered by 

alterations in an object’s pose. The role of the encoder is to map the characteristics of the target image as a 

pair of appearance and pose parameters. The role of the decoder is to convert these parameters into feature 

vectors. In their work, Chen et al. [35] introduced Trinet, a bidirectional network. Firstly, the semantic-image 

feature space mapping is facilitated by the label semantic space, which extracts multi-level depth features 

from the input image. Then, it maps the multi-level depth features to the semantic space. Feature extraction 

from images enhances the discriminative properties of the samples. 

Jing et al. [36] proposed a feature enhancement network (FEN) for unconstrained palm pattern 

recognition in few-shot learning. It aims to eliminate the image variations caused by non-constraint collection 

and only enhance the characteristics of a few support samples. It is worth mentioning that data augmentation 

is not a panacea and should be used in conjunction with other techniques, such as regularization, feature 

engineering, and model selection. Additionally, the selection of augmentation techniques and the extent to 

which they are applied should be informed by the specific task at hand and the characteristics of the data. 

 

2.2.  Methods based on transfer learning 

Transfer learning is a technique that involves utilizing knowledge and skills gained from previous 

learning experiences to improve the learning of new information [37]. First, a model is trained on a dataset 

with abundant data, and the model parameters are transferred to a new model to facilitate the training of the 

new model, thereby achieving knowledge transfer between different fields. Transfer learning methods are 

widely used in few-shot image classification research. Many techniques that utilize transfer learning rely on 

fine-tuning strategies for the model, updating its values, and obtaining a new classifier parameter [38]. 

Through ablation experiments, it has been demonstrated that the baseline method outperforms the initial 

SoftMax classifier. However, it should be noted that the choice of pre-trained model, transfer strategy, and 

fine-tuning approach can significantly impact the performance of the transfer learning method. Therefore, 

careful consideration should be given to these factors to achieve optimal results. 

Dhillon et al. [39] proposed an improved Baseline method that is more effective. They added a loss 

function to the algorithm, which allows the model to learn more adaptable knowledge for the target data 

domain during the fine-tuning stage, even without labeled data. Meanwhile, Yu et al. [40] introduced a 

method for transfer learning that first utilizes a pre-trained feature extractor with data from the source 

domain. Then, the feature extractor is used to initialize the classification layer for the target domain category 

to further update the model. Fine-tuning the models that are trained on source-domain data enables the 

rebuilding of the classification layer, which facilitates the classification of target-domain data. 

 

2.3.  Methods based on meta-learning 

Meta-learning is a concept that is also referred to as “learning to learn” [41], and has attracted 

significant interest due to its potential to enhance the efficiency of deep learning models. The primary 
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objective of meta-learning is to train a model that can effectively adapt and generalize to novel and unseen 

tasks. Unlike traditional machine learning models that require a considerable amount of data for each new 

task, meta-learning models are designed as “fast learners” capable of quickly adapting to novel assignments 

with only a few examples. This is accomplished by training the model on a task distribution rather than a 

single task and by combining task-agnostic knowledge that can be easily adapted to new tasks. This section 

covers different meta-learning techniques that are used for few-shot image classification, meta-learning can 

be broadly classified into three categories: metric-based, optimization-based, and memory-based. 

 

2.3.1. Metric-based 

The metric-based meta-learning method is based on the concept of learning an embedded feature 

space using data from each K-shot category. This feature space allows the model to effectively measure the 

similarity between samples, where higher similarity is indicative of samples belonging to the same category. 

Samples are classified using non-parametric classification models. Van der Spoel et al. [42] utilized the 

Siamese-C3D network on two different datasets and achieved superior performance compared to other state-

of-the-art methods. During the training phase, twin networks with the same convolutional neural network are 

trained to learn two similar input images. During the testing phase, the model inputs a query image to both 

twin networks, which return a condensed image representation of the query and each support image.  

The similarity between the query and each support image is calculated, and the query is classified based on 

the closest support image in the feature space. 

Vinyals et al. [43] proposed a match network model that incorporates an attention mechanism and 

memory structure based on metric learning. This model maps a labeled support set and an unlabeled sample 

to a vector space, establishing a connection between the training embeddings and the test sample. In the 

training process, a matching training principle is used, allowing the model to quickly learn to match training 

embeddings with their corresponding categories. The match network model solves the problems existing in 

the Siamese-C3D network, as there is no need to input the test image and the training embeddings at the same 

time during the testing stage. 

Jake et al. [44] suggested a network model prototype that entails allocating a central point to each 

category in a vector space, where it is exemplified as a prototype. By minimizing the loss function during 

model training, samples that belong to the same category are brought closer together in distance.  

The relation network (RN) model for end-to-end learning was introduced by Sung et al. [45] in their research 

study. It simplifies the structure of the measurement network based on the matching network, and its 

recognition performance is better than match network. This method learns a deep distance measurement, 

which uses the relationship between items in a dataset to predict the relationship scores between a test sample 

and a support set sample. These scores are then used to evaluate the similarity between different samples and 

classify the test sample. 

 

2.3.2. Optimization-based 

The optimization-based meta-learning approach stores priority knowledge in the parameters of the 

model. This approach can learn parameters that have strong generalization capabilities for network models as 

initialization parameters. To enhance the optimization of the model’s parameters, the training process and 

loss function should be designed accordingly. Mei et al. [46] proposed a bidirectional long short-term 

memory (Bi-LSTM) algorithm, which takes advantage of the characteristics of the LSTM structure and 

provides a better starting point than random parameters when training different data sets. The model 

continuously updates the values of the initialization parameters and the loss function obtained by predicting 

the sample to update the meta-learning device so that the meta-learning device parameter is optimized. 

Finally, the model predicts the results for the test data. 

The meta-learner LSTM model has the capability to adapt swiftly to new tasks, even when presented 

with a limited number of samples. The MAML algorithm was introduced by Finn et al. [47] in their research 

paper, which is model-agnostic and can be used with other models trained by gradient descent. MAML’s 

main idea revolves around adjusting the model’s parameters to acquire the appropriate task-specific 

parameters. To address the limitations of MAML, Antoniou et al. [48] introduced the meta-learning adaptive 

model for few-shot learning (MAML++). MAML++ improves the flexibility of inner-layer optimization by 

learning internal optimization and direction and enhances the flexibility of outer-layer optimization through 

the strings of the meta-learning device. The application of MAML++, which is a novel model-agnostic meta-

learning technique, has resulted in a remarkable enhancement in the performance of few-shot learning tasks. 

 

2.3.3. Memory-based 

The memory-based meta-learning approaches are designed to store image information in memory, 

which helps to make more efficient use of data. Faradonbeh and Safi-esfahani [49] proposed the neural turing 

machine (NTM), which uses additional memory storage modules to achieve the functions of machine 
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learning systems. The NTM can store knowledge in the memory storage module and use this knowledge for 

prediction or classification. Santoro et al. [50] introduced a neural network model that utilizes memory 

augmentation to enhance its capabilities that include external memory modules to quickly store new data and 

use it for accurate prediction after training on a small number of samples. The MetNet method was presented 

by Munkhdalai and Yu in their paper [51], which is capable of learning across tasks. They divided the model 

into different learning modules to distinguish relevant knowledge and tasks learned by each module.  

The parameters and basic learning devices are then adjusted to adapt to new assignments. Jamal et al. [52] 

introduced a novel meta-learning algorithm called RN, which decouples representation learning from 

relationship learning to more effectively capture the similarities and differences between samples. 

In addition, graph neural networks are favoured by some researchers. Garcia et al. [53] proposed to 

represent the relationships between categories by constructing graphs and utilizing graph neural networks 

(GNN) to learn these relationships. Then they use a me-ta-learner to infer the appropriate classifier, enabling 

it to quickly learn new tasks. Kipf and Welling [54] introduced the graph convolutional network (GCN) 

model for learning node representations by minimizing the classification loss function. They applied the 

GCN model to multiple graph datasets to solve the semi-supervised node classification task. Kim et al. [55] 

proposed the edge-labeling graph neural network (EGNN) model, which utilizes edge labels as additional 

input features to consider edge relationships during message passing, and interacts information between 

different layers to generate new node representations. The EGNN model achieves good performance on 

several datasets. 
 

 

3. RESULTS AND DISCUSSION 

Over the last few years, there has been a marked rise in interest in the field of few-shot image 

classification. This surge in attention coincides with the introduction of several datasets aimed at evaluating 

model performance across diverse scenarios and with various objects. These datasets serve as valuable 

benchmarks for assessing the effectiveness of algorithms in handling few-shot learning tasks. 
 

3.1.  Datasets 

The purpose of few-shot image classification datasets is to evaluate the efficacy of few-shot learning 

algorithms in the domain of image classification through a pre-selected and organized collection of images. 

These datasets typically contain many image classes, but only a few examples per class, ranging from 1 to 

20. The purpose of these datasets is to evaluate the generalization capacity of few-shot learning algorithms 

when confronted with novel image classes, which are provided with minimal training data. Over the last few 

years, a number of datasets have been put forward, each with its own challenges and characteristics.  

These datasets are utilized to assess the effectiveness of few-shot learning algorithms and to compare various 

approaches. In this section, we will investigate several datasets that are commonly used in applications of 

few-shot image classification. The basic information of datasets commonly used for few-shot learning is 

shown in Table 1. 
 
 

Table 1. The basic information of datasets commonly used for few-shot learning 
Dataset name Image quantity Category quantity Sample quantity 

MiniImageNet 60,000 100 600 
Omniglot 32,460 1,623 20 

CUB-200 11,788 120 171 

TieredImageNet 779,165 608 1,282 
CIFAR-100 60,000 100 600 

 

 

− MiniImageNet: few-shot learning researchers frequently use the MiniImageNet dataset in their studies, 

making it a well-known and widely utilized dataset in this field [55]. It is a subset of the ImageNet 

dataset, a comprehensive labeled image dataset used in image recognition research. The MiniImageNet 

dataset is comprised of 100 categories, with each category having 600 full-color images that are 84×84 

pixels in size. This dataset is widely used in few-shot learning research as it enables the evaluation of 

models that can be generalized to new classes with limited data. Few-shot learning refers to the scenario 

where a model is first trained on a limited set of base classes and then evaluated on a new set of novel 

classes that have very few examples available for each class. The MiniImageNet dataset is particularly 

useful in assessing few-shot learning models due to its large number of classes and relatively small 

number of examples per class, which makes it challenging for models to generalize. The high degree of 

variability within each class also adds to the dataset’s difficulty level. The ProtoNet and matching 

networks are some of the few-shot learning algorithms evaluated using this dataset. 
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− Omniglot: the Omniglot dataset is a collection of handwritten characters from 50 different writing 

systems [56], including Latin, Greek, Hebrew, Korean, Japanese, and others. Each alphabet has precisely 

20 handwritten examples of each of its 1,623 characters, resulting in a total of 32,760 images. Each image 

is a black and white image of size 105×105 pixels, making it particularly challenging for models to 

generalize to new classes with limited data, a crucial challenge in few-shot learning. The Omniglot 

dataset has become a popular benchmark for evaluating machine learning models for few-shot learning 

due to its many alphabets and the similarity of many characters to each other. The dataset has led to 

significant advances in the field of few-shot learning, with various methods like convolutional neural 

networks (CNN) and recurrent neural networks (RNN) being utilized to tackle the problem.  

Meta-learning techniques are also employed to train these models. 

− CUB-200: the CUB-200 dataset consists of 11,788 bird images that portray 200 distinct species [57], with 

around 60 images per category, and a size of 84*84 pixels. It was created by researchers at the California 

Institute of Technology, who collected images from various sources, including zoos, bird sanctuaries, and 

the internet. Due to the high similarity between many bird species, some images contain multiple birds or 

objects in the background, increasing the dataset's complexity. One common use of the CUB-200 dataset is 

for fine-grained image classification, such as the implementation of cross-attention networks. 

− TieredImageNet: the TieredImageNet dataset is a recently introduced dataset designed to evaluate  

few-shot learning algorithms [58]. Within this dataset, there is a total of 779,165 images that have been 

categorized into 608 distinct classes, which are further divided into 34 high-level categories, such as 

animals and vehicles. Each class has 600 instances of 84×84 pixels size. The hierarchical structure and 

large number of classes make TieredImageNet a challenging dataset for few-shot learning algorithms,  

as it requires learning cross-modality mappings and generalization across different imaging modalities. 

TieredImageNet has been used to evaluate many few-shot learning algorithms, including MetaOptNet and 

TADAM. 

− CIFAR-100: the CIFAR-100 dataset is a widely used image dataset in machine learning and computer 

vision [59]. With 60,000 colorful images that have been classified into 100 different categories,  

the CIFAR-100 dataset offers 600 images for each category. The dataset can be utilized for assessing 

convolutional neural network-based characteristic learning techniques, such as WA-CNN. 
 

3.2.  Few-shot learning evaluation indicators 

Few-shot learning evaluation indicators are crucial for assessing the performance of models trained 

with limited annotated data, tasked with accurately classifying novel categories using only a few labeled 

samples. Typically, this evaluation is conducted in the N-way K-shot setting, where each task comprises a 

support set and a verification set containing N categories (way) and K samples in the support set for each 

category. The algorithm’s accuracy is determined by testing it on the verification set, repeating the evaluation 

multiple times, and computing the average accuracy. More precisely, the accuracy of classifying a few-shot 

method is determined by the proportion of accurately classified instances compared to the total dataset size. 

In the context of few-shot learning, another vital evaluation indicator is meta-learning efficiency. 

Meta-learning efficiency assesses the model’s ability to generalize knowledge across different tasks and 

adapt quickly to new tasks with minimal training data. This is particularly relevant in scenarios where the 

model must rapidly learn new concepts or categories with limited labeled examples. Efficient meta-learning 

algorithms can leverage prior knowledge effectively and adapt to new tasks, improving performance on  

few-shot classification tasks. 

Furthermore, in addition to classification accuracy and meta-learning efficiency, it is essential to 

consider other performance metrics such as precision, recall, and F1-score. These metrics provide a more 

nuanced understanding of the model’s performance by considering false positives, false negatives, and the 

balance between precision and recall. By evaluating models using a combination of accuracy, meta-learning 

efficiency, and other relevant metrics, researchers can comprehensively assess their effectiveness in few-shot 

learning scenarios. 
 

3.3.  Comparison of experimental results 

This section aims to evaluate the effectiveness of various few-shot image classification algorithms 

by selecting representative models on the MiniImageNet and Omniglot datasets [60]-[62], as they are 

frequently used in the field. The selected models are evaluated based on their classification accuracy in two 

different settings, namely 5-way 1-shot and 5-way 5-shot, which are widely acknowledged as standard 

measures for evaluating few-shot image classification techniques. We utilize 5-way 1-shot and 5-way 5-shot 

as baseline tasks. The results of our investigation are presented in Table 2 and Figure 1. Figure 1(a) displays 

classification accuracy for different methods on MiniImageNet, while Figure 1(b) shows accuracy on the 

Omniglot dataset. 
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Table 2. Few-shot image classification models are compared based on their classification accuracy 
Method MiniImageNet Omniglot Available code 

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 

TPN [26] 54.44 67.05 99.26 99.44 × 
TriNet [35] 59.23 76.83 93.93 96.68 × 

SiameseNet [42] 43.56 55.31 98.1 98.9 × 

MatchNet [43] 43.56 55.31 98.51 98.92 √ 
ProtoNet [44] 49.42 68.20 98.90 99.85 √ 

RelationNet [45] 57.02 71.07 99.42 99.72 √ 

LSTM [46] 43.44 60.6 - - √ 
MAML [47] 48.70 63.11 98.7 99.9 √ 

MAML++ [48] 52.15 68.32 - - × 

Meta-SGD [49] 50.47 64.03 99.53 99.93 × 
RN [52] 50.44 65.32 99.6 99.8 × 

GNN [53] 50.33 66.41 99.2 99.4 √ 

GCN [54] 53.03 64.78 99.26 99.72 √ 
EGNN [55] 62.34 75.77 99.75 99.77 √ 

 

 

  
(a) (b) 

 

Figure 1. Classification accuracy on (a) MiniImageNet dataset and (b) Omniglot dataset  
 

 

The results reveal notable variances in classification accuracy across different small-shot 

classification algorithms when applied to both the Omniglot and MiniImageNet datasets. This disparity can 

be attributed to the more straightforward image content present in the Omniglot dataset. Conversely, within 

the MiniImageNet dataset, a notable observation is made: the classification accuracy of the “5-shot” learning 

algorithm significantly surpasses that of the “1-shot” learning algorithm. This discrepancy stems from 

utilizing five instances per class in the 5-shot learning approach, enabling the algorithm to derive a more 

comprehensive and informative feature representation than the limited, single-instance representation offered 

by the 1-shot learning approach. 

Table 2 shows that EGNN [55] and TriNet [35] achieved the highest accuracy in the 1-shot task and 

5-shot task on the MiniImageNet dataset, respectively. TriNet conducts few-shot learning in high-

dimensional concept space. It maps a sample instance to the concept space and generates new instances by 

interpolating between concepts to reduce learning difficulty. EGNN utilizes intra-cluster similarity and  

inter-cluster dissimilarity to update edge labels on the graph instead of node labels, thereby achieving explicit 

clustering evolution. It is also very suitable for inferring various new categories without the need for 

retraining. Concept learning and GNN play important roles in few-shot learning. As shown in Figure 1,  

the early works [42]-[44] use relatively simple network structures, which affect their accuracy. If their 

network structures are upgraded, their accuracy will be improved. 
 

3.4. The challenges faced by few-shot image classification 

Few-shot image classification is a challenging task that has seen proficient performance on datasets 

with relatively simple image content, such as the Omniglot character dataset. However, for more complex 

datasets, despite continuous improvements to algorithm models, classification accuracy remains 

unsatisfactory. This suggests that further research and innovation are necessary to address the complexities 

inherent in few-shot learning tasks involving intricate image content. 
 

3.4.1.  Explainability of deep learning 

Due to the multitude of neural network structures and their significant parameters, researchers 

cannot always discern the specific role of each parameter. Therefore, improving model performance requires 

conducting multiple experiments continuously. Consequently, advancing research on deep learning 

mechanisms can assist researchers in enhancing their models and techniques. 
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3.4.2.  Challenge of datasets 

The MiniImageNet and Omniglot datasets are commonly used for few-shot image classification 

tasks, but they pose a challenge due to the unequal distribution of data across categories. With some 

categories having more training examples than others. As few-shot learning is becoming an increasingly 

crucial aspect of image classification, there is a growing need to develop datasets specifically for few-shot 

image classification, which is an active area of research in this field. 
 

3.4.3. Universal few-shot learning method 

Few-shot image classification methods present challenges due to their limited universality and high 

complexity. Developing classifiers that can adapt to different datasets is particularly difficult, as universal 

algorithms struggle with task and data variability. Additionally, few-shot classifiers require a deep 

understanding of image representations and relationships between different categories, and the limited 

availability of training data can further exacerbate these challenges. Ongoing research is focused on 

addressing these challenges and making few-shot image classification algorithms more robust and versatile. 

Efforts to develop new algorithms or enhance existing ones aim to improve their universality while 

maintaining high accuracy across different datasets and tasks. 
 

 

4. CONCLUSION 

In conclusion, this review thoroughly examines image classification techniques employing few-shot 

learning algorithms. The investigation delves into methodologies such as data augmentation, transfer learning, 

and meta-learning, elucidating their efficacy in addressing the challenges stemming from limited data 

availability in image classification tasks. Additionally, examining benchmark datasets and evaluation metrics 

sheds light on the performance of various model algorithms within few-shot learning contexts. Despite significant 

progress, persistent challenges include the interpretability of deep learning models, constraints inherent in existing 

datasets, and the pursuit of a universal few-shot learning approach. Advancing the field of few-shot image 

classification necessitates sustained research and development efforts to surmount these obstacles. 
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