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ABSTRACT

In molecular biology, constructing a genome based on substantially many
reads from multitudes of deoxyribonucleic acid (DNA) strings has become
an insurmountable task; one which has been continuously addressed by the
introduction of various assembly algorithms based on three steps called the
overlap-layout-consensus strategy. In the overlap step, the De Bruijn graph is
one of many graphs that illustrate the data of all the assembly algorithms. In
this article, by using definitions and methods of mathematical induction, some
properties of the De Bruijn graph of one time and two times non-sequential
repetition of patterns in a DNA string are presented. Examples of these De
Bruijn graphs are also given. From there, a generalisation of said properties
for m times non-sequential pattern repetition in a DNA string is acquired by
means of mathematical induction, as well. The theoretical work in this research
is invaluable to develop algorithms that increase the computational efficiency of
assembly algorithms.
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1. INTRODUCTION
The discovery of a deoxyribonucleic acid (DNA) structure by Watson and Crick [1] as a three-

dimensional double helix was a revolutionary contribution to biology because it was an accurate description of
a once complex molecule. However, studies of the DNA structure and its functions have been proven difficult
without help from other fields of research because of the discrete nature of DNA. Hence, discrete mathematics
(especially the theory of graphs) has a special value for the researchers in the area of molecular biology [2].
The intersection between molecular biology and mathematics has occured often in history, as it did in 1987 [3]
when Head proposed the DNA splicing system that modelled the recombination behaviour of DNA strings in
the presence of enzymes by treating the nucleotide bases in DNA as letters in an alphabet.

Through the years, many other DNA recombinant models have since been introduced, such as sticker
systems [4], weighted sticker systems [5], probabilistic sticker systems [6], and bonded insertion-deletion
systems [7]–[9]. However, the concept of graphs was first combined with DNA recombinant models in 1995,
called graph splicing systems [10]. This new model not only birthed numerous variants and results [11]–[14],
but it also showed that graphs were viable and useful tools to depict the true molecular structure of DNA. In this
paper, it is shown that De Bruijn graphs illustrate the non-sequential pattern repetition found in DNA strings
during recombination, where these results will aid in the future development of efficient DNA computing
devices.
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2. METHOD
In molecular biology, the recognition, assembly, and recombination of a structure of human genome

is challenging because of its massive size, where its DNA string is composed of 3× 109 pairs of bases. One
of the methods for reading these DNA strings is sequencing by hybridisation [15], [16], which consists of two
stages. The first stage is a biochemical stage in which a set of all possible substrings that forms the DNA chain
(considered as reads) is found. The second stage is the computational stage which is based on graph theory
[15], where either the vertices or the arcs (directed edges) correspond to the DNA substrings (reads). In these
graphs, the DNA strings correspond to either Hamiltonian cycles or Eulerian paths. The definitions of these
concepts are presented in the following.
Definition 1 [17] (Hamiltonian cycle): a cycle passing through all the vertices of a graph is called a Hamiltonian
cycle. A graph containing a Hamiltonian cycle is called a Hamiltonian graph.
Definition 2 [17] (Euler path): an Euler path is a path that travels through all edges of a connected graph. A
graph containing an Euler path is called an Euler graph.

Many assembly algorithms have been used in the second stage of this method [18]–[20], where
the overlap-layout-consensus strategy is featured most often. In the overlap step, many modern assembler
algorithms use the De Bruijn graph because it has proven time and again to successfully solve the problem
of substantially large amounts of information gained from the next-generation sequencers [21]–[26]. The De
Bruijn graph, introduced in [27], gave a solution of the superstring problem, which was defined as finding a
circular superstring that contains each possible substring of length k (k-mer) which occurs exactly once over a
given alphabet.

In De Bruijn’s solution, a directed graph where each vertex corresponds to a word of length
(k− 1) of the alphabet

(
(k− 1)-mer

)
is constructed. Two vertices are linked by an arc (directed edge) if

there is some k-mer whose (k− 1)-suffix corresponds to the first vertex and its (k− 1)-prefix corresponds
to the other. Therefore, all the edges of the De Bruijn graph represent all possible k-mers, thus an
Eulerian path (or a Hamiltonian cycle) in the De Bruijn graph represents the shortest superstring that
contains each k-mer exactly once. In fact, there exist nk k-mers in an alphabet containing n symbols.
For example, given the alphabet consisting of the symbols α and β , there exist 23 = 8 3-mers given by
ααα,ααβ ,αβα,αββ ,βαα,βαβ ,ββα,βββ . These 3-mers form the circular superstring αααβββαβαα

which is the shortest superstring containing all the 3-mers because it contains each 3-mer exactly once. Thus,
the representation of the overlap of words of (k−1) length in the DNA strings as a directed graph is achievable
using De Bruijn’s solution. The pattern of a DNA string refers to some group of alphabets in a DNA string that
repeat in a specific way, whether sequential or non-sequential. Two types of patterns considered in this paper
are namely n copies of the same element a, and n distinct elements. In the following, the definition of a De
Bruijn graph is presented.
Definition 3 [28] (De Bruijn graph): a De Bruijn graph is defined as a directed multi graph in which each vertex
corresponds to a (k− 1)-mer and two (k− 1)-mers are linked by a directed edge if and only if there exists a
k-mer where one of the (k−1)-mers is its suffix and the other is its prefix.

Mathematically, let Γ be a read of length n. The symbol γ[i, j] denotes the substring of Γ from the
i-th to the j-th alphabets. The read Γ contains n− k+ 1 overlapping k-mers which are γ[1,k], γ[2,k+ 1],. . . ,
γ[n− k,n− 1], γ[n− k+ 1,n]. Now, split each k-mer into left and right (k− 1)-mers i.e. γ1[1,k− 1], γ2[2,k],
γ3[3,k+ 1],. . . , γn−k+1[n− k+ 1,n− 1], γn−k+2[n− k+ 2,n], these (k− 1)-mers need not be distinct. Again,
connect each left (k−1)-mer to its corresponding right (k−1)-mer by a directed edge. Hence, the De Bruijn
graph of Γ is presented as:

γ1[1,k−1]
γ[1,k]−−−→ γ2[2,k]

γ[2,k+1]−−−−→ γ3[3,k+1]
γ[3,k+2]−−−−→ . . .γn−k[n− k,n−2]

γ[n−k,n−1]−−−−−−→

γn−k+1[n− k+1,n−1]
γ[n−k+1,n]−−−−−−→ γn−k+2[n− k+2,n]

where the (k− 1)-mers correspond to the vertices of the De Bruijn graph and the k-mers correspond to the
directed edges.

The concepts presented in this section, along with the method of mathematical induction, are utilised
to obtain the results presented in section 3, where some properties of different De Bruijn graphs and its examples
are presented. Following that, the generalisation of these De Bruijn graphs is presented. The results presented in
this research serve as a theoretical basis to reducing the required storage allocation of numerous computations
by the development of an algorithm that can provide the number of loops and multiple edges in the De Bruijn
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graph. Note that the length of the patterns considered in this paper is n≥ 3 because in the case n = 2, the De
Bruijn graph with the pattern of n copies of the same element α , does not contain self-loops and the De Bruijn
graph with the pattern of n distinct elements does not contain multiple edges.

3. RESULTS AND DISCUSSION
In this paper, we consider De Bruijn graphs when the patterns for n copies of the same element α

and n distinct elements of a DNA string are repeated once (one time) and twice (two times) non-sequentially.
Note that a once repetition means that the pattern occurs twice, while a twice repetition means that the pattern
occurs three times. Moving on, some properties of these graphs are presented in section 3.1 along with some
examples in section 3.2. Lastly, a generalisation of these properties is presented in section 3.3.

3.1. The De Bruijn graph of once and twice repetition of a pattern
Firstly, the De Bruijn graphs of a DNA string containing n copies of the same element α

occurring two times and three times non-sequentially, and n distinct elements occurring two times and
three times non-sequentialy, are found. Here, n copies of the same element α are indicated by αα . . .α︸ ︷︷ ︸

n
where n ≥ 3; while n distinct elements are indicated by α1α2 . . .αn where n ≥ 3. For both cases of
De Bruijn graphs, a one time non-sequential repetition of a pattern is recognised when the sequences
(αα . . .α︸ ︷︷ ︸

n

)ω1(αα . . .α︸ ︷︷ ︸
n

)ω2 or (α1α2 . . .αn)ω1(α1α2 . . .αn)ω2 appear in a DNA string, such that ωi, i = 1,2

are arbitrary sequences of letters. Meanwhile, a two time non-sequential pattern repetition occurs when the
sequences (αα . . .α︸ ︷︷ ︸

n

)ω1(αα . . .α︸ ︷︷ ︸
n

)ω2(αα . . .α︸ ︷︷ ︸
n

)ω3 or (α1α2 . . .αn)ω1(α1α2 . . .αn)ω2(α1α2 . . .αn)ω3 appear

in a DNA string, such that ωi, i = 1,2,3 are arbitrary sequences of letters.
The De Bruijn graph of one time non-sequential repetition of a pattern αα . . .α︸ ︷︷ ︸

n

, where n≥ 3 is given

in Lemma 1 while the De Bruijn graph of one time non-sequential repetition of a pattern α1α2 . . .αn, where
n≥ 3 is presented in Lemma 2.
Lemma 1: Given a DNA string R and a substring αα . . .α︸ ︷︷ ︸

n

⊂ R with length n, where n ≥ 3. For the one time

non-sequential repetition of the substring αα . . .α︸ ︷︷ ︸
n

⊂ R, the string R contains (2n− 2) 3-mers and the De

Bruijn graph of R contains (2n−4) self-loops.
Lemma 2: Given a DNA string R and a substring α1α2 . . .αn ⊂ R with length n, where n≥ 3. For the one time
non-sequential repetition of the substring α1α2 . . .αn ⊂ R, the string R contains (n−2) 3-mers that occur two
times and the De Bruijn graph of R contains (n−2) pairs of vertices connected by two directed edges.

In the following lemmas, the De Bruijn graph of two times non-sequential repetition of a pattern
αα . . .α︸ ︷︷ ︸

n

, where n≥ 3 and the De Bruijn graph of two times non-sequential repetition of a pattern α1α2 . . .an,

where n≥ 3 are presented.
Lemma 3: Given a DNA string R and a substring αα . . .α︸ ︷︷ ︸

n

⊂ R with length n, where n ≥ 3. For the two

times non-sequential repetition of the substring αα . . .α︸ ︷︷ ︸
n

⊂ R, the string R contains (3n− 3) 3-mers and the

De Bruijn graph of R has (3n−6) self-loops.
Lemma 4: Given a DNA string R and a substring α1α2 . . .αn ⊂ R with length n, where n ≥ 3. For the two
times non-sequential repetition of substring α1α2 . . .αn ⊂ R, the string R contains (n− 2) 3-mers that occur
three times and the De Bruijn graph of R contains (n−2) pairs of vertices connected by three directed edges.
In the next section, some examples are provided to illustrate the results in Lemma 3 and Lemma 4.

3.2. Examples of the De Bruijn graph of non-sequential pattern repetitions
In this section, the results in Lemma 3 and Lemma 4 are illustrated by Example 1 and Example 2,

respectively:
Example 1: Let AGTTTTCTTTTGTTTTA be a DNA string with length 17. Notice that the substring TTTT
appears three times non-sequentially, hence it is a two times repetition. Therefore, all the 3-mers of this string
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are given by:

AGT,GTT,TTT,TTT,TTC,TCT,CTT,TTT,TTT,TTG,TGT,GTT,TTT,TTT,TTA.

To construct the De Bruijn graph of the DNA string, first split each 3-mer into left and right 2-mers. Then,
connect each left 2-mer to its corresponding right 2-mer by a directed edge, given by:

AG AGT−−→ GT GTT−−−→ TT TTT−−→ TT TTT−−→ TT TTC−−→ TC TCT−−→ CT CTT−−→ TT TTT−−→ TT TTT−−→ TT TTG−−−→ TG TGT−−−→ GT GTT−−−→

TT TTT−−→ TT TTT−−→ TT TTA−−→ TA,

as shown in Figure 1.
From Figure 1, the number of 3-mers which form the 2-mer TT and form six self-

loops on the vertex TT in the De Bruijn graph of the DNA string is equal to nine, which are
TTT,TTT,TTC,TTT,TTT,TTG,TTT,TTT, and TTA. This result coincides with Lemma 3, where, for
n = 4, the number of 3-mers which form the 2-mer TT in the De Bruijn graph is given by 3(4)− 3 = 9, and
the number of self-loops on the vertex TT is given by 3(4)−6 = 6.

Figure 1. The De Bruijn graph of AGTTTTCTTTTGTTTTA with substring TTTT repeated two times
non-sequentially

Example 2: Let AGTCTGCAGTCTACAGTCTTT be a DNA string with length 21. The substring AGTCT
appears three times non-sequentially, thus making it a two times repetition. Therefore by Definition 3, all the
3-mers of this string are given by:

AGT,GTC,TCT,CTG,TGC,GCA,CAG,AGT,GTC,TCT,CTA,TAC,ACA,CAG,AGT,GTC,TCT,CTT,TTT.

Once again, the De Bruijn graph is constructed by the same procedure as in Example 1, in this case given by:

AG AGT−−→ GT GTC−−→ TC TCT−−→ CT CTG−−→ TG TGC−−→ GC GCA−−→ CA CAG−−→ AG AGT−−→ GT GTC−−→ TC TCT−−→ CT CTA−−→ TA TAC−−→

AC ACA−−→ CA CAG−−→ AG AGT−−→ GT GTC−−→ TC TCT−−→ CT CTT−−→ TT TTT−−→ TT,

as shown in Figure 2.

Observe from Figure 2 that the string R contains three 3-mers which appear three times, which are
AGT,GTC, and TCT. These 3-mers form three pairs of vertices, namely (AG,GT), (GT,TC), and (TC,CT),
which are each connected by three directed edges in the graph. This result coincides with Lemma 4, whereby
n = 5, then the string R contains 5−2 = 3 3-mers that occur three times. Moreover, for n = 5, the De Bruijn
graph of R contains 5−2 = 3 pairs of vertices connected by three directed edges.
In the next section, the generalisations of the results in Lemma 1, Lemma 2, Lemma 3, and Lemma 4 for m
times non-sequential pattern repetition are obtained.
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Figure 2. The De Bruijn graph of AGTCTGCAGTCTACAGTCTTT with substring AGTCT repeated two
times non-sequentially

3.3. The De Bruijn graph of m times non-sequential pattern repetitions
Now, the results in section 3.1 are generalised for m times non-sequential repetition of substrings

with n copies of the same element α and n distinct elements. Here, the structure of the substrings contained in
the DNA string are presented as:

(αα . . .α︸ ︷︷ ︸
n

)ω1(αα . . .α︸ ︷︷ ︸
n

)ω2 . . .ωm−1(αα . . .α︸ ︷︷ ︸
n

)ωm(αα . . .α︸ ︷︷ ︸
n

)

and,
(α1α2 . . .αn)ω1(α1α2 . . .αn)ω2 . . .ωm−1(α1α2 . . .αn)ωm(α1α2 . . .αn)

respectively, where ωi with i = 1,2, . . . ,m, are arbitrary sequences of letters.
The properties of the De Bruijn graph of m times non-sequential repetition of a pattern αα . . .α︸ ︷︷ ︸

n

,

where n≥ 3 is presented in Theorem 1.
Theorem 1: Given a DNA string R and a substring αα . . .α︸ ︷︷ ︸

n

⊂ R with length n, where n≥ 3. For the m times

non-sequential repetition of substring αα . . .α︸ ︷︷ ︸
n

⊂ R, where m ≥ 2, the number of 3-mers in the string R is

equal to (m+1)(n−1) and the De Bruijn graph of R has (m+1)(n−2) self-loops.
Proof: Suppose the pattern of m times non-sequential repetition of the substring αα . . .α︸ ︷︷ ︸

n

, is written as:

αα . . .α︸ ︷︷ ︸
n

ω1 αα . . .α︸ ︷︷ ︸
n

ω2 . . .ωm−1 αα . . .α︸ ︷︷ ︸
n

ωm αα . . .α︸ ︷︷ ︸
n

ωm+1

where ωi for i = 1,2, . . . ,(m+1) are arbitrary sequences of letters.
The proof is done by mathematical induction. First, let m = 2. Then by Lemma 3, the result is true.

Next, assume that the result is true for m = k, which means that for:

αα . . .α︸ ︷︷ ︸
n

ω1 αα . . .α︸ ︷︷ ︸
n

ω2 . . .ωk−1 αα . . .α︸ ︷︷ ︸
n

ωk αα . . .α︸ ︷︷ ︸
n

ωk+1

there are (k+ 1)(n− 1) 3-mers in the string R, which give 2-mer of the form αα and form (k+ 1)(n− 2)
self-loops on the vertex αα in the De Bruijn graph.

Now, let m = k+1. Then the pattern is written as:

αα . . .α︸ ︷︷ ︸
n

ω1 . . .ωk αα . . .α︸ ︷︷ ︸
n

ωk+1 = αα . . .α︸ ︷︷ ︸
n

ω1 . . .ωk−1 αα . . .α︸ ︷︷ ︸
n

ωk αα . . .α︸ ︷︷ ︸
n

ωk+1 αα . . .α︸ ︷︷ ︸
n

ωk+2
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where ωi for i = 1,2, . . . ,(k+ 2) are arbitrary sequences of letters. It can be seen that this pattern increases
the substring by αα . . .α︸ ︷︷ ︸

n

ωk+2 as compared to the pattern in the case m = k. Therefore, the number of 3-mers

increases by n−1, i.e. the number of 3-mers in this case which give 2-mer of the form αα is given by:

(k+1)(n−1)+n−1 = (k+2)(n−1)

Also, the number of self-loops increases by n−2, shown as follows:

(k+1)(n−2)+n−2 = (k+2)(n−2)

Thus, the result is true for m = k+1. Hence, the proof is complete.
In the sequel, the properties of the De Bruijn graph of m times non-sequential repetition of a pattern

α1α2 . . .αn, where n≥ 3 are presented in Theorem 2.
Theorem 2: Given a DNA string R and a substring α1α2 . . .αn⊂R with length n, where n≥ 3. For the m times
non-sequential repetition of substring α1α2 . . .αn ⊂ R, where m≥ 2, the string R contains (n−2) 3-mers that
occur m+1 times and the De Bruijn graph of R contains (n−2) pairs of vertices connected by m+1 directed
edges.
Proof: Suppose the pattern of m times non-sequential repetition of the substring α1α2 . . .αn is given by:

(α1α2 . . .αn)ω1(α1α2 . . .αn)ω2 . . .ωm−1(α1α2 . . .αn)ωm(α1α2 . . .αn)ωm+1

where ωi for i = 1,2, . . . ,(m+1) are arbitrary sequences of letters.
The proof is done by mathematical induction. First, let m = 2. Then, by Lemma 4, the result is true.

Next, assume that the result is true for m = k, which means that for:

(α1α2 . . .αn)ω1(α1α2 . . .αn)ω2 . . .ωk−1(α1α2 . . .αn)ωk(α1α2 . . .αn)ωk+1

there are (n− 2) 3-mers in the string R occurring k+ 1 times, which are αi−2αi−1αi, i = 3,4, . . . ,n. These
3-mers form (n− 2) pairs of vertices of the form (αi−2αi−1,αi−1αi), i = 3,4, . . . ,n, connected by k + 1
directed edges in the De Bruijn graph.

Lastly, let m = k+1. Then the pattern is written as:

(α1α2 . . .αn)ω1 . . .ωk(α1α2 . . .αn)ωk+1
= (α1α2 . . .αn)ω1 . . .ωk−1(α1α2 . . .αn)ωk(α1α2 . . .αn)ωk+1(α1α2 . . .αn)ωk+2

where ωi for i = 1,2, . . . ,(k+ 2) are arbitrary sequences of letters. It can be seen that this pattern increases
the substring by (α1α2 . . .αn)ωk+2 as compared to the case of m = k. Therefore, the 3-mers of the form
αi−2αi−1αi, i = 3,4, . . . ,n are repeated one more time which implies that the pairs of vertices of the form
(αi−2αi−1,αi−1αi), i = 3,4, . . . ,n, are connected by one more directed edge in the De Bruijn graph. Thus, in
the case m = k+1, there are (n−2) 3-mers in the string R occuring (k+1)+1 = k+2 times, and these 3-mers
form (n−2) pairs of vertices connected by (k+1)+1 = k+2 directed edges in the De Bruijn graph. Hence,
the result is true for m = k+1 and the proof is complete.

4. CONCLUSION
In this paper, based on the definitions of a Hamiltonian cycle, Euler path, and De Bruijn graph as

well as using mathematical induction, the De Bruijn graphs of once and twice non-sequential repetitions of
n copies of the same element α and n distinct elements where n ≥ 3 in DNA strings have been presented.
It has been shown that these De Bruijn graphs with specific non-sequential repetitions of substrings produce
strings with distinctive properties, which have been illustrated by examples provided. These results have been
generalised for m times non-sequential repetition as follows: if the DNA string contains a pattern (αα . . .α︸ ︷︷ ︸

n

)

repeated m times non-sequentially where n ≥ 3 and m ≥ 2, then the string has (m+ 1)(n− 1) 3-mers and
its De Bruijn graph contains (m+ 1)(n− 2) directed self loops; while in the case of a pattern of the form
(α1α2 . . .αn) repeated m times non-sequentially where n ≥ 3 and m ≥ 2, then the string contains (n− 2)
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3-mers occurring m+ 1 times and the De Bruijn graph contains (n− 2) pairs of vertices linked by m+ 1
directed edges. The results presented in this article have provided meaningful and helpful advancement in
developing new algorithms to reduce the storage load and increase efficiency in the computation of assembly
algorithms for DNA strings. In the future, researchers may also develop a graphical user interface (GUI) to
illustrate the properties of various De Bruijn graphs which correspond to different pattern repetitions.
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[4] L. Kari, G. Pǎun, G. Rozenberg, A. Salomaa, and S. Yu, “DNA computing, sticker systems, and universality,” Acta Informatica,

vol. 35, no. 5, pp. 401–420, 1998, doi: 10.1007/s002360050125.
[5] W. H. Fong, Y. S. Gan, N. H. Sarmin, and S. Turaev, “Variants of weighted sticker systems with different weighting spaces,”

ScienceAsia, vol. 43S, no. 1, pp. 43–51, 2017, doi: 10.2306/scienceasia1513-1874.2017.43s.043.
[6] M. Selvarajoo, F. W. Heng, N. H. Sarmin, and S. Turaev, “Probabilistic sticker systems,” Malaysian Journal of Fundamental and

Applied Sciences, vol. 9, no. 3, 2014, doi: 10.11113/mjfas.v9n3.101.
[7] M. Holzer, B. Truthe, and A. F. Yosman, “On bonded sequential and parallel insertion systems,” RAIRO - Theoretical Informatics

and Applications, vol. 52, no. 2–4, pp. 127–151, 2018, doi: 10.1051/ita/2018010.
[8] A. F. Yosman, W. H. Fong, and H. I. M. Hassim, “On bonded sequential and parallel deletion systems,” Journal of Critical Reviews,

vol. 7, no. 16, pp. 902–909, 2020.
[9] W. H. Fong, A. F. Yosman, and H. I. M. Hassim, “Closure properties of bonded sequential insertion-deletion systems,” Journal of

Physics: Conference Series, vol. 1988, no. 1, p. 012075, 2021, doi: 10.1088/1742-6596/1988/1/012075.
[10] R. Freund, “Splicing systems on graphs,” in Proceedings First International Symposium on Intelligence in Neural and Biological

Systems. INBS’95, 1995, pp. 189–194, doi: 10.1109/inbs.1995.404262.
[11] I. Aisah, P. R. E. Jayanti, and A. K. Supriatna, “2-cut splicing and 4-cut splicing on DNA molecule,” IOP Conference Series:

Materials Science and Engineering, vol. 567, no. 1, p. 012018, 2019, doi: 10.1088/1757-899X/567/1/012018.
[12] Z. Ouyang, Y. Huang, and F. Dong, “The maximal 1-planarity and crossing numbers of graphs,” Graphs and Combinatorics,

vol. 37, no. 4, pp. 1333–1344, 2021, doi: 10.1007/s00373-021-02320-x.
[13] M. N. S. A. Razak, W. H. Fong, and N. H. Sarmin, “Graph splicing rules with cycle graph and its complement on complete graphs,”

Journal of Physics: Conference Series, vol. 1988, no. 1, p. 012067, 2021, doi: 10.1088/1742-6596/1988/1/012067.
[14] W. H. Fong, M. N. S. A. Razak, and N. H. Sarmin, “Planarity on spliced graphs by one splicing rule in graph splicing systems,” AIP

Conference Proceedings, vol. 2905, no. 1, p. 070006, 2024, doi: 10.1063/5.0171633.
[15] P. A. Pevzner, “l-tuple DNA sequencing: computer analysis,” Journal of Biomolecular Structure and Dynamics, vol. 7, no. 1,

pp. 63–73, Aug. 1989, doi: 10.1080/07391102.1989.10507752.
[16] P. A. Pevzner and R. J. Lipshutz, “Towards DNA sequencing chips,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 841 LNCS, pp. 143–158, 1994, doi:
10.1007/3-540-58338-6 64.

[17] J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan London, 1976.
[18] M. Kasahara and S. Morishita, Large-scale genome sequence processing. Imperial College Press, 2006.
[19] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-generation sequencing data,” Genomics, vol. 95, no. 6,

pp. 315–327, 2010, doi: 10.1016/j.ygeno.2010.03.001.
[20] M. Pop, “Genome assembly reborn: recent computational challenges,” Briefings in Bioinformatics, vol. 10, no. 4, pp. 354–366,

2009, doi: 10.1093/bib/bbp026.
[21] R. Li et al., “De novo assembly of human genomes with massively parallel short read sequencing,” Genome Research, vol. 20,

no. 2, pp. 265–272, 2010, doi: 10.1101/gr.097261.109.
[22] I. MacCallum et al., “ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads,”

Genome Biology, vol. 10, no. 10, p. R103, 2009, doi: 10.1186/gb-2009-10-10-r103.
[23] P. A. Pevzner, H. Tang, and M. S. Waterman, “An Eulerian path approach to DNA fragment assembly,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9748–9753, 2001, doi: 10.1073/pnas.171285098.
[24] M. Sahli and T. Shibuya, “Arapan-S: a fast and highly accurate whole-genome assembly software for viruses and small genomes,”

BMC Research Notes, vol. 5, p. 243, 2012, doi: 10.1186/1756-0500-5-243.
[25] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and I. Birol, “ABySS: a parallel assembler for short read

sequence data,” Genome Research, vol. 19, no. 6, pp. 1117–1123, 2009.
[26] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read assembly using de Bruijn graphs,” Genome Research,

vol. 18, no. 5, pp. 821–829, 2008, doi: 10.1101/gr.074492.107.

The De Bruijn graph of non-sequential pattern repetitions in DNA strings (Wan Heng Fong)



794 r ISSN: 2502-4752

[27] N. G. De Bruijn, “A combinatorial problem,” in Proceedings of the Section of Sciences of the Koninklijke Nederlandse Akademie
van Wetenschappen te Amsterdam, 1946, vol. 49, no. 7, pp. 758–764.

[28] Y. Ben-Ari, D. Flomin, L. Pu, Y. Orenstein, and R. Shamir, “Improving the efficiency of de Bruijn graph construction using
compact universal hitting sets,” in Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics, BCB 2021, 2021, pp. 1–9, doi: 10.1145/3459930.3469520.

BIOGRAPHIES OF AUTHORS
Wan Heng Fong is Associate Professor at Department of Mathematical Sciences,
Faculty of Science, Universiti Teknologi Malaysia (UTM), where she obtained her B.Sc (Industrial
Mathematics) with Honours, M.Sc (Mathematics), and Ph.D. (Mathematics). Dr. Fong’s illustrious
career in mathematics and research has been studded by many awards, achieving 12 exhibition
awards and 8 intellectual properties for her works in graphical user interface (GUI) development
for visualisation of DNA splicing. She has amassed more than 120 publications, spanning across ISI
and SCOPUS-indexed journals in DNA computing, formal language theory, group theory, and graph
theory, which constitute her main focus areas of research. To date, she has supervised 18 Ph.D. and
Master students and is currently the research group leader of Applied Algebra and Analysis Group
(AAAG) at UTM. She can be contacted at email: fwh@utm.my.

Ahmed Ildrussi received his Bachelor of Mathematics Sciences from Benghazi University,
Libya and his Master of Science in Mathematics from Universiti Teknologi Malaysia (UTM),
Malaysia with a dissertation under the supervision of Associate Professor Dr. Wan Heng Fong.
His work in DNA computing further established the connection between DNA assembly patterns and
mathematical modelling using graph theory, where De Bruijn graphs illustrate the pattern repetitions
in DNA strings. He is currently serving as a mathematics teacher in his home country of Libya
but is keen on continuing his work in the field of DNA computing. He can be contacted at email:
hussin.mohamed.ahmed@graduate.utm.my.

Ahmad Firdaus Yosman obtained his Bachelor of Science (Mathematics) with Honours,
Master of Philosophy (Mathematics), and Doctor of Philosophy (Mathematics) from Universiti
Teknologi Malaysia (UTM), each with full funding from the Ministry of Higher Education (MOHE)
Malaysia. Through his work as a research assistant, he has successfully secured multiple grants,
including in-campus and national research grants. His work in formal language theory and group
theory revolve around the concept of bonded insertion-deletion systems, a new variant of insertion-
deletion systems that possess the generative power equivalent to Turing machines. Currently, he is
mainly working in the areas of DNA computing and formal language theory. He can be contacted at
email: firdausyosman@yahoo.com.

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 2, August 2024: 787–794

https://orcid.org/0000-0001-8202-4388
https://scholar.google.com.my/citations?user=mYciQIkAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=36701403600
https://orcid.org/0009-0003-1924-569X
https://orcid.org/0000-0002-2511-3947
https://scholar.google.com.my/citations?hl=en&user=hVhJbFUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57194235063

	Introduction
	Method
	Results and Discussion
	The De Bruijn graph of once and twice repetition of a pattern
	Examples of the De Bruijn graph of non-sequential pattern repetitions
	The De Bruijn graph of m times non-sequential pattern repetitions

	Conclusion

