
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 34, No. 2, May 2024, pp. 711~725 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i2.pp711-725         711 

 

Journal homepage: http://ijeecs.iaescore.com 

A novel FFNN-AHO hybrid predictive model for enhancing the 

performance of jet-cooled PVT system 

 

 

Mohamed A. Essa1,2, Alaa M. Rashad3, Ahmed Y. Hatata4,5 
1Department of Mechanical Engineering, College of Engineering, Shaqra University, Dawadmi, Saudi Arabia 
2Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, Zagazig, Egypt 

3Department of Civil Engineering, College of Engineering, Shaqra University, Dawadmi, Saudi Arabia 
4Department of Electrical Engineering, College of Engineering, Shaqra University, Dawadmi, Saudi Arabia 

5Department of Electrical Engineering, Engineering College, Mansoura University, Mansoura, Egypt 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 1, 2024 

Revised Feb 22, 2024 

Accepted Feb 26, 2024 

 

 Photovoltaic-thermal (PVT) systems are common in the conversion of solar 

energy to electrical and thermal energy. The performance of such systems 

depends on the environmental conditions in which these systems are applied. 

This paper presents a parametric study of a jet-cooling PVT system with a 

staggered distribution of the jets. A feedforward neural network (FFNN) is 

proposed as a novel predictive model for analyzing the characteristics of the 

PVT system and its thermal and electrical performance. Moreover, a novel 

optimization algorithm called archerfish hunting optimizer (AHO) is applied 

to obtain the optimal structure and elements of the proposed FFNN. The PVT 

system variables considered as inputs to the FFNN-AHO model are flow rate, 

wind speed, solar irradiance, and ambient temperature. The average 

temperature of the PV reaches a maximum of 45.84 ºC, and the maximum 

temperature un-uniformity reaches to 3.59 ºC. The studied PVT system 

achieved maximum electrical, thermal, and overall efficiencies of 14.23%, 

54.43%, and 68.1%, respectively. Moreover, the results demonstrate that the 

FFNN-AHO hybrid model provides highly accurate PVT system performance 

prediction. The correlation coefficient between the actual and predicted data 

is close to 1, indicating a strong correlation and confirming the reliability and 

effectiveness of the FFNN-AHO model. 
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1. INTRODUCTION 

Photovoltaic (PV) systems are common solar energy conversion systems in the market. Recently, PV 

thermal (PVT) systems have been proposed for producing thermal energy with the electrical energy produced 

from PV. The PVT system raises the PV electrical efficiency (ηe) because of the cooling. Furthermore, it 

produces thermal energy as a byproduct. This effect was led to achieve a maximum overall efficiency (ηo) of 

up to 80% for the PVT system [1]. The PVT systems differs in the cooling technique and fluids [2], [3]. So, 

the following paragraphs introduces the up-to-date research considering cooling techniques and fluids in PVT 

systems. 

The PVT systems use either active or passive cooling techniques in the thermal module attached to 

the PV. The active technique applies forced convection for the heat transfer from the PV to the heat transfer 

fluid (HTF), while the passive technique applies free convection. Passive techniques rely on extending the heat 

https://creativecommons.org/licenses/by-sa/4.0/
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transfer surface, often by heat sinks, to achieve a greater heat removal rate from the PV module. Fins attached 

to the backside of the PV system as a heat sink was investigated using aluminium fins with ten different 

orientations [4]. The staggered array of the fins with a 0.014 m2 area achieved the highest exergy and energy 

efficiencies of 10.91%, and 11.55%, respectively. Longitudinal S-shaped fins heat sink was investigated by [5]. 

This technique achieved an enhancement in ηe by 0.42%. The achieved ηe and thermal efficiency (ηt) reached 

13.98% and 49.5%, respectively. Discontinuity of the heat sinks was investigated in comparison with the 

continuous heat sinks [6]. The disconnected heat sink achieved 7 ⁰C lower PV temperature with an 

enhancement of 2.96%. Broken versus continuous ribs were investigated, as well, in a PVT system with water 

as the HTF [7]. The continuous 45º V-shaped ribs achieved the highest heat removal rate. The system achieved 

an improvement in ηe by up to 1.5%, while ηt reached 53%. The effect of the cooling air stream temperature 

was investigated using underground cooling [8]. An underground depth of 1 m was used in the system with 

different flow rates of the air stream. The achieved temperature decrease in the PV panel was 13 ⁰C under  

a flow rate of 0.0288 m3/s. This enhancement in the PV temperature improved its ηe by 18.9%.  

Heat sink with U-shaped fins construction cooling was compared with the water flow cooling for the 

PV modules by [7]. An improvement in the produced energy by 7% and 10.2% was achieved using heat sinks 

and water cooling, respectively. This referred to the decrease in the PV panel’s maximum temperature by 17 

⁰C and 20 ⁰C. A similar comparative study was conducted to investigate the effect of the water-cooling system 

compared to pin fins separately [9]. A 2º inclination converging channel achieved the minimum temperature 

deviation of 0.92 ºC through the PV panel. This system improved ηe by 36.1%. Forced convection water cooling 

using in-contact spray jets was investigated by [10]. The sprayed water with a flow rate of 0.1425 LPS achieved 

a reduction in the maximum PV temperature by 26.4 ⁰C on sunny days. This enhanced the annual energy 

productivity by 6.1%. A two-sided cooling technique was applied to achieve better cooling for the PV. An 

upper and lower side cooling by the forced flow of water and air, respectively, was investigated by [11]. The 

two-sided cooling technique achieved a PV temperature reduction by 15 ⁰C and enhanced ηe by up to 5.7%. 

The value of ηo of this PVT system reached 85.3%. The flow channel in which the HTF flows inside the PVT 

system has had several shapes and performances. Rectangular and arc cross-section channel geometries in the 

PVT systems were investigated [12]. The arc channel achieved an enhancement in ηe by 0.45% and 0.95% in 

comparison with rectangle channel system and PV system without cooling. The arc cross-sectional channels 

achieved ηt of 65.95%. Moreover, corrugated channels with shark dorsal shape and V-shape in the PVT module 

were investigated [13]. This system reached a maximum ηt of 10.5%. 

Heat transfer parameters in the thermal module were investigated for performance enhancement in  

a PVT system using water as the HTF [14]. Variable Reynolds number was considered by varying the tube 

diameter and the flow rate. Both ηt and ηe increased with the Reynolds number. Within the tested parameters, 

the overall efficiency (ηo) reached a maximum value of 59.3%. Twisted tape inserts in the riser tubes of the 

thermal module were used in a PVT system for heat transfer enhancement [15]. The PV temperature decreased 

using the twisted tabs. As a result, the energy efficiency experienced a boost of 28.4%. Thermosiphon was 

used for thermal energy extraction from the PV at the backside [16]. The operating temperature of the PV 

decreased by 17%, and ηe was improved by 7.3%. An unglazed PVT system utilizing water and nanofluid was 

investigated separately with a thermal absorber tube and serpentine coil PVT system [17]. A decrease in PV 

temperature by 23.7 ⁰C and 15 ⁰C was achieved by utilizing nano-fluid and water, respectively. The value of 

ηo of the nano-fluid case was found to be higher than that of the water-cooling case by 21%. A comparative 

study for PVT-solar thermal (ST) and PV-ST systems was conducted [18]. For high ambient temperatures and 

solar radiation, the PVT-ST demonstrated superior performance compared to the PV-ST. A PVT system was 

proposed based on a thermal collector with a PV panel that partially covers it [19]. The harvested power 

increased by 31.24% and experienced a reduction of 35.07% when compared to the PV system only.  

An examination was conducted on an air-heated PVT system that incorporated baffles to enhance heat transfer [20]. 

The best baffles arrangement achieved enhancements of 4.3% and 12.9% in ηt and ηe, respectively.  

A triangular-shaped thermal module with air as HTF was used with a PVT [21]. The system achieved an 

enhancement of 36.97% and 2.59% in ηt and ηe, respectively. An experimental investigation was conducted 

using PV cooling with thermoelectric module PVT-TE [22]. They found that the overall systems efficiency 

can reach 72.1% without considering pumping losses. 

In recent times, machine learning techniques, particularly artificial neural network (ANN), have 

demonstrated their effectiveness in modelling the performance of thermal and electrical systems, such as heat 

exchangers and PV systems. Consequently, ANN methodologies have gained significant popularity in 

accurately predicting the dynamic performance of PVT systems under diverse external and internal conditions. 

This encompasses factors like fluid mass flow rate, climate fluctuations, and system design parameters, which 

have been recognized as relevant considerations [23]. Various ANN models including, radial-basis function 

ANN, adaptive neuro-fuzzy inference system, and FFNN, were utilized to model PVT systems incorporating 

nanofluids as a heat transfer fluid [24]. Moreover, the ANNs, along with the particle swarm optimization 
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technique, were employed to determine the efficiency of the PV module and the outlet temperature of the 

collector fluid. The results demonstrated the capability of these models to predict the desired parameters [24]. 

Furthermore, a genetic algorithm-back propagation neural networks model was employed to improve the 

performance of parabolic trough solar collectors (PTSCs) by minimizing heat loss and maximizing energy 

output and overall efficiency [25]. The ANN models were employed to predict the characteristics of nano-

fluid-based solar collectors. These models utilized inputs such as reduced temperature difference, collector 

length, collector depth, nano-fluid concentration, and flow rate to predict collector efficiency and Nusselt 

number [26]. 

Additionally, FFNNs were utilized in various PVT models to enhance the efficiency of different 

configurations, such as PVT connected with thermoelectric cooler (PVT-TEC) systems [27]. These models 

enabled the prediction of electrical, thermal, and overall exergy efficiencies, as well as average fluid 

temperature. Furthermore, ANN models were used to enhance the energy generation of PVT systems based on 

nano-phase change materials (nano-PCMs), SiC-water, and nanofluids [28]. Inputs such as ambient 

temperature and solar irradiance were utilized to predict energy generation using self-organizing feature maps 

and multilayer perceptron networks. The evaluation of these models demonstrated favourable results in terms 

of R2 value, root mean squared error (RMSE) value, MSE value, and trend accuracy. Two distinct ANN models 

were proposed to predict various PVT performance parameters, including outlet temperature, cell temperature, 

and exergy, thermal, and electrical efficiencies [29]. These models were specifically designed for PVT systems 

using hexagonal boron nitride/water nanofluid as the cooling fluid. A FFNN was employed to predict the 

efficiency of PVT. Inputs such as cell temperature and solar irradiance were utilized, and the model was trained 

using climatic data from various weather conditions. The developed FFNN model exhibited high accuracy in 

estimating efficiency parameters [30]. 

Other studies employed methods such as least squares support vector machine and ANN to model 

PVT systems and predict their thermal and electrical efficiencies [23]. The findings showed that the LS-SVM 

approach demonstrated superior performance in this context. A comprehensive review and comparison of 

various ANN models, including LSTM, SOFM, SVM, SOVM, MLP, GFF, and RNN, was conducted to assess 

their data prediction capabilities in PVT collectors [27]. The results indicated that a specific transverse zone 

with moderate to high irradiation levels was favourable for implementing solar systems. Various ANN models, 

including LS-SVM and adaptive neuro-fuzzy inference system, were presented to optimize the efficiency of 

nano-coolant PVT systems [31]. These models utilized inputs such as irradiation intensity and nanofluid flow 

rate. The ANFIS model demonstrated superior performance in predicting efficiency, achieving low MSE, 

RMSE, and high R2 values. 

As concluded from the literature, the active cooling methods showed excellent performance, 

especially with water as the cooling fluid. The nano-fluid showed even higher heat transfer rates. However, the 

pumping power of the nano-fluids is high due to the frictional losses. It does not benefit the PVT systems’ 

overall performance if counted for in the overall efficiency. One of the best cooling techniques for the PV 

panels found is the jet cooling. However, some parts of the jet-cooling still need more investigation especially 

for the design and range of the test parameters used. In the current study, a parametric study for a multiple jet 

with single outlet cooling for the PV as a compact PVT system was conducted. The orientation of the jets is a 

staggered distribution. The parameters that will be considered in this study are HTF flow rate, Ambient 

temperature, wind speed, and solar radiation intensity. Furthermore, an FFNN is proposed as a novel predictive 

model for analyzing the characteristics of the PVT system and its electrical and thermal performance. 

Moreover, a novel optimization algorithm, AHO, is applied to calculate the optimal structure and elements of 

the proposed FFNN. The FFNN-AHO hybrid prediction model is trained by data from the CFD model. The 

results of the study are analyzed considering the maximum un-uniformity and the average temperature of the 

PV module, ηt, ηe, and ηo of the PVT system. 

The following sections contain a detailed description of methodology used for the CFD and the FFNN-

AHO models used with validating data in the methods section. Then a results and discussion section present a 

detailed exploring and discussion for the CFD results considering the temperature distribution and uniformity 

on the PV panel and different efficiencies of the system followed by a detailed discussion of the FFNN-AHO 

model validity and accuracy. Furthermore, the conclusion section presents the outstanding conclusions from 

this work. Finally, a section for the related future work that can be conducted in this area is presented. 
 

 

2. METHOD 

The PV module considered in this paper is a 50 W polycrystalline module (EGE-50P-36). The thermal 

module is considered to be an aluminum box attached to the PV backside with a thermal paste. The PVT 

module under study has dimensions of 515×675×22.2 mm3 with the specifications from [32]. The jets are 

directed normally to the PV inside the thermal module domain. The jet distribution is considered, as shown in 

Figure 1. Lv and Lh express the vertical and horizontal distance between the jets. The diameter of the jet is dj. 
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The jet diameter is considered to be 5 mm for all the cases. The jet distances have been considered as Lv=168.57 

mm and Lh=171.67 mm, while the jet distance to the wall is considered as 7.5 mm. 

 

2.1.  Numerical model 

A numerical model is built for the proposed PVT system. The model has a tilt angle of 45º.  

Ansys ICEM program is utilized for grid and geometry generation according to the dimensions indicated in 

Figure 1. Ansys fluent solver is used in this paper for the CFD, heat transfer, radiation modelling, and 

simulation using the finite volume method. A simple algorithm is used for the velocity-pressure coupling. RNG 

K-ɛ model is used for the turbulence modelling. The standard discretization scheme is applied for the pressure 

equation, the momentum and energy equations utilize the second-order upwind scheme, whereas the turbulence 

equations employ the first-order upwind scheme. A steady flow solution is obtained by setting a convergence 

criterion of 1E-4 for the momentum, continuity, and turbulence equations. For the energy and radiation 

equations, a convergence criterion of 1E-6 is applied. The flow rate range for the cooling HTF is 0.14:1.27 

LPM, with wind speeds of 0 and 3 m/s, ambient temperatures of 293 and 308K, and solar irradiance range of 

400:1200 W/m2. The equations considered in the numerical simulation understudy are momentum, continuity, 

energy in solid and liquid mediums, and the RNG k-ε turbulence for which the detailed description can e found 

in [33]. 

A hexahedrons structured mesh is constructed for the present study using the Ansys ICEM meshing 

tool. A mesh sensitivity test is implemented to study the effect of the mesh density on the final solution. Figure 2 

indicates the average PV temperature with increasing mesh density considering flow rate of 1.414 L/min and 

1,000 W/m2 irradiance. It is found that as the number of elements reaches 1.6 million, the temperature variation 

can be neglected. So, the mesh considered in the simulations of the present test cases contains 1.6 million 

elements. 

The specifications related to the different boundaries are illustrated in Figure 3. The irradiance is 

assumed to be perpendicular on the PV, while the PV panel is considered inclined by 30º on the horizontal. 

The entered cooling fluids are jets with the distribution illustrated. The outlet is a longitudinal slot with a width 

of 3 mm at the bottom of the thermal module. The temperature of the cooling HTF is considered equal to the 

ambient temperature (Tamb). The external wind speeds are considered to be 0 and 3 m/s, causing convection 

coefficient values of 2.8 and 11.8 W/m2. K, respectively [13]. To verify the validity of the current model, a 

comparison is made between its predictions and the experimental results presented in [34]. The comparison 

between the numerical data and the experimental is shown in Figure 4. 
 

 

  
 

Figure 1. Jets orientation in the thermal module 
 

Figure 2. Grid sensitivity for the mesh 

 

 

  
 

Figure 3. The PVT model with boundary conditions 

 

Figure 4. Numerical data validation 
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As can be observed from Figure 4, a maximum ARE of 4.1% was found between the simulation and 

the experimental data. The performance parameters considered in this research are ηt, ηe, ηo, Tav, ΔT, and Tout 

where Tav expresses the area-weighted average of the PV top surface temperature. This parameter is vital for 

judging the effectiveness of the cooling technique used. Another important parameter is the temperature un-

uniformity index of the PV module (∆T), which expresses the variation of the PV module temperature. In this 

study, it is the difference between the maximum and minimum PV temperature. ∆T is important for the PVT 

application to judge the effective distribution of the cooling technique over the PV. This is because the high 

value of this index causes cracks in the PV module due to thermal stresses over the long-term operation [35]. 

The definition of the ηt, ηe can be found in [36]. The Overall efficiency ηo considers the pumping power ratio 

(𝑃𝑃𝑟), which expresses the power exerted in the HTF pumping relative the solar power input as: 
 

𝑃𝑃𝑟 = �̇� ∗ ∆𝑝/𝑃𝑖𝑛 (1) 
 

where ∆𝑝 is the pressure loss of the HTF pumpig [Pa], �̇� is the HTF flow rate [m3/s], and 𝑃𝑖𝑛  is the solar power 

input to the system [W]. The overall efficiency ηo is expressed as in (2). 
 

𝜂𝑜 = 𝜂𝑒 + 𝜂𝑡 − 𝑃𝑃𝑟  (2) 

 

2.2.  ANN 

The ANN is a type of artificial intelligence technique designed to mimic the neural networks found 

in the human brain, enabling analysis, computation, and information processing. Unlike traditional 

programming, it utilizes training and learning algorithms to solve problems. It consists of multiple layers, 

including the input, hidden, and output layers, with each layer comprising a collection of neurons that serve as 

the primary computational units. The optimal number of hidden layers and neurons depends on the problem 

complexity. Each neuron in a layer receives inputs (I1, I2, ...) from the neurons in the preceding layer, along 

with a bias term (B), which are then multiplied by weights (ω). The neuron’s output (O) is calculated by 

implementing the activation function (ξ) to the weighted sum of the inputs, as defined in (3) [36], [37]. 

 

O=ξ[∑ (ω
i
Ii+B)n

i=1 ] (3) 

 

The activation function is associated with each neuron to compute its output. Popular activation 

functions for hidden layers include sigmoid/logistic and rectified linear unit. For the output layer, linear, and 

binary Step activation functions are commonly used [37]. 

This paper introduces a proposed FFNN for modelling the thermal solar PV (PVT) system.  

The FFNN model is capable of predicting various performance parameters of the PVT system, including PV 

temperature, thermal efficiency ηt, ηe, and ηo. The input layer of the FFNN is designed to receive initial data in 

the form of a vector consisting of ambient temperature, mass flow rate, convection coefficient, and solar 

irradiance. This input layer comprises four neurons, with each neuron corresponding to one of the input 

parameters. Similarly, the output layer consists of six neurons, representing ηt, ηe, ηo, Tav, ΔT, and Tout. 

During the training process, the proposed FFNN learns to predict the actual values of the PVT 

performance parameters by adjusting the connection weights between neurons in different layers.  

The objective of the training process is to reduce the errors between the actual and predicted outputs by 

iteratively adjusting the weights. To evaluate the effectiveness of the training process, the MSE is calculated 

as a measure of the disparity between the predicted and actual outputs. The MSE is utilized to correct the biases 

and connection weights between the layers, ensuring improved accuracy and performance [37]. 
 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝐴𝑖 − 𝑇𝑖)

2𝑛
𝑖=1  (4) 

 

Where 𝑛 is the training pattern numbers and 𝐴𝑖 and 𝑇𝑖  represent the predicted output and measured values, 

respectively. The objective function can be written as (5). 
 

𝑂𝐹 = 𝑀𝑖𝑛. [
1

𝑛
∑ (𝐴𝑖 − 𝑇𝑖)

2𝑛
𝑖=1 ] (5) 

 

Figure 5 depicts the ultimate configuration of the proposed FFNN, where the inputs consist of ambient 

temperature, convection coefficient, mass flow rate, and solar irradiance. Additionally, the output parameters 

are visually presented in Figure 5. The optimal number of hidden neurons is determined by leveraging a novel 

optimization approach known as archerfish hunting optimizer (AHO). This technique is employed to acquire 

appropriate values for the weights and biases. Consequently, a hybrid model combining AHO and FFNN 

(FFNN-AHO) is established to derive the PVT system characteristics. 
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Figure 5. Proposed FFNN structure for modelling PVT system 
 

 

2.3.  AHO 

In this paper, a novel metaheuristic approach AHO is utilized to calculate the optimal structure of the 

FFNN for predicting and modelling the PVT system performance. This technique is inspired by the hunting 

behavior of archerfish, which mimics actions such as jumping and shooting water to target insects. When 

hunting insects, the archerfish employs two methods: it either propels a strong stream of water to strike the 

insect or jumps towards it when it is in close proximity. This behavior is mathematically simulated and referred 

to as AHO. The AHO method requires the configuration of three parameters: population size, attraction rate 

between the archerfish and insects, and the angle at which the system switches between exploitation and 

exploration phases. To implement the AHO technique, the AHO parameters need to be initialized first, 

including the population size and the number of archerfish. The initial positions of the ith archerfish, P(i,0), 

can be denoted by [38], [39]. 
 

𝑃(𝑖, 0) = [(𝑝1
𝐿 + 𝜎1(𝑝1

𝑈 − 𝑝1
𝐿)), … , (𝑝𝑑

𝐿 + 𝜎𝑑(𝑝𝑑
𝑈 − 𝑝𝑑

𝐿))] (6) 

 

Where 𝑝1
𝑈 and 𝑝1

𝐿 represent the lower and upper bounders of the archerfish location. 𝜎1, …, 𝜎𝑑 are random 

numbers between 0 and 1. 

 

2.3.1. Shooting behavior (exploration phase) 

During this phase, the motion of water droplets shot by the archerfish is modelled using a general 

ballistic trajectory. The launch speed, ν, can be calculated based on the perception angle, ϕ, and the acceleration 

of gravity, ϐ. The archerfish, j, targets the insect and shoots water, causing the insect to fall into the water. Then 

the archerfish ith at iteration (t+1) moves towards the fallen insect using [38]; 

 

𝑃(𝑖, 𝑡 + 1) = −(𝑃(𝑖, 𝑡) − 𝑃𝑖𝑛(𝑖, 𝑡)) 𝑒
−(‖𝑃𝑖𝑛(𝑗,𝑡)−𝑃(𝑖,𝑡)‖2)

2
+ 𝑃(𝑖, 𝑡) (7) 

 

where t is the number of iterations, 𝑃(𝑖, 𝑡) and 𝑃(𝑖, 𝑡 + 1) represent the positions of archerfish ith at iteration t 

and t+1 and || ||2 is Euclidean norm. The position of the insect can be obtained by (8); 
 

𝑃𝑖𝑛(𝑖, 𝑡) = 𝑃(𝑖, 𝑡) + (0,… ,
𝑣2

2ϐ
 × 𝑠𝑖𝑛2∅,… , 0) + 𝜖 (8) 

 

where 𝜖 is a vector of random numbers in the range [-0.5, 0.5]. 

 

2.3.2. Jumping behavior (exploitation phase) 

During this phase, the archerfish engages in hunting the insect by jumping towards it. Just like in the 

previous phase, the motion of the archerfish is calculated by the launch speed, perception angle, and 

acceleration of gravity. The movement of the ith archerfish towards the insect as it hunts it down can be 

described by [38]. 

 

𝑃(𝑖, 𝑡 + 1) = −(𝑃(𝑖, 𝑡) − 𝑃𝑖𝑛(𝑖, 𝑡))𝑒
−(‖𝑃𝑖𝑛(𝑖,𝑡)−𝑃(𝑖,𝑡)‖)

2
+ 𝐿(𝑖, 𝑡) (9) 

 

Additionally, the position of the insect can be modelled using; 
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𝑃𝑖𝑛(𝑖, 𝑡) = 𝑃(𝑖, 𝑡) + (0,… ,
𝑣2

2ϐ
 × 𝑠𝑖𝑛2𝜙,… ,

𝑣2

2𝑔
 × 𝑠𝑖𝑛2𝜙,… , 0) + 𝜖 (10) 

 

if the archerfish position, 𝑃(𝑖, 𝑡), has not been modified during the iterations, a new position for  

𝑃(𝑖, 𝑡) will be generated using in the (11) and (12) [39]; 
 

𝑃(𝑖, 𝑡 + 1) = 𝑃(𝑖, 𝑡) + 𝜎 [
𝑝1

𝑣1

(1 𝛽⁄ )
, … ,

𝑝𝑑

𝑣𝑑

(1 𝛽⁄ )
] (11) 

 

{
 
 

 
 

𝑝𝑖~𝑓𝑛(0, 𝛾
2), 𝛾 = (

Γ(𝛽+1)×sin (
πβ

2
)

Γ(
𝛽+1

2
)×2

(
𝛽−1
2 )

×𝛽

)

1

𝛽

, 𝑖𝜖{1, … , 𝑑}     

𝑣𝑖~𝑓𝑛(0, �́�
2), γ́ = 1                                 , 𝑖𝜖{1, … , 𝑑} 

  (12) 

 

where 𝑓𝑛(𝜇, 𝛾) represents the normal distribution function with a mean 𝜇 and standard deviation 𝛾.  

The gamma function is denoted by Γ, and the power law index β is set to 1.5. Figure 6 provides a visual 

representation of the flowchart outlining the proposed AHO technique. 
 

 

 
 

Figure 6. Procedure for constructing the optimal FFNN model using the AHO technique 

 

 

2.4.  Optimal FFNN model structure 

For this study, an FFNN with two hidden layers, as depicted in Figure 5, is chosen. Different networks 

with varying numbers of hidden layers were tested, revealing that increasing the number of hidden layers 

beyond two had only a minor impact on the predictive accuracy. The input data for the proposed FFNN is 

divided randomly into three groups: testing, validation, and training. The training group comprises 70% of the 

input data, while the validation and testing groups consist of 15% each. To calculate the optimal number of 
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neurons in the two hidden layers, the network is trained, and the MSE between the FFNN outputs and the actual 

values of the performance parameters of the PVT system (ηt, ηe, ηo, Tav, ΔT, and Tout) is minimized. Also, 

during the training process, the connection biases and weights between the different layers are selected using 

the proposed AHO technique. Additionally, the activation function for the output and hidden layers is 

established. Figure 6 provides an illustration of the procedure for constructing the FFNN model optimally and 

the training algorithm for predicting the performance parameters of the PVT system. 

The detailed steps of the procedure are as follows: 

 Create the training data for the proposed FFNN from ηt, ηe, ηo, Tav, ΔT, and Tout. Subsequently, transfer this 

data to the MATLAB program for further processing. 

 Randomly generate initial values for the parameters of the proposed FFNN, including activation function, 

biases, weights, and the number of hidden neurons. Additionally, define the population size. 

 Construct the proposed FFNN with the determined numbers of neurons in the hidden layers. 

 Define the MSE as the objective function and calculate its values for each search agent in the search space. 

 Utilize the proposed AHO technique, as illustrated in Figure 6, to train the proposed FFNN and determine 

the best values of parameters that minimize the MSE. 

 Repeat steps 3 to 6 until the desired accuracy or the maximum number of iterations is reached. 
 

 

3. RESULTS AND DISCUSSION 

In this section, the performance of the PVT system under study and the ANN model are explored 

under different study parameter ranges. The temperature variation with the study parameters and the 

temperature un-uniformity are presented first. In the second subsection, the energy performance considering 

the electrical, thermal, and overall efficiency is discussed. The third subsection discusses the ANN model 

results and precession. 

 

3.1.  Variation of Tav and ∆T 

The efficiency of the cooling technique is identified principally by the average temperature of the PV 

module, Tav. Figure 7. shows the variation of Tav and ∆T. It is observed that the cooling flow rate positively 

affects the Tav, especially at high radiation intensities. The ambient temperature plays an important role in 

increasing the value of Tav, especially with a high external convection coefficient as observed from the  

Figures 7(a) and 7(c). At the highest cooling flow rate of 1.27LPM, Tav reaches a range of 300.57 to 302.01 K 

at a radiation intensity of 1,200 W/m2. Compared to the lowest flow rate, at which Tav is 312.33 K, the highest 

cooling achieves a decrease in Tav by 11.76 K, which is equivalent to 3.7% on K basis and 42.6% on ºC basis, 

considering the highest radiation intensity tested. The value of Tav reaches a maximum of 318.84 K under the 

highest cooling with the highest radiation intensity as observed from the Figure 7(d) due to high value of Tamb 

and lower external coefficient of convection. However, it is observed that the performance of Figures 7(b) and 7(c) 

are similar due to the low Tamb with low h value, and high Tamb with high h value, respectively. Regarding the 

variation of ∆T, it is observed from Figure 7 that the value of ∆T decreases with the increase of the cooling 

flow rate and the decrease of the radiation intensity. It decreases under low ambient temperatures with a high 

external convection coefficient, as well, as in Figure 7(a). At the highest radiation intensity of 1,200 W/m2, the 

value of ∆T reaches 3.02 K and 3.59 K at Figures 7(a) and 7(d), respectively, at the highest cooling flow rate. 

At low radiation intensities, the value of ∆T is lower than 1.5K, with the highest value reached at the highest 

Tamb and highest h vales indicated in Figure 7(c), considering the applied ranges of the test parameters.  

Figure 7(b) indicates higher values of ∆T like that of Figure 7(c). 

 

3.2.  Variation of the electrical and thermal efficiencies 

The variation of the ηe and ηt of the PVT system is shown in Figure 8. The value of ηe is inversely 

proportional to the PV temperature. It is observed that the value of ηe increases with the increase of the flow 

rate and decreases under high intensity of radiation. It is observed that the effect of the cooling on ηe is higher 

at the highest radiation intensity of 1,200 W/m2. ηe has the lowest value of 12.8% at the highest Tamb and lowest 

h vales indicated in Figure 8(d), and the highest value of 13.85% at the lowest Tamb and highest h vale indicated 

in Figure 8(a). This achieves a 7% enhancement of ηe at highest radiation. Although ηe is higher at lower 

radiation intensities, the effect of cooling enhances ηe from 13.89% in Figure 8(c) to 14.23% in Figure 8(b), 

achieving an enhancement of 2.4%. 

The variation of ηt under the test parameters variation is depicted in Figure 8 as well. It is observed 

that ηt increases with the solar radiation and the cooling flow rate. For the test parameter ranges in this study, 

the value of ηt reaches a maximum value of 54.43% at the highest Tamb and highest h vales indicated in  

Figure 8(c) achieved at the maximum cooling flow rate and maximum irradiance power. On the contrary of ηe, 
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ηt is proportional to the ambient temperature. At the maximum cooling flow rate, ηt reaches a minimum value 

of 13.4% at the lowest Tamb and highest h vale indicated in Figure 8(a), which is achieved at the minimum 

radiation power. The value of ηt is enhanced for higher Tamb if compared to the lowest Tamb vlues as indicated 

in Figures 8(b) and 8(d), respectively. 
 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 7. Variation of Tav and ∆T for; (a) Tamb=293K and h=11.8 W/m2.K, (b) Tamb=293 K and h=2.8 

W/m2.K, (c) Tamb=308K and h=11.8 W/m2.K, and (d) Tamb=308K and h=2.8 W/m2.K 
 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 8. Variation of ηe and ηt for; (a) Tamb=293K and h=11.8 W/m2.K, (b) Tamb=293K and h=2.8 W/m2.K, 

(c) Tamb=308K and h=11.8 W/m2.K, and (d) Tamb=308K and h=2.8 W/m2.K 
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3.3.  Variation fo the overall efficiency 

For the different effects of the test parameters on the thermal and electrical efficiencies, it was 

important to investigate the variation of the overall system performance through ηo. This value is calculated 

according in (2) considering the power losses consumed in the cooling fluid pumping. Figure 9 illustrates the 

variation of ηo over the test parameter ranges. It is observed that the behaviour of ηo is more similar to that of 

ηt as it is proportional to the cooling flow rate, ambient temperature, and radiation intensity. This refers to the 

larger value of ηt compared to ηe, for most of the test cases. The value of ηo reaches a maximum of 68.17% 

found in Figure 9(c), which is achieved at the highest radiation intensity, highest cooling flow rate, highest 

ambient temperature, and the highest external convection coefficient. The lowest value of ηo reaches 27.54% 

found in Figure 9(a) due to higher thermal losses, under the test parameter ranges in this study. The value of 

ηo is enhanced for higher Tamb if compared to the lowest Tamb vlues as indicated in Figures 9(b) and 9(d), 

respectively. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 9. Overall efficiency of the PV module for; (a) Tamb=293K and h=11.8 W/m2.K, (b) Tamb=293K and 

h=2.8 W/m2.K, (c) Tamb=308K and h=11.8 W/m2.K, and (d) Tamb=308K and h=2.8 W/m2.K 

 

 

3.4.  Proposed FFNN-AHO results 

In this study, the performance of the PVT system is modelled using the FFNN. The training of the 

proposed FFNN is conducted through two approaches: the trial-and-error method and the AHO method. The 

implementation and execution of the FFNN are done using the MATLAB program. The training datasets 

comprise around 100 patterns, representing various cases to ensure a comprehensive coverage of the study. 

These datasets are utilized to train the FFNN. 

The results of the regression factor, denoted as R, for the FFNN trained with the AHO method 

(optimized) are depicted in Figure 10. Figure 10(a) showcases the regression factor during the training process, 

while Figure 10(b) portrays the regression factor during the validation process of the FFNN-AHO model. 

Lastly, Figure 10(c) illustrates the regression factor during the testing process of the FFNN-AHO model. They 

indicate that the model exhibits good conversion and fitting performance based on the demonstrated regression 

factor. Furthermore, when the AHO technique is applied to optimize the parameters of the FFNN, the resulting 

regression factors are closer to 1 than other methods. 

Figure 11 presents a comparison between the PVT performance parameters (ηt, ηe, ηo, Tav, ΔT, and 

Tout) obtained from measurements and the outputs generated by the FFNN-AHO when utilizing all the available 

data sets (100 patterns). Figures 11(a) and 11(b) depict the values of the actual Tav and ΔT of the solar cells 

and the predicted values from the FFNN-AHO model. As illustrated from the figures the errors between the 

actual and predicted values are very small, where the MSEs for the Tav and ΔT are 2.27×E-4 and 2.48×E-4. In 

Figure 11(c), the graph illustrates the level of agreement between the actual Tout values and the values estimated 
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by the FFNN-AHO model with an MSE value of 2.45×E-4. Furthermore, the ability of the FFNN-AHO model 

to predict the PVT efficiencies (ηt, ηe, and ηo) are demonstrated in Figures 11(d), 11(e), and 11(f), respectively. 

The MSEs for pedecting the ηt, ηe, and ηo reach 2.39×E-4, 2.86×E-4, and 2.93×E-4, respectively. These figures 

emphasize the similarity between the actual and the predicted values obtained from the FFNN-AHO model, 

indicating the validity and accuracy of the proposed neural network model. Moreover, the proposed FFNN, 

trained using the AHO method, contributes to minimizing the disparity between the actual values and the 

FFNN-AHO outputs, resulting in a significantly smaller error compared to using the FFNN trained with the 

trial-and-error method. The AHO method successfully reduces the average MSE to a value of 2.56×E-04. 
 

 

   
(a) (b) (d) 

 

Figure 10. Regression factor, R, obtained after applying the AHO method for; (a) regression factor, R, for the 

training dataset, (b) regression factor, R, for the validation dataset, and (c) regression factor, R, for the  

testing dataset 
 

 

  
(a) (b) 

 

  
(c) (d) 

  

  

(e) (f) 
 

Figure 11 Comparison between the actual PVT performance parameters and the FFNN-AHO model outputs 

for; (a) average temperature of the PV module, (b) temperature un-uniformity of the PV module, (c) fluid 

outlet temperature, (d) electrical efficiency, (e) thermal efficiency, and (f) overall efficiency 
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After achieving the desired performance, the number of hidden neurons and their respective weights 

are fixed. Subsequently, the proposed FFNN is evaluated using various independent test patterns. These test 

patterns are distinct from the datasets utilized during the network’s training phase. To assess the extrapolation 

capability of the proposed FFNN-AHO model, 16 specific patterns are chosen for testing it as shown in Figure 12. 

These patterns are deliberately excluded from the FFNN’s training process and are representative of different 

scenarios within the problem. Figures 12(a) and 12(b) display the actual Tav and ΔT values of the solar cells, 

along with the predicted values generated by the FFNN-AHO model. These figures demonstrate that the errors 

between the actual and predicted values are minimal. Figure 12(c) illustrates the level of agreement between 

the actual Tout values and the values estimated by the FFNN-AHO model. Additionally, Figures 12(d), 12(e), 

and 12(f) showcase the capability of the FFNN-AHO model to predict the PVT efficiencies (ηt, ηe, and ηo) 

respectively. Thus, the optimized FFNN-AHO model demonstrates a high level of accuracy in predicting the 

performance parameter values of the PVT system, not only for the trained data but also for non-trained data. 

The best construction of the proposed FFNN is (4-23-16-6).  
 
 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 12. Comparison between the actual PVT performance parameters and the FFNN-AHO model outputs 

for tested data patterns for; (a) average temperature of the PV module, (b) temperature un-uniformity of the 

PV module, (c) fluid outlet temperature, (d) electrical efficiency, (e) thermal efficiency, and  

(f) overall efficiency 
 
 

3.5.  Comparative analysis 

A comparison of the presented cooling technique with other techniques in the literature is introduced 

in Table 1. It is observed that there are some systems achieving higher overall efficiencies of the present 

research of 68.1%. However, some of these systems are complicated and introduce upper and lower surface 

cooling as [11]. The present cooling techniques presents an advantage of compactness and eas of manufacturing 

over this in [11]. Other systems as in [16] presented efficiencies reaching 90%. However, these systems did 

not account for the hydraulic pumping losses of the fluid. Moreover, the hydraulic losses for the nanofluid are 

higher than pure water for the dissolved particles and the high viscosity. Because of this comparison, the 

authors think that the present PVT system is promising for future development including enhancement of heat 

transfer using baffels and fins for consideration in the cogeneration systems. 
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Table 1. Comparison of the PVT systems performance with recent studies 
References Cooling technique Fluid ηe (%) ηt (%) ηo (%) 

Gomaa et al. [7] Open box with baffles Water 13 53 61 
Elminshawy et al. [8] Serpentine Air 16 NA NA 

Bevilacqua et al. [10] Sparay jets Water  15.5 NA NA 

Lebbi et al. [11] Upper and lower channels Water with air 13.2 50 85 
Pang et al. [12] Channels Water  16.9 39.8 65.9 

Shen et al. [13] Corrugated channel Water  10.3 10.5 NA 

Hassan et al. [14] Serpentine with absorber plate Water  14.8 44.5 59 
Kalateh et al. [15] tubes with twisted tapes Water  11.88 72 NA 

Chiang et al. [16] Serpentine with absorber plate Water 

nanofluid 

15.5 

18.8 

66.5 

78 

80* 

95* 
Song et al. [20] Channels with baffles Air 13.6 52.8 NA 

Choi and Choi [21] Corrugated channel Air  16.8 45 NA 

Present study Jet cooling in a compact module Water  14.23 54.43 68.1 

*Indicates that the overall efficiency does not account for the hydraulic losses exerted on the HTF. 
 

 

The performance evaluation of the proposed MFFNN-AHO models in predicting the PVT system's 

performance metrics (ηt, ηe, ηo, Tav, ΔT, and Tout) is conducted using the mean squared error (MSE) index. 

Table 2 presents the MSE values for the proposed FFNN-AHO model, alongside the values obtained from 

other methods such as RBFNN-GTO [36], RBFNN trained with the backpropagation algorithm (BP), RBFNN 

trained with trained with PSO method and FFNN trained with PSO method [24]. It is evident from the table 

that the proposed MFFNN-AHO model exhibits superior performance compared to the other methods. This 

can be attributed to the ANN’s strong capability to model nonlinear relationships and handle complex problems 

by utilizing input-output datasets, combined with the AHO’s ability to obtain optimal network parameters and 

structure. 
 

 

Table 2. Evaluation of the MFFNN-AHO model performance compared to various neural networks 
Model MSE 

RBFNN-BP  5. 2442×E-04 

RBFNN-PSO 6.4656×E-04 

FFNN-PSO 7.9831×E-04 

RBFNN-GTO 3.7613×E-04 

Proposed FFNN-AHO 2.5613×E-04 

 

 

4. CONCLUSION 

A parametric study with an ANN prediction model for a jet-cooling PVT system was conducted. The 

parameters ranges used in this study were 400-1200 W/m2 for the solar radiation, flow rate range of 0.14 to 

1.27 LPM, ambient temperature range of 293 to 308K, and wind speed range of 0 to 3 m/s, which is equivalent 

to convection coefficient range of 2.8 to 11.8 W/m2K. The maximum average temperature of the PV module 

reached 318.84K with solar radiation of 1200 W/m2 and a cooling flow rate of 1.27 LPM. The proposed system 

achieved a maximum value of temperature un-uniformity of the PV module of 3.59K under a flowrate of 1.27 

LPM, and solar radiation of 1200 W/m2. This low value helps in extending the lifetime of the PV module 

because of the thermal stresses. For the understudy PVT system, the maximum values of thermal, electrical, 

and overall efficiency reached 54.43%, 14.23%, and 68.1%, respectively, which show a promising behaviour 

with a promising applicability in cogeneration systems. Integrated the feedforward neural network architecture 

with the optimization capabilities of the AHO Algorithm allows the model to achieve accurate predictions of 

PVT performance. The proposed FFNN-AHO hybrid model was able to minimize the MSE to a final value of 

2.56×E-04 after 64 training epochs. This indicates that the model’s predictions were very close to the actual 

values. The reliability of the proposed model’s predictions was achieved where the regression factor values 

were very close to one for both testing and validation, as well as during the training phase. These values of the 

regression factor reflect the relationship between the predicted values and the actual values. So, the FFNN-

AHO hybrid model was able to effectively predict the true values of performance, validation, and testing (PVT) 

performance. The proposed FFNN-AHO hybrid model proved effectiveness in achieving accurate predictions 

and demonstrating generalization and extrapolation abilities. The proposed MFFNN-AHO model exhibited 

superior performance compared to the other ANN models. 
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