
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 34, No. 3, June 2024, pp. 1787~1799 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp1787-1799      1787 

 

Journal homepage: http://ijeecs.iaescore.com 

Improved vigenere using affine functions surrounded by two 

genetic crossovers for image encryption 
 

 

Hamid El Bourakkadi1, Abdelhakim Chemlal1, Hassan Tabti2, Mourad Kattass1, Abdellatif Jarjar1, 

Abdelhamid Benazzi1 
1MATSI Laboratory, Mohammed First University, Oujda, Morocco 

2LSIA Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 31, 2024 

Revised Feb 19, 2024 

Accepted Feb 23, 2024 

 

 This paper presents an improved method for encrypting color images, 

surpassing the effectiveness of genetic crossover and substitution operations. 

The technique incorporates dynamic random functions to enhance the 

integrity of the resulting vector, increasing temporal complexity to thwart 

potential attacks. The improvement involves integrating genetic crossover 

and utilizing two extensive pseudorandom replacement tables derived from 

established chaotic maps in cryptography. Following the controlled 

vectorization of the original image, our approach initiates with a first genetic 

crossover inspired by deoxyribonucleic acid (DNA) behavior at the pixel 

level. This genetic crossover is succeeded by a confusion-diffusion lap, 

reinforcing the connection between encrypted pixels and their neighboring 

counterparts. The confusion-diffusion process employs dynamic 

pseudorandom affine functions at the pixel level. Then a second genetic 

crossover operator is applied. Simulations conducted on a diverse set of 

images with varying sizes and formats showcase the robustness of our 

method against statistical, brute-force, and differential attacks. 
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1. INTRODUCTION 

Ensuring the security of information during network transmission has become a widely explored 

research area. In this context, encryption technology plays a crucial role, with symmetric and asymmetric 

encryption algorithms applied in cryptography [1]. Symmetric encryption, known for its efficiency, 

heightened security, and rapid encryption speed with a large key, relies on preserving the ciphering key for 

its security. The algorithm involves minimal computation and ensures a high protection level and ciphering 

speed when utilizing a lengthy key. Data security transmission is contingent upon safeguarding the 

encryption key. On the other hand, while offering high security, asymmetric ciphering comes with significant 

encryption and decryption time, making it suitable for limited data encryption such as passwords. The 

security of data transmission in this case relies on both the key and the algorithm. With the principle of 

Kirchhoff, the key system's protection is closely related to the ciphering key rather than the algorithm. In 

addressing these challenges, numerous image ciphering methods utilize the principles of symmetry theory, 

and this paper similarly embraces a strategy centered on the same type of algorithms. 

Despite researchers' efforts to develop more secure ciphering methods, numerous image encryption 

methods have been successfully compromised [2], [3]. In pursuit of heightened security, many scholars have 

turned to multi-round encryption methods [4], [5], though this approach involves a significant amount of 
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time. Some authors have suggested encryption methods focused solely on the relevant characteristics in an 

image [6]-[8]. Hussain et al. [7] introduced a ciphering architecture for medical images centered on TetraVex 

game theory method, demonstrating flexibility and reliability in protecting medical images against any 

attack. Çelik and Doğan [9], suggested an encryption image architecture using data hiding and logistic maps, 

exhibiting satisfactory security performance in experimental results. Drawing inspiration from these studies, 

we propose utilizing existing technology to recognize the facial contour area when encrypting human images, 

enabling the individual encryption of these regions. After encrypting the facial part, the entire image 

undergoes another layer of encryption. Compared to traditional one-round encryption, this approach 

demonstrates superior encryption effectiveness. Even in the event of an algorithmic attack, the private 

aspects, such as the face, remain indistinguishable and unrecoverable. In contrast to multi-round encryption 

schemes, these techniques involve shorter periods and higher speeds to encrypt and decrypt data. 

As chaos theory continues to evolve, researchers have systematically explored the attributes of 

pseudorandomness, and sensitivity to initial values [10], [11]. Additionally, various chaotic image encryption 

algorithms have emerged, integrating principles from diverse disciplines such as genetic algorithms rules 

such as quantum maps and perceptron-like networks [12], [13]. Chatterjee et al. [14], Chatterjee et al 

designed an encryption architecture that involves replacement-diffusion operation using standard and logistic 

maps, addressing the issue of dynamic degradation. Li et al. [15] demonstrate that the use of chaotic 

sequences as keys can compromise the algorithm's security. Efficiently, chaotic methods have various 

variations, with some, such as the PWLCM, logistic, Henon, and skew tent maps [16]-[19], being renowned 

for image encryption. Focusing on the logistic and PWLCM maps, they offer several advantages, including 

enhanced sensitivity and randomness, resulting in more secure, chaotic, and unique sequences. 

The difficulty arises from the dependence of such algorithms on independent block encryption 

without the intervention of plaintext blocks, making them vulnerable to statistical and frequency attacks. 

Additionally, without the incorporation of diffusion and chaining functions between the encrypted and 

plaintext blocks, these classical techniques remain susceptible to differential attacks. 

Our contribution to addressing anomalies raised in conventional research has driven us to develop a 

new image encryption system using two large substitution matrices generated from two chaotic maps highly 

sensitive to initial conditions, incorporating pseudo-random affine functions for confusion and diffusion 

restoration. This process is surrounded by two deep genetic crossover operations specifically tailored for 

image encryption to increase the complexity of attacks against our innovative system. Simulations results and 

comparisons with other algorithms conducted on randomly selected images from SIPI database reveal a high 

level of robustness, making our new technique impervious to differential and statistical attacks. 

This research paper is divided into various sections, including a section describing the proposed 

method, explaining the basis of chaotic sequences, the classical Vigenere and affine techniques as well as 

detailing keys generation axis, revealing the nuances of the encryption and decryption process; a section 

devoted to results and discussions, presenting research results and discussion; and a section summarizing the 

findings and proposing research directions. 

 

 

2. PROPOSED METHOD 

Our approach enhances the traditional Vigenere method by incorporating extensive substitution 

tables alongside novel pseudorandom functions. Furthermore, reversible functions have been seamlessly 

integrated into the encryption process. However, this technique is divided into four main axes, the used 

chaotic sequences and functions, different keys generation steps, and the encryption and decryption axes. 

 

2.1.  Axis 1: used chaotic sequences and functions 

The selected chaotic maps to construct different subkeys for encryption and decryption processes 

are highly sensitive to initial conditions and easy to implement in a cryptographic system. Additionally, our 

system incorporates random functions into classical Vigenere method. However, this subsection is divided 

into four subtitles. 

 

2.1.1. PWLCM map 

The first chaotic sequence will be generated by the PLWCM map [16] as defined by (1). 

  

ℎ𝑛+1 = 𝑓(ℎ𝑛) =

{
 

 
ℎ0 ∈ ]0 ; 1[ , 𝑘 ∈ ]0,5; 4[ 

 𝑘−1 ℎ𝑛 𝑖𝑓 0 < ℎ𝑛  < 𝑘

 (0,5 − 𝑘)−1(ℎ𝑛 − 𝑘) k < ℎ𝑛  < 0,5
𝑓(1 − ℎ𝑛) otherwise

  (1) 
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The parameters (ℎ0) and (𝑘) represent the initial state and its control parameter, respectively. 

 

2.1.2. Logistic map 

The logistic map [17] is a widely used mathematical function that models population growth over 

time within a limited space. It is a common tool in chaos theory and cryptography. The expression of such 

map is depicted in (2). 

 

{
𝑙0 ∈]0,5; 1[ 𝑒𝑡 𝛿 ∈ [3,75; 4]

𝑙𝑛+1 = 𝛿. 𝑙𝑛(1 − 𝑙𝑛) 
  (2) 

 

2.1.3. Classical Vigenere method 

The classical Vigenere cipher system is based on a matrix (𝑀) of fixed dimensions (26,26) reserved 

for text encryption only. The encryption and decryption algorithms associated with the classical Vigenere 

method are given in Algorithm 1. 

 

Algorithm 1. Classical Vigenere encryption and decryption algorithms 
//Encryption 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 

 𝐶𝑘𝑖 = 𝑀(𝐶𝑘𝑖, 𝐾𝑒𝑖) = 𝑃𝑘𝑖 +𝐾𝑒𝑖  𝑚𝑜𝑑 26 

𝑒𝑛𝑑 𝑓𝑜𝑟 

//Decryption 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 

 𝑃𝑘𝑖 = 𝑀
−1(𝑃𝑘𝑖, 𝐾𝑒𝑖) = 𝐶𝑘𝑖 − 𝐾𝑒𝑖  𝑚𝑜𝑑 26 

𝑒𝑛𝑑 𝑓𝑜𝑟 

 

Where (𝑃𝑘) is the plain message, (𝐶𝑘) is the cipher message, (𝐾𝑒) is the encryption key, (𝑀) is the 

vigenere matrix, and (𝑛) be the length of the plain message. 

 

2.1.4. Affine functions in (𝒁/𝒏𝒁) 

Let (𝑓) be an affine function defined in the ring (𝑍/𝑛𝑍) by (3). 

 

{
𝑓: 𝑍/𝑛𝑍 →  𝑍/𝑛𝑍 

𝑥 ⟼  𝑚𝑜𝑑(𝑎𝑥 + 𝑏; 𝑛) 
𝑎, 𝑏 ∈  𝑍/𝑛𝑍  (3) 

 

The function (𝑓) is a bijective function in (𝑍/𝑛𝑍) if and only if (𝑎) is invertible and (𝑏) is any. 

Indeed, we have 𝑦 = 𝑚𝑜𝑑(𝑎𝑥 + 𝑏; 𝑛) 
Then, 𝑎𝑥 = 𝑚𝑜𝑑(𝑦 − 𝑏; 𝑛) and 𝑥 = 𝑚𝑜𝑑(𝑎−1. (𝑦 − 𝑏); 𝑛) Where (𝑎−1) is the inverse of (𝑎) in ring (𝑍/𝑛𝑍). 

Or, we know that (𝑎) is invertible in (𝑍/𝑛𝑍) if and only if a⋀n = 1. 
Particular case: 𝑛 = 2𝑘 , 𝑘 ∈ 𝑁 

In a particular case, (a) is invertible in ring (𝑍/2𝑘𝑍) if and only if (𝑎) is odd. 

 

2.2.  Axis 2: keys generation 

This new technique uses the two most widely deployed chaotic maps in the field of cryptography 

[18], [19] by integrating large S-boxes incorporating strong pseudorandom affine functions for the confusion-

diffusion process. The confusion-diffusion process is encapsulated by two genetic crossovers. This technique 

is structured around the subsections described below. 

 

2.2.1. Pseudorandom vectors generation 

Our system is a cryptographic architecture that necessitates the generation of subkeys. These 

subkeys are generated from two chaotic sequences that are extremely sensitive to initial conditions. The 

below subsections detail such process. 

 

2.2.2. Used chaotic sequences 

Two chaotic sequences (ℎ) and (𝑙) were generated based on PWLCM and Skew tent chaotic maps 

described in sub section (3.1). These sequences, used in our approach, are extremely sensitive to the initial 

conditions and easy to implement in any cryptosystem. 

 

2.2.3. Sub keys construction 

Seven pseudorandom vectors (𝑉𝑐1), (𝑉𝑐2), (𝑉𝑐3), (𝑉𝑟), (𝑉𝑒), (𝑉𝑎), and (𝑉𝑏) with coefficients in 

the ring (𝑍/256𝑍) are generated by Algorithm 2. 

 

Algorithm 2. Pseudorandom vectors generation 
𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 3𝑛𝑚 

 Vc1( i)= [E(max(h(i);l(i)).1011 ) mod 253]+2 // First confusion vector 
 𝑉𝑐2( 𝑖) =  [𝐸(((ℎ(𝑖) + 2 ∗ 𝑙(𝑖))/3). 1011) 𝑚𝑜𝑑 254] + 1 // Second confusion vector 
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 𝑉𝑐3( 𝑖) =  [𝐸(|ℎ(𝑖) − 𝑙(𝑖)|. 1010 ) 𝑚𝑜𝑑 254] + 1 // Third confusion vector 

 𝑉𝑟( 𝑖) =  [𝐸((ℎ(𝑖) + 𝑙(𝑖)). 1012) 𝑚𝑜𝑑 253] + 2 // First translation vector 

 𝑉𝑒( 𝑖) =  [𝐸 ((
2∗ℎ(𝑖)+3∗𝑙(𝑖)

5
) . 1012)  𝑚𝑜𝑑 253] + 2 // Second translation vector  

 𝑉𝑎(𝑖) = [2 ∗ 𝐸((ℎ(𝑖) + 𝑙(𝑖)). 1012) + 1]𝑚𝑜𝑑 256 // First multiplication vector 

 𝑉𝑏(𝑖) = [2 ∗ 𝐸((ℎ(𝑖) ∗ 𝑙(𝑖)). 1012) + 1]𝑚𝑜𝑑 256 // Second multiplication vector : 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

The two vectors (𝑉𝑎) and (𝑉𝑏) contain only the invertible elements in the ring (𝑍/256𝑍). In 

addition, our system requires the generation of three binary vectors, (𝐵𝑎1), (𝐵𝑎2), and (𝐵𝑎3), to control the 

encryption process. These two vectors are generated by Algorithm 3. 

 

Algorithm 3. (𝐵𝑎𝑖) Binary random vectors generation, 𝑖∈{1, 2, 3} 
//Binary vectors construction 

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 3𝑛𝑚 
 𝑖𝑓 ℎ(𝑖) > 𝑙(𝑖) 𝑡ℎ𝑒𝑛  
 𝐵𝑎1(𝑖)  ← 0  
 𝑒𝑙𝑠𝑒 : 𝐵𝑎1(𝑖)  ← 1 
 𝑒𝑛𝑑 𝑖𝑓 
 𝑖𝑓 ℎ(𝑖) > 0,5 𝑡ℎ𝑒𝑛 : 𝐵𝑎2(𝑖)  ← 0 

 𝑒𝑙𝑠𝑒 ∶  𝐵𝑎2(𝑖)  ← 1  
 𝑒𝑛𝑑 𝑖𝑓 
 𝑖𝑓 ℎ( 𝑖 )  ≤ 𝑙(𝑖) 𝑡ℎ𝑒𝑛 
 𝐵𝑎3(𝑖)  ←  0  
 𝑒𝑙𝑠𝑒 ∶  𝐵𝑎3(𝑖)  ← 1  
 𝑒𝑛𝑑 𝑖𝑓 

 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.2.4. Generation of genetic crossover table (GC) 

This operation is a genetic crossover adapted to the encryption of color images that will be 

accompanied by a table (GC) of size (3nm,2). The construction of this table is given by the steps below: 

- The 1st column is the arrangement (𝑃) obtained by a decreasing sort on the first (3nm) values of the 

sequence (ℎ). 

- The second column is the permutation (𝑃′) obtained by an increasing sort on the first (3nm) values of the 

sequence (𝑙). 
 

2.2.5. Substitution tables generation 

Our algorithm necessitates the creation of two novel tables, denoted as (𝑀1) and (𝑀2). These tables 

are used in confusion/difusion process as substitution matrices. Each table is sized at (256; 256) and operates 

with coefficients within the ring ( Z/nZ). 

 

2.2.6. (𝑴𝟏) S-BOX generation 

The main mission of this section is to construct the new Vigenere substitution matrix, called (𝑀1), 

with a size of (256; 256), following the instructions provided below. 

- The first row of the table (𝑀1) is the permutation (𝑃𝑡1) of the first 256 values of the vector (𝑉𝑐1), 

obtained by sorting them in decreasing order. 

- For ranks higher than 1, the rank line is a rank shift 𝑉𝑐2(𝑖) or 𝑉𝑐3(𝑖), depending on the control 

vector 𝐵𝑎1(𝑖). This table was generated by Algorithm 4. 

 

Algorithm 4. (M1) Substitution box generation 
𝑓𝑜𝑟 𝑖 ←  1 𝑡𝑜 256 // 𝐹𝑖𝑟𝑠𝑡 𝑙𝑖𝑛𝑒 
 𝑀1(1, 𝑖)  ←  𝑃𝑡1(𝑖) 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑓𝑜𝑟 𝑖 ←  2 𝑡𝑜 256 // 𝑁𝑒𝑥𝑡 𝑙𝑖𝑛𝑒𝑠 

 𝑓𝑜𝑟 𝑗 ←  1 𝑡𝑜 256  

 𝑖𝑓 𝐵𝑎1(𝑖) = 0 𝑡ℎ𝑒𝑛 

 𝑀1(𝑖, 𝑗)  ←  𝑀1(𝑖 − 1,𝑚𝑜𝑑(𝑗 + 𝑉𝑐2(𝑖),256)) 
 𝑒𝑙𝑠𝑒 
 𝑀1(𝑖, 𝑗)  ←  𝑀1(𝑖 − 1,𝑚𝑜𝑑(𝑗 + 𝑉𝑐3(𝑖),256)) 
 𝑒𝑛𝑑 𝑖𝑓 : 𝑒𝑛𝑑 𝑓𝑜𝑟 : 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.2.7. (𝑴𝟐) S-BOX generation 

The construction of the new substitution matrix (𝑀2) of size (256;256) is described by: 

- The 1st line is the rearrangement (𝑃𝑟1) obtained by a broad ascending order on the first 256 values of the 

vector (𝑉𝑐3); 

- The 2nd line is the rearrangement (𝑃𝑟2) obtained by a broad ascending order on the first 256 values of the 

vector (𝑉𝑐2); 

- The 3rd line is the rearrangement (𝑃𝑟3) obtained by a broad ascending order on the first 256 values of the 

vector (𝑉𝑐1); 

- The ith line (𝑖 > 3) is the composition of the functions of row (𝑖 − 2) and (𝑖 − 3) or (𝑖 − 3) and (𝑖 − 1), 

depending on the value of the control vector 𝐵𝑎2(𝑖). 
These steps are illustrated in Algorithm 5. 

 

Algorithm 5. (M2) Substitution box generation 
𝑓𝑜𝑟 𝑖 ←  1 𝑡𝑜 256 //3 first lines 𝑓𝑜𝑟 𝑖 ←  4 𝑡𝑜 256 //Next lines 
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 𝑀2(1, 𝑖)  ←  𝑃𝑟1(𝑖) 
 𝑀2(2, 𝑖)  ←  𝑃𝑟2(𝑖) 
 𝑀2(3, 𝑖)  ←  𝑃𝑟3(𝑖) 
𝑒𝑛𝑑 𝑓𝑜𝑟 

 𝑓𝑜𝑟 𝑗 ←  1 𝑡𝑜 256 
 𝑖𝑓 𝐵𝑎2(𝑖) = 0 𝑡ℎ𝑒𝑛 : 𝑀2(𝑖, 𝑗)  ←  𝑀2(𝑖 − 2,𝑀2(𝑖 − 3, 𝑗)) 
 𝑒𝑙𝑠𝑒: 𝑀2(𝑖, 𝑗)  ←  𝑀2(𝑖 − 3,𝑀2(𝑖 − 1, 𝑗)) 
 𝑒𝑛𝑑 𝑖𝑓: 𝑒𝑛𝑑 𝑓𝑜𝑟 : 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.3.  Axis 3: encryption phase 

The innovative encryption process improves upon the traditional Vigenere technique by 

incorporating enhanced methods. It utilizes dynamic functions for confusion and diffusion, adding a unique 

twist to the Vigenere method. Additionally, two genetic mutations specifically designed for encrypting color 

images complement this approach. The process is organized into the following stages: 

 

2.3.1. Original image vectorization 

This phase involves uploading the original image of dimensions (𝑛,𝑚) and then extracting the 

(RGB) channel vectors (R), (G), and (B), which are concatenated under the control of the binary vector (Ba1) 

into a single vector (XD) of dimensions (1,3𝑛𝑚). The mathematical formulation of this phase is described in 

Algorithm 6. 

 

Algorithm 6. Original image vectorization algorithm 
𝑓𝑜𝑟 𝑗 ←  1 𝑡𝑜 𝑛𝑚 
 𝑖𝑓 𝐵𝑎1(𝑗) = 0 𝑡ℎ𝑒𝑛  
 𝑋𝐷(3𝑗 − 2)  ←  𝑅(𝑗)⨁ 𝑉𝑐1(𝑗) 
 𝑋𝐷(3𝑗 − 1)  ←  𝐺(𝑗)⨁ 𝑉𝑐2(𝑗) 
 𝑋𝐷(3𝑗)  ← B(𝑗)⨁ 𝑉𝑐3(𝑗) 

 𝑒𝑙𝑠𝑒  
 𝑋𝐷(3𝑗 − 2)  ←  𝑅(𝑗)⨁ 𝑉𝑐3(𝑗) 
 𝑋𝐷(3𝑗 − 1)  ←  𝐺(𝑗)⨁ 𝑉𝑐1(𝑗) 
 𝑋𝐷(3𝑗)  ←  𝐵(𝑗)⨁ 𝑉𝑐2(𝑗) 
 𝑒𝑛𝑑 𝑖𝑓 : 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

2.3.2. First genetic crossover operation 

After image preparation above, the genetic crossover will be applied to the integrity of the output 

vector (𝑋𝐷). This operation will be subject to the control of the table (𝐺𝐶1) and given by (4). 

 

𝑋( 𝑖) =  𝑋𝐷(𝐺𝐶1(𝑖, 1)) ⨁ 𝑉𝑐1(𝐺𝐶1(𝑖, 2)) , 𝑖 ∈  [1 , 3𝑛𝑚] (4) 

 

The first column of the table (𝐺𝐶1) indicates the rank of the pixel to be modified, while its second 

column indicates the rank of the chaotic value chosen for the confusion. This algorithm is illustrated by the 

following Figure 1. The first column of the table (𝐺𝐶1) indicates the rank of the pixel to be modified, while 

its second column indicates the rank of the chaotic value chosen for the confusion. 

 

 

 
 

Figure 1. First genetic crossover operation 

 

 

2.3.3. Confusion and diffusion process 

a. Expression of the pseudorandom functions 

Let (𝑓𝑖) be the family of affine functions acting on the pixels. These functions are defined by (5). 

 

{

𝑓𝑖: 𝑍/256𝑍 →  𝑍/256𝑍 

𝑥 ⟼ {
𝑚𝑜𝑑(𝑉𝑎(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑒(𝑖); 256) 𝑠𝑖 𝐵𝑎2(𝑖) = 0

𝑚𝑜𝑑(𝑉𝑏(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑟(𝑖); 256) 𝑠𝑖 𝐵𝑎2(𝑖) = 1
 (5) 

Since the elements 𝑉𝑎(𝑖) and 𝑉𝑏(𝑖) are invertible in ring (𝑍/256𝑍), the functions (𝑓𝑖) are reversible 

for all 𝑖 ∈ [1;  3𝑛𝑚]. 
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b. Confusion and diffusion function expression 

To enhance the security of our system against potential differential attacks, we're incorporating 

confusion and diffusion functions that utilize pseudo-random vectors and reversible dynamic functions. This 

chaining technique involving replacement tables (𝑀1) and (𝑀2) amplifies the avalanche effect. The 

execution of diffusion functions is outlined in Algorithm 7. 

 

Algorithm 7. (𝐹𝑣) confusion and diffusion function expression 
𝑍(𝑖) = 𝐹𝑣(𝑋(𝑖)) 
𝑖𝑓 𝐵𝑎2(𝑖) = 0 𝑡ℎ𝑒𝑛: 𝑍(𝑖)  ←  𝑀1(𝑉𝑐1(𝑖),𝑀2(𝑉𝑐2(𝑖);𝑚𝑜𝑑(𝑉𝑎(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑒(𝑖); 256))) 

𝑒𝑙𝑠𝑒 : 𝑍(𝑖)  ←  𝑀2(𝑉𝑐3(𝑖),𝑀1(𝑉𝑐1(𝑖);  𝑚𝑜𝑑(𝑉𝑏(𝑖) ∗ 𝑋(𝑖) + 𝑉𝑟(𝑖); 256))) 

𝑒𝑛𝑑 𝑖𝑓 

 

c. Initialization value calculation 

This improved Vigenere lap starts by calculating the initialization value (𝐼𝑛), which is closely linked 

to the plain image and is intended to change the value of the starting pixel and launch the encryption phase. 

This value is calculated by Algorithm 8 below. 

Algorithm 8. Initialization value calculation 
𝐼𝑛 = 0 

𝑓𝑜𝑟 𝑖 =  2 𝑡𝑜 3𝑛𝑚 

 𝑖𝑓 𝐵𝑎3(𝑖) = 0 𝑡ℎ𝑒𝑛 

 𝐼𝑛 =  𝐼𝑛⨁𝑋(𝑖)⨁𝑉𝑐2(𝑖) 

 𝑒𝑙𝑠𝑒 

 𝐼𝑛 =  𝐼𝑛⨁𝑋(𝑖)⨁𝑉𝑐3(𝑖) 
 𝑒𝑛𝑑 𝑖𝑓  
𝑒𝑛𝑑 𝑓𝑜𝑟 

 

This algorithm is illustrated in Figure 2 below. 

 

d. Confusion and diffusion circuit 

To overcome any differential attack, we first perform a diffusion round using the chaotic confusion 

vectors and a chaining between the ciphered pixels and the following plain pixels using the bijective affine 

functions. The diffusion process is illustrated by Algorithm 9. 

 

Algorithm 9. Confusion and diffusion circuit 
//First pixel encryption 

𝑍(1) =  𝐹𝑣( 𝑋(1)⨁𝐼𝑛⨁𝑉𝑐1(1)) 
//Next pixels encryption 

𝑓𝑜𝑟 𝑖 =  2 𝑡𝑜 3𝑛𝑚  
 𝛼 = 𝑓𝑖(𝑋(𝑖))⨁𝑍(𝑖 − 1)  

 𝑖𝑓 𝐵𝑎3(𝑖) = 0 𝑡ℎ𝑒𝑛 : 𝑍(𝑖) =  𝐹𝑣(𝛼⨁𝑉𝑐2(𝑖)) 
 𝑒𝑙𝑠𝑒 : 𝑍(𝑖) =  𝐹𝑣(𝛼⨁𝑉𝑐3(𝑖)) 
 𝑒𝑛𝑑 𝑖𝑓 

𝑒𝑛𝑑 𝑓𝑜𝑟 

 

This algorithm can be interpreted in Figure 2. 

 

2.3.4. Second genetic crossover operation 

After image preparation above, the genetic crossover will be applied to the integrity of the output 

vector (𝑍). This operation will be subject to the control of the table (𝐺𝐶2) and given by (6). 

 

𝑇( 𝑖) =  𝑍(𝐺𝐶2(𝑖, 1)) ⨁ 𝑉𝑐2(𝐺𝐶2(𝑖, 2)) , 𝑖 ∈  [1 , 3𝑛𝑚] (6) 

 

The first column of the table (𝐺𝐶2) indicates the rank of the pixel to be modified, while its second 

column indicates the rank of the chaotic value chosen for the confusion. This algorithm is illustrated by the 

following Figure 3. 

 

 

 
 

Figure 2. New Hybrid circuit incorporating dynamic pseudorandom affine functions 
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Figure 3. Second genetic crossover operation 

 

 

The first column of the table (𝐺𝐶2) indicates the rank of the pixel to be modified, while its second 

column indicates the rank of the chaotic value chosen for the confusion. The resulting vector (T) represents 

the cipher image. 

 

2.4.  Axis 4: phase of decryption 

The suggested encryption system is symmetric and employs two diffusion functions, necessitating 

that the decryption process commences by applying the inverse functions to the last operation. The encrypted 

image transforms a vector (Z) with dimensions (1; 3nm), upon which the subsequent steps are carried out: 

- Application of the reverse for the second genetic crossover operation. 

- Inverse of the pseudorandom functions and inverse of the confusion and diffusion circuit; 

- Application of the reverse for the first crossover operation. 

 

 

3. RESULTS AND DISCUSSION 

All the simulations were implemented in Python on the Windows 10 operating system with a 

hardware environment consisting of an i7 processor laptop, a 1 TB hard drive, and 32 GB of RAM. The main 

test image “Lena”, as well as its encrypted and decrypted images, as well as all the plain images we used, 

were taken from SIPI database [20]. These image samples. The keys and other experimental parameters are 

generated from the chaotic maps described above. Prior to initiating the decryption process, the secret key 

needs to be securely transmitted to the recipient through a protected channel. 

 

3.1.  Statistical attacks 

Examining encrypted data to reveal details about the encryption key or the plaintext images 

constitutes a statistical attack. These assaults encompass histogram attacks, entropy attacks, and correlation 

attacks, among others. The subsequent subsections delineate the impacts of these assaults on our system. 

 

3.1.1. Analysis of possible keys space 

Our algorithm uses two chaotic maps generated by four real parameters represented by 32 bits each. 

So, the size of our key is equal to 128 bits and encompasses 120 bits. This ensures that our system is resistant 

to any brute-force attack. 

 

3.1.2. Key strength analysis 

Our system uses two of the most widely utilized chaotic maps in the field of cryptography. Because 

they are highly sensitive to initial conditions, this guarantees significant responsiveness to our encryption 

key. This can be seen in the diagram in Figure 4. So, any modification of the encryption key will lead to two 

different ciphered images being obtained during the encryption stage. In addition, two decrypted images 

across the decryption stage will have completely different shapes. This confirms that our cryptosystem is safe 

from any brute-force attack. 

 

 

 
 

Figure 4. Key strength analysis 
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3.1.3. Analysis of histograms 

Histograms of images showing the distribution of pixel values. Figures 5 (a) to (d) illustrate the 

RGB histograms of all the test images used, while Figures 6 (a) to (d) show the RGB histograms of the 

corresponding encrypted images by our method. It is observable that the histograms of encrypted images 

generated by our system are almost uniformally distributed. This ensures better protection against any 

statistical attack. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 5. RGB histograms of the original images (a) histogram of Lena plain image, (b) histogram of baboon 

plain image, (c) histogram of peper plain image and (d) histogram of house plain image 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 6. RGB histograms of the encrypted images by our method (a) histogram of lena encrypted image, (b) 

histogram of baboon encrypted image, (c) histogram of peper encrypted image and (d) histogram of house 

encrypted image 

 

 

3.1.4. Analysis of entropy 

The entropy of an image of size (n, m) serves as a metric for assessing the security of that image 

encryption is given by (7). 

 

 𝑆(𝑀𝐶) =
−1

3𝑛𝑚
∑ 𝑝(𝑖). 𝑙𝑜𝑔2(𝑝(𝑖))
3𝑛𝑚
𝑖=1  (7) 

 

Where 𝑝(𝑖) represents the probability of occurrence of level (i) in the plain image. 

Table 1 illustrates a comparison between our approach and some similar approaches. This 

comparison proves that our approach is significantly better than the other compared algorithms [21]-[23]. 

This confirms that our cryptosystem can withstand entropy image attack. 

 

 

Table 1. Comparison of encrypted image entropy with other methods: Lena (L), peppers (Pe), House (H) 

Algorithm Images 
Encrypted 

Red Green Blue 

Proposed Lena 7,9975 7,9975 7,9974 

Peppers 7,9995 7,9995 7,9996 
[21] Lena 7,9972 7,9973 7,9970 

Peppers 7,9993 7,9994 7,9994 

[22] Lena 7,9730 7,9750 7,9710 
[23] Lena 7.9974 7,9974 7,9971 

Peppers 7,9993 7,9994 7,9992 
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3.1.5. Correlation analysis 

In (8) provides the correlation of an image with dimensions (n, m). 

 

𝑐𝑜𝑟𝑟 =
𝑐𝑜𝑣(𝑥,𝑦)

√𝑣𝑎𝑟(𝑥).√𝑣𝑎𝑟(𝑦)
 (8) 

 

Table 2 illustrates a comparison between our approach and some similar approaches. This 

comparison proves that our approach is significantly better than the other compared algorithms. This verifies 

the security of our cryptosystem against statistical attacks. Table 3 illustrates a comparison between our 

approach and some similar approaches [21], [23], [24]. These results validate the resistance of our 

cryptosystem to statistical attacks. 

 

 

Table 2. Correlations between pixels for Lena, Apricot and Panda images 

Images 
Original image Encrypted image 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena Red 0,95580 0,96480 0,93220 -0,00376 0,00815 -0,00131 

Green 0,93556 0,95756 0,91902 -0,00298 0,00912 -0,00673 

Blue 0,90773 0,93930 0,89130 -0,00145 -0,00672 0,00064 
Apricot Red 0,98385 0,96944 0,98629 -0,00137 -0,00188 -0,00541 

Green 0,97883 0,98511 0,96537 -0,00107 0,00150 0,00234 

Blue 0,99153 0,98348 0,98724 0,00489 -0,00571 -0,00118 
Panda Red 0,95175 0,96552 0,93161 0,00513 -0,00077 -0,00495 

Green 0,95215 0,96436 0,93066 0,00788 -0,00080 0,00027 

Blue 0,95542 0,97086 0,94265 0,00007 0,01097 -0,00106 

 

 

Table 3. Correlation between ciphered “Lena" pixels 
Method Horizontal Vertical Diagonal 

Proposed -0,0027336 0,0035 -0,0024696 

[21] -0,0029883 0,0091357 -0,0067375 
[23] -0,0042707 -0,0032498 -0,0020192 

[24] -0,0098 -0,0050 -0,0013 

 

 

3.4.  Differential attacks 

Differential attacks capitalize on differences in input processing within a cryptographic system. 

They target how the system reacts to minor alterations in plaintext or the key to infer critical details, such as 

the encryption key. To evaluate the algorithm's performance against such attacks, metrics like the rate of 

pixel changes (NPCR), the unified average change intensity (UACI). 

 

3.4.1. NPCR and UACI metrics analysis 

These metrics can be given by (9) and (10). 

 

𝑁𝑃𝐶𝑅 = (
1

3𝑛𝑚
∑ 𝐷𝑓(𝑖, 𝑗)𝑛𝑚
𝑖,𝑗=1 ) . 100 (9) 

 

𝑈𝐴𝐶𝐼 = (
1

3𝑛𝑚
∑

|𝐼𝑚1(𝑖,𝑗)−𝐼𝑚2(𝑖,𝑗)|

255

3𝑛𝑚
𝑖,𝑗=1 ) . 100 (10) 

 

Where 𝐷𝑓(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼𝑚1(𝑖, 𝑗) ≠ 𝐼𝑚2(𝑖, 𝑗)

0 𝑖𝑓 𝐼𝑚1(𝑖, 𝑗) = 𝐼𝑚2(𝑖, 𝑗)
, 𝐼𝑚1(𝑖, 𝑗) is the first image pixel of rank (𝑖, 𝑗) and 𝐼𝑚2(𝑖, 𝑗) 

is the first modified image pixel of rank (𝑖, 𝑗). 
Table 4 illustrates a comparison between our approach and some similar approaches. This 

comparison proves that our approach is significantly better than the other compared algorithms [21], [24]-

[30]. This validates the resistance of our cryptosystem to differential attacks. 

 

 

Table 4. Comparison of the NPCR and UACI  
Method Ours [21] [24] [25] [26] [27] [28] [29] [30] 

Lena UACI (%) 33,56 33,44 33.45 33.0305 30,3921 33,44 33,65 33,46 33.4685 

NPCR (%) 99,73 99,66 99.63 99.6367 99,5926 99,60 99,62 99,60 99.6092 
Peppers UACI (%) 33,53 33,47 33.46 - 32,1233 - - - - 

NPCR (%) 99,69 99,63 99.61 - 99,5768 - - - - 
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3.4.2. PSNR metric analysis 

MSE stands for mean squared error. (𝑛) denotes the number of rows in the original image, and 

(𝑚) represents the number of columns in the image. The PSNR is evaluated in decibels and is inversely 

proportional to the mean squared error. It is determined by (11). 
 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 (
(2𝐿−1)

2

𝑀𝑆𝐸
) (𝑑𝐵) (11) 

 

- L=8 denotes the bit depth of the particular image, 𝑀𝑆𝐸 =
1

(3𝑛𝑚)2
∑ |𝐼𝑚1(𝑖, 𝑗) − 𝐼𝑚2(𝑖, 𝑗)|

23𝑛𝑚
𝑖,𝑗=1  

- (Im1) and (Im2) represent the original and encrypted images, respectively 

Table 5 illustrates a comparison between our approach and some similar approaches. This 

comparison proves that our approach is significantly better than the other compared algorithms [23], [31]-

[33]. This confirms the resilience of our cryptosystem against any differential attacks. 

 

 

Table 5. The PSNR (dB) between the original image, the encrypted image, and the decrypted image 
Method Ours [23] [31] [32] [33] 

Lena Original to Encrypted ∞ ∞ - - ∞ 
Original to decrypted 7,0211 8,1102 8,3655 8,2522 7,0257 

Baboon Original to Encrypted ∞ ∞ - - ∞ 

Original to decrypted 7,1721 8,7776 8,8532 8,8223 7,1515 

 

 

4. CONCLUTION 

The obtained statistical and differential constants were evaluated according to international 

standards. To achieve this, we employed pseudo-random and reversible affine functions in the processes of 

confusion and diffusion. Additionally, two S-Boxes derived from chaotic maps were incorporated and framed 

by two specifically adapted genetic crossovers for the encryption of color images. This approach led to the 

development of a large-scale algorithm ensuring a uniform distribution of histograms for each encrypted 

image. Consequently, our cryptographic system demonstrates robustness against known attacks, as evidenced 

by comparisons with several similar algorithms. 
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