
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 3, June 2024, pp. 1499~1508

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp1499-1508  1499

Journal homepage: http://ijeecs.iaescore.com

An efficient high throughput BCH module for multi-bits error

correction mechanism on hardware platform

Rohith Puttaraju, Ramesha Muniyappa
Department of Electrical, Electronics and Communication Engineering, GITAM (Deemed to be University), Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jan 30, 2024

Revised Feb 24, 2024

Accepted Mar 16, 2024

 The bose-chaudhuri-hocquenghem (BCH) codes are a cyclic error correction

codes (ECC) class. The BCH is constructed by using a polynomial over the

Galois field. The BCH codes can detect and correct the multi-bits with an

easy decoding mechanism. The BCH codes are used in most of the storage

device's cryptography, disk drives, and satellite applications. This

manuscript presents an efficient high-throughput BCH module with an

encoding and decoding mechanism for multi-bit corrections. The BCH code

of (15, k) is used to construct the encoder and decoder architectures. The

BCH encoder decoder (ED) module with single error correction (SEC),

double error correction (DEC), and triple-error correction (TEC) are

discussed in detail. The BCH encoder module uses a linear feedback shift

register (LFSR). The BCH decoder with SEC and DEC is constructed using

the syndrome generator module (SGM) and chien search module (CSM).

The BCH decoder with TEC is designed using SGM, inversion-based

berlekamp-massey-algorithm (BMA), and CSMs. The BCH-ED module

with SEC, DEC, and TEC utilizes <1 % chip area on Artix-7 FPGA. The

BCH-ED with SEC, DEC, and TEC achieves a throughput of 7.13 Gbps,

1.2 Gbps, and 0.803 Gbps, respectively. Lastly, the BCH module is

compared with existing BCH approaches with better improvement in chip

area, frequency, and throughput parameters.

Keywords:

Bose-chaudhuri-hocquenghem

Berlekamp-massey algorithm

Chien search

Encoder

Error correction codes

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rohith Puttaraju

Department of Electrical, Electronics and Communication Engineering

GITAM (Deemed to be University) Bengaluru Campus

Doddaballapura, India

Email: rohithgowda1985@gmail.com

1. INTRODUCTION

Internet traffic significantly increased in most advanced applications like social networks, video

streaming, and cloud computing in the past few years. Many telecom operators consider optical networks

with a high data rate to compensate for this issue. However, the optical networks are limited to disturbances

or noises. The forward error correction (FEC) approaches are suitable to solve the above issues and also

improve the data rates. The FEC is most suitable for advanced communications and networks for end-end

data transmission. Many metrics must be considered while designing the FEC approaches, including bit error

rate (BER) performance, coding gain, complexity in implementation, ability to correct the bust errors, and

transmission overhead. The FEC codes are also called error correction codes (ECC) and are classified into

traditional FEC and streaming codes. Examples of the traditional FECs are rateless codes, random-linear

convolutional codes (RLC), and reed-solomon (RS) codes. Examples of the streaming codes are shifted

repetition (Maximally shifted codes), shifted RLC, and concatenated codes [1], [2]. The linear codes transmit

the symbols or bits on the communication channel. In contrast, they communicated if any errors occurred,

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1499-1508

1500

which will be detected and corrected on the receiver side. The linear codes are partitioned into convolutional

and block codes based on codewords as per the concept of coding theory. The most popular linear codes are

cyclic codes, hamming codes, RS codes, low-density-parity-check (LDPC) codes, turbo codes, polynomial

codes, and parity codes.

The bose-chaudhuri-hocquenghem (BCH) codes are examples of the polynomial codes and class of

the cyclic ECCs [3]. The BCH codes are framed using polynomials over the Galois field. The BCH codes can

detect and correct the number of symbol errors. The decoding mechanism of the BCH codes is easily

designed using the syndrome decoding approach. The BCH codes used many applications, including solid-

state drives, cryptography, disk drives, compact disc players, flash drives, and bar codes [4], [5]. The

subclass of the BCH code is narrow-sense primitive-based BCH codes and is known to improve performance

metrics using features like minimum distance and dimensions [6]. The BCH codes' encoding and decoding

mechanisms are implemented in software or hardware-based approaches. The execution time and BER

performance are better in software-based than hardware approaches. However, BCH codes using application-

specific integrated circuits (ASICs) or Field programmable gate arrays (FPGAs) as hardware approaches

provide high Throughput, low-latency, and low-complexity features than software-based approaches [7]-[10].

The existing works of the BCH codes are discussed in this section. Mandal et al. [11] present the

BCH codes with single-bit correction for Redox-based Random access memory (ReRAM) computation. The

BCH codes of (15, 11) are incorporated in ReRAM for decoding operation. The BCH module uses 251 and

230 clock cycles to complete encoding and decoding operations. Choi et al. [12] describe the low-power and

high-efficiency-based short BCH codes for memory applications. The Double error correction and triple error

detection (DEC-TED) based BCH is designed for (79, 64) codes. This BCH decoder saves around 70% of

Power and up to 48% latency compared to conventional BCH decoders. Chand et al. [13] explain the

implementation of the forward error correction (FEC) and BCH using Matlab and VHDL. The BCH code

(63, 36, and 5) is considered the FEC mechanism. Gunasekaran et al. [14] discuss the BCH decoder

mechanism with pipeline architecture for M-Ary recording channels. The work improves the chip area by 46

% more than the existing 2-stage pipelined BCH decoder. The BCH decoder works with a throughput of 2.11

Gbps and 4.63 Gbps on Kintex-7 FPGA and ASIC 45-nm Technology, respectively. Cai et al. [15] describe

the Concatenated LDPC with BCH codes for optical fiber communications. The LDPC-based convolutional

codes (CC) offer a throughput of up to 150 Gbps. The concatenated design provides the BER up to 10-15 on

hardware.

Subbiah and Ogunfunmi [16] explain the Hybrid BCH decoder module for advanced flash

memories. The syndrome generator offers area-efficient features in the hybrid BCH decoder. The work

analyzes the computation time, area, BER, and Throughput at different block sizes. Hiller et al. [17] describe

a detailed review of the error correction mechanism for Physical unclonable functions (PUFs). The work

analyzes the linear-based, pointer-based, and error-correcting code (ECC) based approaches concerning the

PUFs. The work also evaluates the implementation complexity, error probability, and symbol recovery.

Kwon and Shin [18] present the blind reconstruction of BCH codes. The work improves the correct

reconstruction probability using lower-bound BCH codes than RS codes. Adalid et al. [19] explain the DEC-

based BCH codes with overhead reduction. The work reduces the overhead of 2.8 % in propagation delay,

15.7 % in Power, and 1.3 % in chip area than conventional DEC-based BCH codes. Rao et al. [20] describe

the BCH-based encoder and adaptive decoder for the (15, 6, 2) mechanism. The BCH codes perform DEC-

TED and reduce around 65 % of Power and up to 35 % latency compared to conventional BCH decoders.

Mahdy et al. [21] present the parallel BCH with LDPC codes for flash memory applications in a

Matlab environment. The work analyses the LDPC and concatenated coding (BCH +LDPC) performance at

different code lengths by concerning the BER and SNR. Nageen et al. [22] describe the turbo product

decoder for single error correction (SEC) and DEC on FPGA. The decoder uses a pipeline mechanism to

improve resource (area, latency, and frequency) optimization. The researcher [23], [24] discuss the BCH

product codes using the frequency domain on Kintex-7 FPGA. The work reduces the hardware complexity

and offers low Latency. The BCH decoder offers a high Throughput of 5.6 Gbps at 100 MHz.

Freudenberger et al. [25] explain the BCH with complex and soft-input decoding mechanisms to reduce the

complexity. The work uses Peterson's algorithm for error correction concerning the SEC, DEC, and TED

rather than the Berlekamp–Massey algorithm. Matsenko et al. [26] present the FEC-based fractal decoder for

short-reach optical interconnects on the FPGA platform. The Wavelength division multiplexed (WDM) based

short-reach optical interconnects module is interleaved with a BCH+LDPC-based fractal decoder to analyze

the ECCs.

The efficient high throughput BCH encoder-decoder module with multi-bit error correction is

presented in this manuscript. The contribution of the proposed work is highlighted as follows: The

coefficients of error location polynomials are calculated directly without using BMA for SEC and DEC-

based BCH codes in the decoder, which optimizes the chip area and power. The key equation solver is

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An efficient high throughput BCH module for multi-bits error … (Rohith Puttaraju)

1501

designed using inversion-based BMA architecture for triple error correction (TEC). The synchrome register

is updated based on circular rotation as per iterations (r) in the BMA architecture, which optimzies the

resources in chip and improves the throughput. The proposed BCH module provides low-chip area, high

operating frequency, minimal power consumption, and high Throughput on the FPGA platform. The

proposed BCH codes are compared with existing BCH codes with improvements in performance metrics

(area, frequency and throughput).

The manuscript's organization is as follows: the BCH encoder and decoder architectures with

mathematical equations are explained in detail in section 2. The BCH module simulation, synthesis, and

performance comparison results are discussed in section 3. Lastly, it concludes the overall work with

futhersitc suggestions in section 4.

2. HARDWARE ARCHITECTURE OF BCH MODULE

The BCH codes provide error correction capabilities and are used in most communication systems

as error correcting codes (ECC). The BCH encoder-decoder architecture is illustrated in Figure 1. The BCH

code (n, k) architecture contains encoder and decoder units and three registers for the encoder, decoder, and

error modules. The encoder register receives the k-bit data information in parallel and serially generates the

1-bit register output. The 1-bit serial data is passed to the BCH encoder and performs the encoding operation

using LSFR. The n-bit error data is stored in the error register and serially generates the 1-bit error output.

The error bit and encoded data are XOR'ed to generate the corrupted data bit. The BCH decoder receives the

corrupted bit and generates the decoded data serially. The decoder register receives the decoded data and

generates the parallel k-bit output. The Encoder and error registers work similarly to parallel in serial out

(PISO). Similarly, the decoder register works in a serial-in-parallel-out (SIPO) manner. The detailed

encoding and decoding operations for SEC, DEC, and TEC are discussed below.

Figure 1. BCH encoder-decoder architecture

2.1. BCH encoder

The binary BCH codes (n, k) are defined with few parameters, namely: Length of the codeword in

bits n = 2m-1, data bits in codeword 𝑘 ≥ n − m ∗ t; e number of error bits to be corrected (t), and minimum

distance 𝑑𝑚 ≥ 2 ∗ t + 1. The codeword of the BCH (n, k, t) codes is generated using data bits (d) and

generator polynomial (g). Then the polynomial of the codeword c(x) = 𝑐0 + 𝑐1x + 𝑐2x 2 + ⋯ + 𝑐𝑛−1x 𝑛−1 is

defined as c(x) = d(x) + g(x). The data bits are framed into data polynomial: d(x) = 𝑑0 + 𝑑1x + 𝑑2x 2 +
⋯ + 𝑑𝑘−1x 𝑘−1; where 𝑑𝑖 ∈ 𝐺𝐹(2). The number of parity bits (n-k) is equal to the degree of g(x) or product

of (m * t). The error correcting codes (ECC) are defined in terms of the Generator Polynomial g(x). The

generator polynomial for t error bits in the BCH encoding process is represented in (1). The codewords of the

BCH are encoded using data bits with a linear feedback shift register (LFSR) and are represented in (2). The

parity bits are calculated using the remainder polynomial rp(x) and are represented using (3) as follows [27].

g(x) = 1 + x + x4 for t = 1;

g(x) = 1 + x4 + x6 + x7 + x8 for t = 2;

g(x) = 1 + x + x2 + x4 + x5 + x8 + x10 for t = 3; (1)

c(x) = rp(x) + 𝑑(𝑥) ∗ 𝑥𝑛−𝑘 (2)

rp(x) = ∑ 𝑟𝑝𝑖
𝑛−𝑘
𝑖=0 𝑥𝑖 = 𝑥𝑛−𝑘𝑑(𝑥) 𝑚𝑜𝑑 𝑔(𝑥) (3)

Where rpi=0 to (n-k) and data bits d(x)=0 to (k-1) are elements of the GF (24). The LFSR is

initialized with zero. The data bits d(x) are transmitted during 1 to k clock cycles, and LFSR generates the

parity bits. The generated parity bits in the LFSR are transmitted in parallel during k+1 to n clock cycles. The

(n-k) parity bits are appended with data bits (k) to form the encoded information. The 4, 8, and 10 parity bits

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1499-1508

1502

are generated for SEC, DEC, and TEC during the encoding mechanism. The LFSR generation for BCH (15,

7, 2) encoder for DEC is represented in Figure 2.

Figure 2. LFSR generation for BCH (15, 7, 2) Encoder

2.2. BCH decoder

The BCH decoding operation is divided into three steps, namely: i) syndrome calculation, ii) key

equation solving, and iii) error location finding. The BEC codes for SEC and DEC use only the syndrome

calculation step for decoding, which provides the error location polynomial coefficient. So key Equation

solving (step 2) is not considered in both SEC and DEC processes. At the same time, TEC uses all three steps

to perform the BCH decoding operations. In that, the key Equation solving is a more complex step in the

decoding process and consumes more resources than the other two steps. The hardware architecture of the

BCH decoder for SEC and DEC is illustrated in Figure 3. It mainly contains the syndrome generator module

(SGM), a Chien search module (CSM), an error detection module, a serial-in-serial-out (SISO) register, and a

control module. The SGM produced the syndromes and was used further to calculate the error location

polynomial coefficients. The CSM finds the error locations, and the detection module detects the error bits.

The SISO register shifts the input data bits based on control signal output, and results are XOR'ed with error

bits to produce the corrected output bits. The control module acts counter with decoding logic. Similarly, the

hardware architecture of the BCH decoder for TEC is illustrated in Figure 4. The architecture is similar to

SEC/DEC with the addition of the Berlekamp-Massey algorithm (BMA). The inversion-based BMA is used

to find the error location polynomial coefficients.

Figure 3. Hardware architecture of the BCH decoder for SEC and DEC

Figure 4. Hardware architecture of the BCH decoder for TEC

2.2.1. Syndrome calculation

The BCH decoder received the codeword c(x) and was used further for syndrome calculation. The

received codeword c(x) is corrupted with error inputs e(x) and acts as an input to the syndrome generator

module (SGM). The received polynomial is represented in (4). Where the polynomial of the received

codeword is r(x) = 𝑟0 + 𝑟1x + 𝑟2x 2 + ⋯ + 𝑟𝑛−1x 𝑛−1 and error input is e(x) = 𝑒0 + 𝑒1x + 𝑒2x 2 + ⋯ +
 𝑒𝑛−1x 𝑛−1. The syndrome (Si) is calculated [28] using (5). The syndrome is calculated for SEC operation is

represented using (6).

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An efficient high throughput BCH module for multi-bits error … (Rohith Puttaraju)

1503

𝑟(x) = e(x) + 𝑐(𝑥) (4)

𝑆𝑖 = 𝑟(𝛼𝑖) = 𝑟0 + 𝑟1𝛼𝑖 + 𝑟2𝛼2𝑖 + ⋯ + 𝑟𝑛−1𝛼(𝑛−1)𝑖 ; where (1 ≤ 𝑖 ≤ 2𝑡 − 1) (5)

𝑆1 = 𝑟(𝛼1) = 𝑟0 + 𝑟1𝛼1 + 𝑟2𝛼2 + ⋯ + 𝑟14𝛼14 (6)

Similarly, the syndrome is calculated for DEC operation is represented using in (7). Where the

primitive element of GF (24) is 'α.' similarly, three syndromes are calculated for TEC. If no error occurred in

received codeword, then there is no need to calculate the syndromes. So, the calculation of the syndrome is

influenced more by error polynomial. When syndromes are non-zero, a further step is to calculate the error

location polynomial's coefficients in the key Equation solving step.

𝑆1 = 𝑟(𝛼1) = 𝑟0 + 𝑟1𝛼1 + 𝑟2𝛼2 + ⋯ + 𝑟14𝛼14

𝑆3 = 𝑟(𝛼1) = 𝑟0 + 𝑟1𝛼2 + 𝑟2𝛼4 + ⋯ + 𝑟14𝛼28 (7)

2.2.2. Key equation solver

The second step of the BCH decoding is the coefficient finding of the error location polynomial

𝜆(𝑥) = 𝜆0 + 𝜆1𝑥 + ⋯ + 𝜆𝑡𝑥𝑡 concerning the syndromes (𝑆𝑖). The relationship between 𝜆𝑖 and syndromes

are represented using in (8). The error position is calculated using roots of 𝜆(𝑥); The coefficients of the

𝜆(𝑥) and It is calculated directly without using BMA for SEC and DEC-based BCH codes. The coefficients

of the 𝜆(𝑥) SEC and DEC are represented using in (9-10) as follows [28].

∑ 𝑆𝑡+𝑗−𝑖
𝑡
𝑖=0 𝜆𝑖 = 0 (𝑗 = 1,2 … 𝑡) (8)

𝜆(𝑥) = 1 + 𝑆1𝑥 (9)

𝜆(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥2 = 1 + 𝑆1𝑥 + (𝑆1
2 + 𝑆3 ∗ 𝑆1

−1)𝑥2 (10)

The coefficients of the 𝜆(𝑥) for TEC-based BCH codes are calculated using inversion-based

berlekamp-massey algorithm (BMA) and is represented using in (11) [29]. The number of iterations (r) is the

same as the number of errors (t). Where discrepancy 𝑑𝑟 = ∑ 𝑆2𝑟−𝑖+1
𝑡
𝑖=0 𝜆𝑖

𝑟
, Updated discrepancy 𝑑𝑝 =

𝑑𝑟 (when sel = 0 or 1). The selection line (sel) is considered based on the discrepancy 𝑑𝑟 . The updated BMA

coefficients are represented using in (12).

𝜆𝑟(𝑥) = 𝜆𝑟−1(𝑥) − 𝛽𝑟(𝑥). 𝑑𝑟𝑑𝑝
−1 (𝑟 = 1,2 … 𝑡 − 1) (11)

𝛽𝑟+1(𝑥) = {
𝛽𝑟(𝑥). 𝑥2 𝑖𝑓 (𝑠𝑒𝑙 = 0)

𝜆𝑟−1(𝑥). 𝑥2 𝑖𝑓 (𝑠𝑒𝑙 ≠ 0)
 (12)

The BMA architecture for Key Equation solver in BCH decoder is modelled as (11) and (12) in

Figure 5. The architecture uses 𝜆𝑟 and 𝛽𝑟 registers which stores the 𝜆𝑟(𝑥) and 𝛽𝑟(𝑥) coefficients. The

syndrome register acts a shift register which is multiplied with 𝜆𝑟 register index-wise and later summed to

generate the discrepancy 𝑑𝑟 . The 𝛽𝑟 register is mulipled with 𝑑𝑟𝑑𝑝
−1

 to generate the correction factor (CF).

The coefficients of 𝜆𝑟(𝑥) are updated based on CF and 𝜆𝑟 registers.

Figure 5. BMA architecture for key equation solver in BCH decoder

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1499-1508

1504

2.2.3. Error location finding approach

The last step of the BCH decoding is to find the error location values, and are reciprocals of the

roots of the 𝜆(𝑥). The error location values are calculated by substituting the 1, 𝛼, 𝛼2 … 𝛼𝑛−1 into the 𝜆(𝑥)

using the Chien search approach. The Chien search sum is calculated at every clock cycle and represented

using in (13) as follows:

𝜆0 + 𝜆1𝛼𝑖 + 𝜆2𝛼2𝑖 + ⋯ + 𝜆𝑡𝛼𝑡𝑖 (𝑖 = 0,1, … 𝑘 − 1) (13)

The received bit (𝑟𝑛−1−𝑖) is corrupted only if 𝜆(𝛼𝑖) = 0; the received bit (𝑟𝑛−𝑖−1) is corrected only

when the Chien search sum at clock cycle 'i’ equals zero. The hardware architecture of the Chien search

module (CSM) is represented in Figure 6. The error location polynomials (λ0, λ1, λ2… λt) and primitive

elements (1, α, α2… αt) are multiplied using a constant multiplier. The individual multiplied outputs are

added on each clock cycle till ‘t’ iterations. The CSM output was used further to detect the error.

Figure 6. Hardware architecture of the chien search module

3. RESULTS AND DISCUSSION

The results of the BCH-Encoder Decoders (ED) with multi-bit error corrections (SEC, DEC, and

TEC) are discussed in this section. The BCH codes are designed and implemented using Verilog-HDL on the

Xilinx ISE environment. The Artix-7 FPGA with XC7A100-TCSG324-3 device is considered for synthesis

and implementation. The simulation results are analyzed and verified using the Modelsim simulator. The

Xilinx-Xpower analyzer tool is used for total power generation for BCH designs. The simulation results of

the BCH ED (15, 7, 2) for DEC are illustrated in Figure 7. The global clock (clk) is activated with an

asynchronous reset (rst) signal to start the BCH ED operations. Define the 7-bit data input-7f, 79, 4f, and 4C

in a sequence with delay. The 15-bit error signal is set by corrupting two random bits (Number of 1’s) for

DEC in the design process. The 7-bit BCH decoder output is obtained after performing the BCH encoding-

decoding operations with a Latency of 40.5 clock cycles. The received and transmitted bits are matched by

correcting the 2-bit errors.

Figure 7. Simulation results of BCH-ED (15, 7, 2) module for DEC

The resource utilization parameters are considered after place and route operation in the Xilinx

environment. The resource utilization of BCH-ED designs on Artix-7 FPGA is tabulated in Table 1

concerning the different data bits (k) and error corrections (t). Table 1 contains the realization of area,

frequency, power and performance metrics for different BCH-ED designs.

The BCH-ED (15, 11, 1) design utilizes slices of 82, LUTs of 53, operates at 648.315 MHz, and

consumes 85 mW of total Power. Similarly, The BCH-ED (15, 7, 2) design utilizes slices of 88, LUTs of 73,

operates at 343.03 MHz, and consumes 86 mW of total Power. The BCH-ED (15, 5, 3) design utilizes slices

of 96, LUTs of 91, operates at 482.346 MHz, and consumes 87 mW of total Power on Artix-7 FPGA.

The performance metrics are realized using Latency in terms of clock cycles (CC), Throughput

(Gbps), and hardware efficiency (Mbps/Slice). The Throughput is calculated using data bits (k), maximum

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An efficient high throughput BCH module for multi-bits error … (Rohith Puttaraju)

1505

obtained frequency (MHz), and a number of error bits to be corrected (t). So, Throughput = (data bits *

frequency)/ number of error bits to be corrected. The system or hardware efficiency is calculated using

obtained Throughput and utilized area (slices). The BCH-ED (15, 11, 1) design obtains the Throughput of

7.131 Gbps with a Latency of 44.5 CC and an efficiency of 86.96 Mbps/Slice. Similarly, The BCH-ED (15,

7, 2) design obtains the Throughput of 1.2 Gbps with a Latency of 40.5 CC and an efficiency of 13.63

Mbps/Slice. The BCH-ED (15, 5, 3) design obtains a Throughput of 0.803 Gbps with a latency of 67.5 CC

and an efficiency of 8.364 Mbps/Slice. The performance metrics realization of BCH ED on Artix-7 FPGA is

represented in Figure 8. As the ‘t’ bit increases, the chip area and Power of the BCH designs will also

increase. The BCH-ED (15, 5, 3) for TEC utilizes more clock cycles and Power due to the advanced

decoding mechanism. As the ‘t’ bit increases, the Throughput and hardware efficiency will be decreased

drastically.

The resource utilization of individual BCH encoders and decoders for SEC, DEC, and TEC are

tabulated in Table 2, and the graphical representation is in Figure 9. The BCH encoder (15, 11, 1) utilizes

slices of 10 and operates at 605.18 MHz with a combinational delay of 0.729 ns. The BCH encoder (15, 7, 2)

utilizes slices of 14 and operates at 866.927 MHz with a delay of 0.756 ns. The BCH encoder (15, 5, 3)

utilizes slices of 16 and operates at 866.927 MHz with a delay of 0.771 ns. In contrast, the BCH decoder (15,

11, 1) utilizes slices of 35, LUTs of 18, and operates at 642.756 MHz. Similarly, the BCH decoder (15, 7, 2)

utilizes slices of 43, LUTs of 41, and operates at 342.454 MHz. The BCH decoder (15, 5, 3) utilizes slices of

47, LUTs of 52, and operates at 482.346 MHz.

Table 1. Resource utilization of BCH-ED on Artix-7 FPGA
Resources utilized BCH (15,11,1) BCH (15,7,2) BCH (15,5,3)

Area

Slice registers 82 88 96
Slice-LUTs 53 73 91

LUT FF-Pairs 51 59 70

Max. frequency (MHz) 648.315 343.03 482.346
Total power (mW) 85 86 87

Latency (CC) 44.5 40.5 67.5

Throughput (Gbps) 7.131 1.2 0.803

Hardware efficiency (Mbps/Slice) 86.96 13.63 8.364

Figure 8. Performance metrics realization of BCH ED on Artix-7 FPGA

Table 2. Resource utilization of BCH encoder and decoders
Resources (15,11,1) (15,7,2) (15,5,3)

BCH Encoders
Slices 10 14 16

LUTs 10 11 13

LUT-FFs 9 10 12
Max. Frequency (MHz) 605.18 866.927 866.927

Comb. Delay (ns) 0.729 0.756 0.771

BCH Decoders
Slices 33 43 47

LUTs 18 41 52

LUT-FFs 16 26 33

Max. Frequency (MHz) 642.756 342.454 482.346

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1499-1508

1506

Figure 9. Chip area utilization of BCH encoder and decoders on artix-7 FPGA

The performance comparison of the proposed BCH ED with existing BCH approaches is tabulated

in Table 3. The Parameters like the selection of the FPGAs, Chip area (Slices, LUTS and LUT-FFs), and

Frequency and Throughput are considered for performance comparison of BCH codes. The BCH (255, 131,

1) with SEC is designed with an inversion-free BMA algorithm [7] on Artix-7 FPGA. The BCH module

works at 200 MHz and obtains a Throughput of 5.1 Gbps. The proposed BCH –ED with SEC reduces the

area overhead by 69.4 % concerning the slices, improves the frequency by 69.13 %, and has a Throughput of

28.48 % than the existing BCH design [7]. The BCH with SEC [8] is implemented on Virtex-5 FPGA. The

proposed BCH –ED with SEC reduces the area overhead by 19.6 % concerning the slices, improving the

frequency by 76 % and Throughput by 67.7 % than the existing BCH design [8]. The BCH codes [11], [14] [30]

are implemented on Kintex-7 FPGA. The proposed BCH –ED with SEC improving the Throughput by 98 %

, 47.44 % and 75 % than the existing BCH [11], BCH [14] and BCH design [30] respectively on Kintex-7

FPGA. The BCH with SEC [25] is implemented on Virtex-7 FPGA. The proposed BCH –ED with SEC

reduces the area overhead by 87.5 % concerning the LUTs, improving the frequency by 58.3 % and

Throughput by 98% than the existing BCH design [25] on Virtex-7 FPGA. The proposed BCH-ED (15, 11,

1) uses a simple decoding mechanism. The error location polynomial coefficients are assigned without

algorithms like BMA to solve the key equations in the BCH decoder with SEC.

Table 3. Performance comparison of proposed BCH Code with existing BCH approaches
Parameters (n, k, t) FPGA Slice LUTs LUT-FFs Frequency (MHz) Throughput (Gbps)

BCH [7] (255,131,1) Artix-7 268 171 158 200 5.1
This work (15,11,1) Airtex-7 82 53 51 648.315 7.131

BCH [8] (15,11,1) Virtex-5 102 77 68 114.771 1.7

This work (15,11,1) Virtex-5 83 52 48 479.272 5.27
BCH [11] (15,11,1) Kintex-7 379 316 NA 100 0.115

BCH [14] (255,191,1) Kintex-7 NA 726 374 434.93 4.63

BCH [30] NA Kintex-7 NA 1313 394 275 2.2

This work (15,11,1) Kintex-7 83 53 51 800.288 8.81

BCH [25] (15,11,1) Virtex -7 NA 426 84 333 0.111

This work (15,11,1) Virtex -7 83 53 51 800.288 8.81

4. CONCLUSION

This manuscript describes the efficient BCH architecture with an encoding-decoding mechanism for

multi-bit error correction on the FPGA platform. The BCH module can detect and correct single, double, and

triple errors in this work. The BCH encoder is designed using LFSR. The BCH decoder with SEC and DEC

is designed without using the BMA approach to improve the chip area. The BCH decoder with TEC is

designed using an inversion-based BMA approach. The BMA with an inversion approach reduces the BMA

calculation time. The resource utilization of individual BCH-encoder and decoder modules with SEC, DEC,

and TEC are realized in detail. The BCH module with SEC, DEC, and TEC utilizes < 1 % chip area and low-

power consumption on the chip. The Throughput of 7.14 Gbps, 1.2 Gbps, and 0.803 Gbps is obtained for the

BCH module with SEC, DEC, and TEC, respectively. The BCH module is compared with an existing similar

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

An efficient high throughput BCH module for multi-bits error … (Rohith Puttaraju)

1507

approach with improved chip area (slices and LUTs), frequency, and Throughput. This module will be

integrated with LDPC codes to construct the forward error correction (FEC) transceiver for suitable, efficient

data communication.

REFERENCES
[1] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and

beyond optical networks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 209–221, 2016, doi:

10.1109/COMST.2014.2361754.

[2] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Perfecting protection for interactive multimedia: a survey of forwarding
error correction for low-delay interactive applications,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 95–113, Mar. 2017,

doi: 10.1109/MSP.2016.2639062.

[3] J. Rosenthal and F. V. York, “BCH convolutional codes,” IEEE Transactions on Information Theory, vol. 45, no. 6, pp. 1833–
1844, 1999, doi: 10.1109/18.782104.

[4] S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, “On quantum and classical BCH codes,” IEEE Transactions on Information

Theory, vol. 53, no. 3, pp. 1183–1188, Mar. 2007, doi: 10.1109/TIT.2006.890730.

[5] O. Gazi, Forward Error Correction via Channel Coding. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-

33380-5.

[6] C. Ding, “Parameters of several classes of BCH codes,” IEEE Transactions on Information Theory, vol. 61, no. 10, pp. 5322–
5330, Oct. 2015, doi: 10.1109/TIT.2015.2470251.

[7] D. Azinovic, K. Tittelbach-Helmrich, and Z. Stamenkovic, “Performance investigation on BCH codec implementations,” in 2016

IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE, Dec. 2016, pp. 280–285. doi:
10.1109/ISSPIT.2016.7886049.

[8] H. Setiawan, “A low-complexity and high-throughput RTL design of a BCH (15,7) decoder,” ITB Journal of Information and

Communication Technology, vol. 6, no. 2, pp. 112–130, 2012, doi: 10.5614/itbj.ict.2012.6.2.2.
[9] B. Jarvis and K. Gaj, “Selection of an error-correcting code for FPGA-based physical unclonable functions,” in 2017

International Conference on Field Programmable Technology (ICFPT), IEEE, Dec. 2017, pp. 243–246. doi:

10.1109/FPT.2017.8280151.
[10] S. Ning, “Advanced bit flip concatenates BCH code demonstrates 0.93% correctable BER and faster decoding on (36 864, 32

768) emerging memories,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4404–4412, Dec.

2018, doi: 10.1109/TCSI.2018.2840350.
[11] S. Mandal, Y. Tavva, D. Bhattacharjee, and A. Chattopadhyay, “ReRAM based in-memory computation of single bit error

correcting BCH code,” in IFIP/IEEE International Conference on Very Large Scale Integration - System on a Chip, 2019, pp.

128–146. doi: 10.1007/978-3-030-23425-6_7.
[12] S. Choi, H. K. Ahn, B. K. Song, J. P. Kim, S. H. Kang, and S.-O. Jung, “A decoder for short BCH codes with high decoding

efficiency and low power for emerging memories,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,

no. 2, pp. 387–397, Feb. 2019, doi: 10.1109/TVLSI.2018.2877147.
[13] E. Chand, C. A. Reddy, and M. Aswathakumara, “FEC & BCH: study and implementation on VHDL,” in 2019 3rd International

Conference on Computing Methodologies and Communication (ICCMC), IEEE, Mar. 2019, pp. 1099–1101. doi:

10.1109/ICCMC.2019.8819823.
[14] A. Gunasekaran, N. C. Jose, and S. Srinivasa Garani, “An optimized BCH decoder design architecture for adaptive M-ary

recording channels,” in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, Aug.

2019, pp. 710–713. doi: 10.1109/MWSCAS.2019.8884872.
[15] Yi Cai et al., “FPGA assisted design of concatenated LDPC convolutional and BCH codes for optical fiber communications,” in

45th European Conference on Optical Communication (ECOC 2019), Institution of Engineering and Technology, 2019, pp. 48 (4

pp.)-48 (4 pp.). doi: 10.1049/cp.2019.0782.
[16] A. Subbiah and T. Ogunfunmi, “A flexible hybrid BCH decoder for modern NAND flash memories using general purpose

graphical processing units (GPGPUs),” Micromachines, vol. 10, no. 6, p. 365, May 2019, doi: 10.3390/mi10060365.
[17] M. Hiller, L. Kürzinger, and G. Sigl, “Review of error correction for PUFs and evaluation on state-of-the-art FPGAs,” Journal of

Cryptographic Engineering, vol. 10, no. 3, pp. 229–247, Sep. 2020, doi: 10.1007/s13389-020-00223-w.

[18] S. Kwon and D.-J. Shin, “Analysis of blind reconstruction of BCH codes,” Entropy, vol. 22, no. 11, p. 1256, Nov. 2020, doi:
10.3390/e22111256.

[19] L.-J. Saiz-Adalid, J. Gracia-Morán, D. Gil-Tomás, J.-C. Baraza-Calvo, and P.-J. Gil-Vicente, “Reducing the overhead of BCH

codes: new double error correction codes,” Electronics, vol. 9, no. 11, p. 1897, Nov. 2020, doi: 10.3390/electronics9111897.
[20] P. Rao, P. Babshet, R. Arun Babu, and M. S. Sunita, “Encoder and adaptive decoder for a (15,6,2) DEC-TED BCH code,” in 2020

IEEE 17th India Council International Conference (INDICON), IEEE, Dec. 2020, pp. 1–6. doi:

10.1109/INDICON49873.2020.9342357.
[21] A. M. Mahdy, M. Abdelaziz, and M. H. A. El-Azeem, “Design and simulation of parallel BCH code with LDPC code for flash

memories,” in 2020 12th International Conference on Electrical Engineering (ICEENG), IEEE, Jul. 2020, pp. 196–199. doi:

10.1109/ICEENG45378.2020.9171743.
[22] N. Nageen, Subhashini, and V. Bhatia, “An efficient FPGA implementation of turbo product code decoder with single and double

error correction,” in 2020 National Conference on Communications (NCC), IEEE, Feb. 2020, pp. 1–6. doi:

10.1109/NCC48643.2020.9055995.
[23] A. Mondal and S. S. Garani, “Efficient hardware design architectures for BCH product codes in the frequency domain,” in 2020

IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, Aug. 2020, pp. 703–706. doi:

10.1109/MWSCAS48704.2020.9184633.
[24] A. Mondal and S. S. Garani, “Efficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional

data storage applications,” IEEE Transactions on Magnetics, vol. 57, no. 5, pp. 1–14, May 2021, doi:

10.1109/TMAG.2021.3060807.
[25] J. Freudenberger, D. Nicolas Bailon, and M. Safieh, “Reduced complexity hard‐ and soft‐input BCH decoding with applications

in concatenated codes,” IET Circuits, Devices & Systems, vol. 15, no. 3, pp. 284–296, May 2021, doi: 10.1049/cds2.12026.

[26] S. Matsenko et al., “FPGA-implemented fractal decoder with forward error correction in short-reach optical interconnects,”
Entropy, vol. 24, no. 1, p. 122, Jan. 2022, doi: 10.3390/e24010122.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1499-1508

1508

[27] S. Lin and J. Daniel J. Costello, Error control coding, Fundamentals and applications. 1983. [Online]. Available:

https://pg024ec.files.wordpress.com/2013/09/error-control-coding-by-shu-lin.pdf
[28] R. E. Blahut, Theory and practice of error control codes. Addison-Wesley Publishing Company, 1983. [Online]. Available:

https://books.google.co.id/books/about/Theory_and_Practice_of_Error_Control_Cod.html?id=vuVQAAAAMAAJ&redir_esc=y

[29] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions on Information Theory, vol. 15, no. 1, pp. 122–
127, Jan. 1969, doi: 10.1109/TIT.1969.1054260.

[30] G. Quintarelli, M. Bertolucci, and P. Nannipieri, “Design and implementation of a DVB-S2 reconfigurable datapath BCH

Encoder for high data-rate payload data telemetry,” IEEE Access, vol. 11, pp. 120281–120291, 2023, doi:
10.1109/ACCESS.2023.3327786.

BIOGRAPHIES OF AUTHORS

Rohith Puttaraju is a Research Scholar at GITAM University, Bengaluru

campus. He completed his BE from Sri Jagadguru Chandrashekaranatha Swamiji Institute of

Technology, (SJCIT) Chikkaballapura and his M. Tech from the Malnad College of

Engineering, Hassan. His research interests are in the area of Forward Error Correcting (FEC)

Codes, Hardware Architecture of FPGAs, Embedded Systems and 5G and beyond. He has

contributed to 3 research journals and conference and an Indian patent. His research papers

were published in leading journals and conferences. He can be contacted at email:

rohithgowda1985@gmail.com.

Ramesha Muniyappa is the Research Supervisor at GITAM University,

Bengaluru campus. He completed his BE from the VTU, Belagavi, and M. Tech from

Dayananda Sagar College of Engineering, Bangalore, and Ph.D. degrees from the GITAM

University, Visakhapatnam. His research interests are in the area of the next-generation

wireless communication system with special emphasis on various 5G technologies such as

massive MIMO, mm-Wave, OFDM, FBMC, NOMA, and others. He has contributed to more

than 15 research journals and Two Indian Patents. His research papers were published

extensively in leading international journals and conferences. He can be contacted at email:

rameshmalur037@gmail.com.

https://orcid.org/0000-0001-7752-7095
https://scholar.google.com/citations?hl=en&user=FhwLBtwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58156554500
https://www.webofscience.com/wos/author/record/ITU-3683-2023
https://orcid.org/0000-0003-2495-7192
https://scholar.google.com/citations?user=GJfUkk8AAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57222119136
https://www.webofscience.com/wos/author/record/2503655

