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 The bose-chaudhuri-hocquenghem (BCH) codes are a cyclic error correction 

codes (ECC) class. The BCH is constructed by using a polynomial over the 

Galois field. The BCH codes can detect and correct the multi-bits with an 

easy decoding mechanism. The BCH codes are used in most of the storage 

device's cryptography, disk drives, and satellite applications. This 

manuscript presents an efficient high-throughput BCH module with an 

encoding and decoding mechanism for multi-bit corrections. The BCH code 

of (15, k) is used to construct the encoder and decoder architectures. The 

BCH encoder decoder (ED) module with single error correction (SEC), 

double error correction (DEC), and triple-error correction (TEC) are 

discussed in detail. The BCH encoder module uses a linear feedback shift 

register (LFSR). The BCH decoder with SEC and DEC is constructed using 

the syndrome generator module (SGM) and chien search module (CSM). 

The BCH decoder with TEC is designed using SGM, inversion-based 

berlekamp-massey-algorithm (BMA), and CSMs. The BCH-ED module 

with SEC, DEC, and TEC utilizes <1 % chip area on Artix-7 FPGA. The 

BCH-ED with SEC, DEC, and TEC achieves a throughput of 7.13 Gbps,  

1.2 Gbps, and 0.803 Gbps, respectively. Lastly, the BCH module is 

compared with existing BCH approaches with better improvement in chip 

area, frequency, and throughput parameters. 
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1. INTRODUCTION 

Internet traffic significantly increased in most advanced applications like social networks, video 

streaming, and cloud computing in the past few years. Many telecom operators consider optical networks 

with a high data rate to compensate for this issue. However, the optical networks are limited to disturbances 

or noises. The forward error correction (FEC) approaches are suitable to solve the above issues and also 

improve the data rates. The FEC is most suitable for advanced communications and networks for end-end 

data transmission. Many metrics must be considered while designing the FEC approaches, including bit error 

rate (BER) performance, coding gain, complexity in implementation, ability to correct the bust errors, and 

transmission overhead. The FEC codes are also called error correction codes (ECC) and are classified into 

traditional FEC and streaming codes. Examples of the traditional FECs are rateless codes, random-linear 

convolutional codes (RLC), and reed-solomon (RS) codes. Examples of the streaming codes are shifted 

repetition (Maximally shifted codes), shifted RLC, and concatenated codes [1], [2]. The linear codes transmit 

the symbols or bits on the communication channel. In contrast, they communicated if any errors occurred, 

https://creativecommons.org/licenses/by-sa/4.0/
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which will be detected and corrected on the receiver side. The linear codes are partitioned into convolutional 

and block codes based on codewords as per the concept of coding theory. The most popular linear codes are 

cyclic codes, hamming codes, RS codes, low-density-parity-check (LDPC) codes, turbo codes, polynomial 

codes, and parity codes.  

The bose-chaudhuri-hocquenghem (BCH) codes are examples of the polynomial codes and class of 

the cyclic ECCs [3]. The BCH codes are framed using polynomials over the Galois field. The BCH codes can 

detect and correct the number of symbol errors. The decoding mechanism of the BCH codes is easily 

designed using the syndrome decoding approach. The BCH codes used many applications, including solid-

state drives, cryptography, disk drives, compact disc players, flash drives, and bar codes [4], [5]. The 

subclass of the BCH code is narrow-sense primitive-based BCH codes and is known to improve performance 

metrics using features like minimum distance and dimensions [6]. The BCH codes' encoding and decoding 

mechanisms are implemented in software or hardware-based approaches. The execution time and BER 

performance are better in software-based than hardware approaches. However, BCH codes using application-

specific integrated circuits (ASICs) or Field programmable gate arrays (FPGAs) as hardware approaches 

provide high Throughput, low-latency, and low-complexity features than software-based approaches [7]-[10]. 

The existing works of the BCH codes are discussed in this section. Mandal et al. [11] present the 

BCH codes with single-bit correction for Redox-based Random access memory (ReRAM) computation. The 

BCH codes of (15, 11) are incorporated in ReRAM for decoding operation. The BCH module uses 251 and 

230 clock cycles to complete encoding and decoding operations. Choi et al. [12] describe the low-power and 

high-efficiency-based short BCH codes for memory applications. The Double error correction and triple error 

detection (DEC-TED) based BCH is designed for (79, 64) codes. This BCH decoder saves around 70% of 

Power and up to 48% latency compared to conventional BCH decoders. Chand et al. [13] explain the 

implementation of the forward error correction (FEC) and BCH using Matlab and VHDL. The BCH code 

(63, 36, and 5) is considered the FEC mechanism. Gunasekaran et al. [14] discuss the BCH decoder 

mechanism with pipeline architecture for M-Ary recording channels. The work improves the chip area by 46 

% more than the existing 2-stage pipelined BCH decoder. The BCH decoder works with a throughput of 2.11 

Gbps and 4.63 Gbps on Kintex-7 FPGA and ASIC 45-nm Technology, respectively. Cai et al. [15] describe 

the Concatenated LDPC with BCH codes for optical fiber communications. The LDPC-based convolutional 

codes (CC) offer a throughput of up to 150 Gbps. The concatenated design provides the BER up to 10-15 on 

hardware.  

Subbiah and Ogunfunmi [16] explain the Hybrid BCH decoder module for advanced flash 

memories. The syndrome generator offers area-efficient features in the hybrid BCH decoder. The work 

analyzes the computation time, area, BER, and Throughput at different block sizes. Hiller et al. [17] describe 

a detailed review of the error correction mechanism for Physical unclonable functions (PUFs). The work 

analyzes the linear-based, pointer-based, and error-correcting code (ECC) based approaches concerning the 

PUFs. The work also evaluates the implementation complexity, error probability, and symbol recovery. 

Kwon and Shin [18] present the blind reconstruction of BCH codes. The work improves the correct 

reconstruction probability using lower-bound BCH codes than RS codes. Adalid et al. [19] explain the DEC-

based BCH codes with overhead reduction. The work reduces the overhead of 2.8 % in propagation delay, 

15.7 % in Power, and 1.3 % in chip area than conventional DEC-based BCH codes. Rao et al. [20] describe 

the BCH-based encoder and adaptive decoder for the (15, 6, 2) mechanism. The BCH codes perform DEC-

TED and reduce around 65 % of Power and up to 35 % latency compared to conventional BCH decoders. 

Mahdy et al. [21] present the parallel BCH with LDPC codes for flash memory applications in a 

Matlab environment. The work analyses the LDPC and concatenated coding (BCH +LDPC) performance at 

different code lengths by concerning the BER and SNR. Nageen et al. [22] describe the turbo product 

decoder for single error correction (SEC) and DEC on FPGA. The decoder uses a pipeline mechanism to 

improve resource (area, latency, and frequency) optimization. The researcher [23], [24] discuss the BCH 

product codes using the frequency domain on Kintex-7 FPGA. The work reduces the hardware complexity 

and offers low Latency. The BCH decoder offers a high Throughput of 5.6 Gbps at 100 MHz.  

Freudenberger et al. [25] explain the BCH with complex and soft-input decoding mechanisms to reduce the 

complexity. The work uses Peterson's algorithm for error correction concerning the SEC, DEC, and TED 

rather than the Berlekamp–Massey algorithm. Matsenko et al. [26] present the FEC-based fractal decoder for 

short-reach optical interconnects on the FPGA platform. The Wavelength division multiplexed (WDM) based 

short-reach optical interconnects module is interleaved with a BCH+LDPC-based fractal decoder to analyze 

the ECCs.  

The efficient high throughput BCH encoder-decoder module with multi-bit error correction is 

presented in this manuscript. The contribution of the proposed work is highlighted as follows: The 

coefficients of error location polynomials are calculated directly without using BMA for SEC and DEC-

based BCH codes in the decoder, which optimizes the chip area and power. The key equation solver is 
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designed using inversion-based BMA architecture for triple error correction (TEC). The synchrome register 

is updated based on circular rotation as per iterations (r) in the BMA architecture, which optimzies the 

resources in chip and improves the throughput. The proposed BCH module provides low-chip area, high 

operating frequency, minimal power consumption, and high Throughput on the FPGA platform. The 

proposed BCH codes are compared with existing BCH codes with improvements in performance metrics 

(area, frequency and throughput). 

The manuscript's organization is as follows: the BCH encoder and decoder architectures with 

mathematical equations are explained in detail in section 2. The BCH module simulation, synthesis, and 

performance comparison results are discussed in section 3. Lastly, it concludes the overall work with 

futhersitc suggestions in section 4. 

 

 

2. HARDWARE ARCHITECTURE OF BCH MODULE 

The BCH codes provide error correction capabilities and are used in most communication systems 

as error correcting codes (ECC). The BCH encoder-decoder architecture is illustrated in Figure 1. The BCH 

code (n, k) architecture contains encoder and decoder units and three registers for the encoder, decoder, and 

error modules. The encoder register receives the k-bit data information in parallel and serially generates the 

1-bit register output. The 1-bit serial data is passed to the BCH encoder and performs the encoding operation 

using LSFR. The n-bit error data is stored in the error register and serially generates the 1-bit error output. 

The error bit and encoded data are XOR'ed to generate the corrupted data bit. The BCH decoder receives the 

corrupted bit and generates the decoded data serially. The decoder register receives the decoded data and 

generates the parallel k-bit output. The Encoder and error registers work similarly to parallel in serial out 

(PISO). Similarly, the decoder register works in a serial-in-parallel-out (SIPO) manner. The detailed 

encoding and decoding operations for SEC, DEC, and TEC are discussed below. 

 

 

 
 

Figure 1. BCH encoder-decoder architecture 

 

 

2.1.  BCH encoder 

The binary BCH codes (n, k) are defined with few parameters, namely: Length of the codeword in 

bits n = 2m-1, data bits in codeword 𝑘 ≥ n − m ∗ t; e number of error bits to be corrected (t), and minimum 

distance 𝑑𝑚 ≥ 2 ∗ t + 1. The codeword of the BCH (n, k, t) codes is generated using data bits (d) and 

generator polynomial (g). Then the polynomial of the codeword c(x) = 𝑐0 + 𝑐1x + 𝑐2x 2 + ⋯ + 𝑐𝑛−1x 𝑛−1 is 

defined as c(x) = d(x) + g(x). The data bits are framed into data polynomial: d(x) = 𝑑0 + 𝑑1x + 𝑑2x 2 +
⋯ +  𝑑𝑘−1x 𝑘−1; where 𝑑𝑖 ∈ 𝐺𝐹(2). The number of parity bits (n-k) is equal to the degree of g(x) or product 

of (m * t). The error correcting codes (ECC) are defined in terms of the Generator Polynomial g(x). The 

generator polynomial for t error bits in the BCH encoding process is represented in (1). The codewords of the 

BCH are encoded using data bits with a linear feedback shift register (LFSR) and are represented in (2). The 

parity bits are calculated using the remainder polynomial rp(x) and are represented using (3) as follows [27]. 

 

g(x) = 1 + x + x4 for t = 1;  

g(x) = 1 + x4 + x6 + x7 + x8 for t = 2;  

g(x) = 1 + x + x2 + x4 + x5 + x8 + x10 for t = 3; (1) 

 

c(x) = rp(x) + 𝑑(𝑥) ∗ 𝑥𝑛−𝑘 (2) 

 

rp(x) =  ∑ 𝑟𝑝𝑖
𝑛−𝑘
𝑖=0 𝑥𝑖 =  𝑥𝑛−𝑘𝑑(𝑥) 𝑚𝑜𝑑 𝑔(𝑥) (3) 

 

Where rpi=0 to (n-k) and data bits d(x)=0 to (k-1) are elements of the GF (24). The LFSR is 

initialized with zero. The data bits d(x) are transmitted during 1 to k clock cycles, and LFSR generates the 

parity bits. The generated parity bits in the LFSR are transmitted in parallel during k+1 to n clock cycles. The 

(n-k) parity bits are appended with data bits (k) to form the encoded information. The 4, 8, and 10 parity bits 
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are generated for SEC, DEC, and TEC during the encoding mechanism. The LFSR generation for BCH (15, 

7, 2) encoder for DEC is represented in Figure 2. 

 

 

 
 

Figure 2. LFSR generation for BCH (15, 7, 2) Encoder 

 

 

2.2.  BCH decoder 

The BCH decoding operation is divided into three steps, namely: i) syndrome calculation, ii) key 

equation solving, and iii) error location finding. The BEC codes for SEC and DEC use only the syndrome 

calculation step for decoding, which provides the error location polynomial coefficient. So key Equation 

solving (step 2) is not considered in both SEC and DEC processes. At the same time, TEC uses all three steps 

to perform the BCH decoding operations. In that, the key Equation solving is a more complex step in the 

decoding process and consumes more resources than the other two steps. The hardware architecture of the 

BCH decoder for SEC and DEC is illustrated in Figure 3. It mainly contains the syndrome generator module 

(SGM), a Chien search module (CSM), an error detection module, a serial-in-serial-out (SISO) register, and a 

control module. The SGM produced the syndromes and was used further to calculate the error location 

polynomial coefficients. The CSM finds the error locations, and the detection module detects the error bits. 

The SISO register shifts the input data bits based on control signal output, and results are XOR'ed with error 

bits to produce the corrected output bits. The control module acts counter with decoding logic. Similarly, the 

hardware architecture of the BCH decoder for TEC is illustrated in Figure 4. The architecture is similar to 

SEC/DEC with the addition of the Berlekamp-Massey algorithm (BMA). The inversion-based BMA is used 

to find the error location polynomial coefficients.  

 

 

 
 

Figure 3. Hardware architecture of the BCH decoder for SEC and DEC 

 

 

 
 

Figure 4. Hardware architecture of the BCH decoder for TEC 

 

 

2.2.1. Syndrome calculation 

The BCH decoder received the codeword c(x) and was used further for syndrome calculation. The 

received codeword c(x) is corrupted with error inputs e(x) and acts as an input to the syndrome generator 

module (SGM). The received polynomial is represented in (4). Where the polynomial of the received 

codeword is r(x) = 𝑟0 + 𝑟1x + 𝑟2x 2 + ⋯ +  𝑟𝑛−1x 𝑛−1 and error input is e(x) = 𝑒0 + 𝑒1x + 𝑒2x 2 + ⋯ +
 𝑒𝑛−1x 𝑛−1. The syndrome (Si) is calculated [28] using (5). The syndrome is calculated for SEC operation is 

represented using (6). 
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𝑟(x) = e(x) + 𝑐(𝑥) (4) 

 

𝑆𝑖 = 𝑟(𝛼𝑖) = 𝑟0 + 𝑟1𝛼𝑖 + 𝑟2𝛼2𝑖 + ⋯ + 𝑟𝑛−1𝛼(𝑛−1)𝑖  ; where (1 ≤ 𝑖 ≤ 2𝑡 − 1) (5) 

 

𝑆1 = 𝑟(𝛼1) = 𝑟0 + 𝑟1𝛼1 + 𝑟2𝛼2 + ⋯ + 𝑟14𝛼14 (6) 

 

Similarly, the syndrome is calculated for DEC operation is represented using in (7). Where the 

primitive element of GF (24) is 'α.' similarly, three syndromes are calculated for TEC. If no error occurred in 

received codeword, then there is no need to calculate the syndromes. So, the calculation of the syndrome is 

influenced more by error polynomial. When syndromes are non-zero, a further step is to calculate the error 

location polynomial's coefficients in the key Equation solving step. 

 

𝑆1 = 𝑟(𝛼1) = 𝑟0 + 𝑟1𝛼1 + 𝑟2𝛼2 + ⋯ + 𝑟14𝛼14  

𝑆3 = 𝑟(𝛼1) = 𝑟0 + 𝑟1𝛼2 + 𝑟2𝛼4 + ⋯ +  𝑟14𝛼28 (7) 

 

2.2.2. Key equation solver 

The second step of the BCH decoding is the coefficient finding of the error location polynomial 

𝜆(𝑥) =  𝜆0 + 𝜆1𝑥 + ⋯ +  𝜆𝑡𝑥𝑡  concerning the syndromes (𝑆𝑖). The relationship between 𝜆𝑖 and syndromes 

are represented using in (8). The error position is calculated using roots of 𝜆(𝑥); The coefficients of the 

𝜆(𝑥) and It is calculated directly without using BMA for SEC and DEC-based BCH codes. The coefficients 

of the 𝜆(𝑥) SEC and DEC are represented using in (9-10) as follows [28]. 

 

∑ 𝑆𝑡+𝑗−𝑖
𝑡
𝑖=0 𝜆𝑖 = 0 (𝑗 =  1,2 … 𝑡) (8) 

 

𝜆(𝑥) = 1 + 𝑆1𝑥  (9) 

 

𝜆(𝑥) = 1 + 𝜆1𝑥 + 𝜆2𝑥2  =  1 + 𝑆1𝑥 + (𝑆1
2 + 𝑆3 ∗ 𝑆1

−1)𝑥2  (10) 

 

The coefficients of the 𝜆(𝑥) for TEC-based BCH codes are calculated using inversion-based 

berlekamp-massey algorithm (BMA) and is represented using in (11) [29]. The number of iterations (r) is the 

same as the number of errors (t). Where discrepancy 𝑑𝑟 =  ∑ 𝑆2𝑟−𝑖+1
𝑡
𝑖=0 𝜆𝑖

𝑟
, Updated discrepancy 𝑑𝑝 =

𝑑𝑟 (when sel = 0 or 1). The selection line (sel) is considered based on the discrepancy 𝑑𝑟 . The updated BMA 

coefficients are represented using in (12).  

 

𝜆𝑟(𝑥) =  𝜆𝑟−1(𝑥) − 𝛽𝑟(𝑥). 𝑑𝑟𝑑𝑝
−1 (𝑟 = 1,2 … 𝑡 − 1) (11) 

 

𝛽𝑟+1(𝑥) = {
𝛽𝑟(𝑥). 𝑥2 𝑖𝑓 (𝑠𝑒𝑙 = 0)

𝜆𝑟−1(𝑥). 𝑥2 𝑖𝑓 (𝑠𝑒𝑙 ≠ 0) 
 (12) 

 

The BMA architecture for Key Equation solver in BCH decoder is modelled as (11) and (12) in 

Figure 5. The architecture uses 𝜆𝑟  and 𝛽𝑟 registers which stores the 𝜆𝑟(𝑥) and 𝛽𝑟(𝑥) coefficients. The 

syndrome register acts a shift register which is multiplied with 𝜆𝑟  register index-wise and later summed to 

generate the discrepancy 𝑑𝑟 . The 𝛽𝑟 register is mulipled with 𝑑𝑟𝑑𝑝
−1

 to generate the correction factor (CF). 

The coefficients of 𝜆𝑟(𝑥) are updated based on CF and 𝜆𝑟  registers. 

 

 

 
 

Figure 5. BMA architecture for key equation solver in BCH decoder 
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2.2.3. Error location finding approach 

The last step of the BCH decoding is to find the error location values, and are reciprocals of the 

roots of the 𝜆(𝑥). The error location values are calculated by substituting the 1, 𝛼, 𝛼2 … 𝛼𝑛−1 into the 𝜆(𝑥) 

using the Chien search approach. The Chien search sum is calculated at every clock cycle and represented 

using in (13) as follows: 

 

𝜆0 + 𝜆1𝛼𝑖 + 𝜆2𝛼2𝑖 + ⋯ + 𝜆𝑡𝛼𝑡𝑖 (𝑖 = 0,1, … 𝑘 − 1) (13) 

 

The received bit (𝑟𝑛−1−𝑖) is corrupted only if 𝜆(𝛼𝑖) = 0; the received bit (𝑟𝑛−𝑖−1) is corrected only 

when the Chien search sum at clock cycle 'i’ equals zero. The hardware architecture of the Chien search 

module (CSM) is represented in Figure 6. The error location polynomials (λ0, λ1, λ2… λt) and primitive 

elements (1, α, α2… αt) are multiplied using a constant multiplier. The individual multiplied outputs are 

added on each clock cycle till ‘t’ iterations. The CSM output was used further to detect the error.  

 

 

 
 

Figure 6. Hardware architecture of the chien search module 

 
 

3. RESULTS AND DISCUSSION 

The results of the BCH-Encoder Decoders (ED) with multi-bit error corrections (SEC, DEC, and 

TEC) are discussed in this section. The BCH codes are designed and implemented using Verilog-HDL on the 

Xilinx ISE environment. The Artix-7 FPGA with XC7A100-TCSG324-3 device is considered for synthesis 

and implementation. The simulation results are analyzed and verified using the Modelsim simulator. The 

Xilinx-Xpower analyzer tool is used for total power generation for BCH designs. The simulation results of 

the BCH ED (15, 7, 2) for DEC are illustrated in Figure 7. The global clock (clk) is activated with an 

asynchronous reset (rst) signal to start the BCH ED operations. Define the 7-bit data input-7f, 79, 4f, and 4C 

in a sequence with delay. The 15-bit error signal is set by corrupting two random bits (Number of 1’s) for 

DEC in the design process. The 7-bit BCH decoder output is obtained after performing the BCH encoding-

decoding operations with a Latency of 40.5 clock cycles. The received and transmitted bits are matched by 

correcting the 2-bit errors. 
 
 

 
 

Figure 7. Simulation results of BCH-ED (15, 7, 2) module for DEC 
 
 

The resource utilization parameters are considered after place and route operation in the Xilinx 

environment. The resource utilization of BCH-ED designs on Artix-7 FPGA is tabulated in Table 1 

concerning the different data bits (k) and error corrections (t). Table 1 contains the realization of area, 

frequency, power and performance metrics for different BCH-ED designs.  

The BCH-ED (15, 11, 1) design utilizes slices of 82, LUTs of 53, operates at 648.315 MHz, and 

consumes 85 mW of total Power. Similarly, The BCH-ED (15, 7, 2) design utilizes slices of 88, LUTs of 73, 

operates at 343.03 MHz, and consumes 86 mW of total Power. The BCH-ED (15, 5, 3) design utilizes slices 

of 96, LUTs of 91, operates at 482.346 MHz, and consumes 87 mW of total Power on Artix-7 FPGA. 

The performance metrics are realized using Latency in terms of clock cycles (CC), Throughput 

(Gbps), and hardware efficiency (Mbps/Slice). The Throughput is calculated using data bits (k), maximum 
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obtained frequency (MHz), and a number of error bits to be corrected (t). So, Throughput = (data bits * 

frequency)/ number of error bits to be corrected. The system or hardware efficiency is calculated using 

obtained Throughput and utilized area (slices). The BCH-ED (15, 11, 1) design obtains the Throughput of 

7.131 Gbps with a Latency of 44.5 CC and an efficiency of 86.96 Mbps/Slice. Similarly, The BCH-ED (15, 

7, 2) design obtains the Throughput of 1.2 Gbps with a Latency of 40.5 CC and an efficiency of 13.63 

Mbps/Slice. The BCH-ED (15, 5, 3) design obtains a Throughput of 0.803 Gbps with a latency of 67.5 CC 

and an efficiency of 8.364 Mbps/Slice. The performance metrics realization of BCH ED on Artix-7 FPGA is 

represented in Figure 8. As the ‘t’ bit increases, the chip area and Power of the BCH designs will also 

increase. The BCH-ED (15, 5, 3) for TEC utilizes more clock cycles and Power due to the advanced 

decoding mechanism. As the ‘t’ bit increases, the Throughput and hardware efficiency will be decreased 

drastically. 

The resource utilization of individual BCH encoders and decoders for SEC, DEC, and TEC are 

tabulated in Table 2, and the graphical representation is in Figure 9. The BCH encoder (15, 11, 1) utilizes 

slices of 10 and operates at 605.18 MHz with a combinational delay of 0.729 ns. The BCH encoder (15, 7, 2) 

utilizes slices of 14 and operates at 866.927 MHz with a delay of 0.756 ns. The BCH encoder (15, 5, 3) 

utilizes slices of 16 and operates at 866.927 MHz with a delay of 0.771 ns. In contrast, the BCH decoder (15, 

11, 1) utilizes slices of 35, LUTs of 18, and operates at 642.756 MHz. Similarly, the BCH decoder (15, 7, 2) 

utilizes slices of 43, LUTs of 41, and operates at 342.454 MHz. The BCH decoder (15, 5, 3) utilizes slices of 

47, LUTs of 52, and operates at 482.346 MHz.  

 

 

Table 1. Resource utilization of BCH-ED on Artix-7 FPGA 
Resources utilized BCH (15,11,1) BCH (15,7,2) BCH (15,5,3) 

Area 

Slice registers 82 88 96 
Slice-LUTs 53 73 91 

LUT FF-Pairs 51 59 70 

Max. frequency (MHz) 648.315 343.03 482.346 
Total power (mW) 85 86 87 

Latency (CC) 44.5 40.5 67.5 

Throughput (Gbps) 7.131 1.2 0.803 

Hardware efficiency (Mbps/Slice) 86.96 13.63 8.364 

 

 

 
 

Figure 8. Performance metrics realization of BCH ED on Artix-7 FPGA 
 
 

Table 2. Resource utilization of BCH encoder and decoders 
Resources (15,11,1) (15,7,2) (15,5,3) 

BCH Encoders 
Slices 10 14 16 

LUTs 10 11 13 

LUT-FFs 9 10 12 
Max. Frequency (MHz) 605.18 866.927 866.927 

Comb. Delay (ns) 0.729 0.756 0.771 

BCH Decoders 
Slices 33 43 47 

LUTs 18 41 52 

LUT-FFs 16 26 33 

Max. Frequency (MHz) 642.756 342.454 482.346 
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Figure 9. Chip area utilization of BCH encoder and decoders on artix-7 FPGA 

 

 

The performance comparison of the proposed BCH ED with existing BCH approaches is tabulated 

in Table 3. The Parameters like the selection of the FPGAs, Chip area (Slices, LUTS and LUT-FFs), and 

Frequency and Throughput are considered for performance comparison of BCH codes. The BCH (255, 131, 

1) with SEC is designed with an inversion-free BMA algorithm [7] on Artix-7 FPGA. The BCH module 

works at 200 MHz and obtains a Throughput of 5.1 Gbps. The proposed BCH –ED with SEC reduces the 

area overhead by 69.4 % concerning the slices, improves the frequency by 69.13 %, and has a Throughput of 

28.48 % than the existing BCH design [7]. The BCH with SEC [8] is implemented on Virtex-5 FPGA. The 

proposed BCH –ED with SEC reduces the area overhead by 19.6 % concerning the slices, improving the 

frequency by 76 % and Throughput by 67.7 % than the existing BCH design [8]. The BCH codes [11], [14] [30] 

are implemented on Kintex-7 FPGA. The proposed BCH –ED with SEC improving the Throughput by 98 % 

, 47.44 % and 75 % than the existing BCH [11], BCH [14] and BCH design [30] respectively on Kintex-7 

FPGA. The BCH with SEC [25] is implemented on Virtex-7 FPGA. The proposed BCH –ED with SEC 

reduces the area overhead by 87.5 % concerning the LUTs, improving the frequency by 58.3 % and 

Throughput by 98% than the existing BCH design [25] on Virtex-7 FPGA. The proposed BCH-ED (15, 11, 

1) uses a simple decoding mechanism. The error location polynomial coefficients are assigned without 

algorithms like BMA to solve the key equations in the BCH decoder with SEC.  

 

 

Table 3. Performance comparison of proposed BCH Code with existing BCH approaches 
Parameters (n, k, t) FPGA Slice LUTs LUT-FFs Frequency (MHz) Throughput (Gbps) 

BCH [7] (255,131,1) Artix-7 268 171 158 200 5.1 
This work (15,11,1) Airtex-7 82 53 51 648.315 7.131 

BCH [8] (15,11,1) Virtex-5 102 77 68 114.771 1.7 

This work (15,11,1) Virtex-5 83 52 48 479.272 5.27 
BCH [11] (15,11,1) Kintex-7 379 316 NA 100 0.115 

BCH [14] (255,191,1) Kintex-7 NA 726 374 434.93 4.63 

BCH [30] NA Kintex-7 NA 1313 394 275 2.2 

This work (15,11,1) Kintex-7 83 53 51 800.288 8.81 

BCH [25] (15,11,1) Virtex -7 NA 426 84 333 0.111 

This work (15,11,1) Virtex -7 83 53 51 800.288 8.81 

 

 

4. CONCLUSION 

This manuscript describes the efficient BCH architecture with an encoding-decoding mechanism for 

multi-bit error correction on the FPGA platform. The BCH module can detect and correct single, double, and 

triple errors in this work. The BCH encoder is designed using LFSR. The BCH decoder with SEC and DEC 

is designed without using the BMA approach to improve the chip area. The BCH decoder with TEC is 

designed using an inversion-based BMA approach. The BMA with an inversion approach reduces the BMA 

calculation time. The resource utilization of individual BCH-encoder and decoder modules with SEC, DEC, 

and TEC are realized in detail. The BCH module with SEC, DEC, and TEC utilizes < 1 % chip area and low-

power consumption on the chip. The Throughput of 7.14 Gbps, 1.2 Gbps, and 0.803 Gbps is obtained for the 

BCH module with SEC, DEC, and TEC, respectively. The BCH module is compared with an existing similar 
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approach with improved chip area (slices and LUTs), frequency, and Throughput. This module will be 

integrated with LDPC codes to construct the forward error correction (FEC) transceiver for suitable, efficient 

data communication. 
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