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ABSTRACT

Anomaly detection in medical imaging is a complex challenge, exacerbated by
limited annotated data. Recent advancements in generative adversarial networks
(GANs) offer potential solutions, yet their effectiveness in medical imaging
remains largely uncharted. We conducted a targeted exploration of the benefits
and constraints associated with GAN-based anomaly detection techniques. Our
investigations encompassed experiments employing eight anomaly detection
methods on three medical imaging datasets representing diverse modalities and
organ/tissue types. These experiments yielded notably diverse results. The
results exhibited significant variability, with metrics spanning a wide range
(area under the curve (AUC): 0.475-0.991; sensitivity: 0.17-0.98; specificity:
0.14-0.97). Furthermore, we offer guidance for implementing anomaly
detection models in medical imaging and anticipate pivotal avenues for future
research. Results unveil varying performances, influenced by factors like
dataset size, anomaly subtlety, and dispersion. Our findings provide insights
into the complex landscape of anomaly detection in medical imaging, offering
recommendations for future research and deployment.
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1. INTRODUCTION
The intersection of artificial intelligence (AI) and medical imaging has led to groundbreaking

advancements in disease diagnosis and ealthcare [1], [2]. Among the various AI methodologies, generative
adversarial networks (GANs) have emerged as a powerful tool for the detection of anomalies [3]–[5]. GANs [6],
which were originally designed for image generation, have demonstrated remarkable potential in capturing
subtle irregularities in medical data, often imperceptible to the human eye [7]. These innovations have the
potential to revolutionize diagnostic practices and enhance patient care [4].

Medical imaging [7], encompassing modalities such as X-rays, magnetic resonance imagines (MRIs),
computed tomography (CT) scans, and more, is pivotal for clinicians in the assessment of various health
conditions. However, the accurate identification of anomalies within these images, especially those of rare
or subtle nature, poses a considerable challenge [8]. Diagnosing medical images demands significant time
and expertise from doctors and highly qualified experts, diverting their attention from other critical medical
tasks that require their specialized skills and attention. Also, traditional methods for anomaly detection have
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limitations, often failing to address the complex and nuanced patterns encountered in medical data.
Fractures pose a dual challenge in clinical practice, being both the most prevalent and time-consuming

pathology to diagnose in medical imaging. These injuries are frequently encountered in emergency scenarios,
demanding swift and precise diagnosis to ensure effective patient care. However, the interpretation of
medical images, such as X-rays or CT scans, to identify fractures can be time-consuming and prone to errors.
Doctors often face a high volume of radiographic images to analyze, leading to potential delays in diagnosis and
treatment initiation. Moreover, the variability in fracture presentations, including subtle fractures or
overlapping structures, further complicates the diagnostic process. Inaccurate or delayed diagnosis of fractures
can have serious consequences for patient care, including prolonged pain and discomfort, impaired mobility,
and increased risk of complications. Therefore, developing efficient and reliable methods for fracture detection
in medical images is essential to improve patient outcomes and optimize healthcare delivery.

GAN is considered as a powerful deep learning family, it has garnered significant interest in several
anomaly detection studies [9], [10] due to its innovative architecture, comprising a generator and a
discriminator. The generator has the ability to produce synthetic data similar to existing data, effectively
addressing the challenge of scarce data. The discriminator aims to distinguish and classify real data from
generated data. Consequently, GANs have emerged as a disruptive force, offering the prospect of improved
accuracy, precision, and early detection of abnormalities. The principle of GANs, involving the interplay
between a generator and discriminator, has opened up new avenues for capturing the intricate relationships
within medical images and distinguishing normal from abnormal data [9]. The generative capabilities of GANs
are not limited to image synthesis but extend to the identification of outliers, making them a valuable asset in
the diagnostic toolbox.

While the potential for GAN-based anomaly detection is evident in some fields [3], this paper delves
into the evolving landscape of GAN-based anomaly detection in medical imaging specifically fracture
detection. We embark on a comprehensive examination of the effectiveness of various GAN-based models
in identifying fractures within diverse medical datasets. Through a systematic exploration of these models, we
aim to provide valuable insights into their strengths and limitations. Furthermore, we explore the pivotal role of
data augmentation and the potential of active learning strategies to enhance anomaly detection in the medical
domain. Our study underscores the potential of GAN-based anomaly detection in the field of medical imaging.
As AI continues to redefine healthcare practices, we envision that the insights presented here will contribute to
the ongoing evolution of anomaly detection, ultimately enhancing diagnostic precision and patient outcomes.

The remainder of the paper is structured as follows: in section 2 provides an overview of related
work in the same domain. Then we present overview of GANs in the third section. Then GAN-based anomaly
detection methods are expounded in section 4. Section 5 comprises the experimental details, materials, datasets
and the evaluation metrics essential for a comprehensive comparative analysis study. Models’ results and the
ensuing discussions are presented. Finally, the paper culminates with the conclusion and findings.

2. RELATED WORKS
In this section, the literature review encompasses two key components. Firstly, it delves into anomaly

detection using GANs. Secondly, it explores various methods for augmenting data in the context of anomaly
detection.

2.1. GANs for anomaly detection
In recent years, GANs have gained significant attention in the field of anomaly detection. Researchers

have explored various approaches and applications of GAN-based anomaly detection, as summarized below.
Early research in this domain primarily used GANs for data generation. Goodfellow [6] introduced GANs
as a framework for generating realistic data samples. This concept was extended to create synthetic data
representing the normal data distribution, with anomalies identified as deviations from these generated samples.

Subsequent works focused on utilizing GANs directly for anomaly detection. Schlegl et al. [11]
introduced AnoGAN, combining GANs with gradient-based optimization to identify anomalies by generating
similar data points. Variations, such as AlphaGAN [12], BiGAN [13] and GAAL [14].

In image anomaly detection, specialized GAN-based techniques have been developed. Akcay
introduced GANomaly [10], and SkipGANomaly [15] for a GAN-based anomaly detection tasks. GANs to
learn image representations for anomaly detection. This approach has been extended to various image data
types, including medical and satellite imagery. Both semi-supervised and unsupervised approaches have been
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explored. Semi-supervised methods use labeled anomaly data during training for improved performance [9]
while unsupervised methods aim to detect anomalies solely based on learned data distributions.

2.2. Data augmentation methods for anomaly detection
Data augmentation emerges as a strategic approach to address the challenge of data imbalance,

particularly evident when there is a notable disparity in class distribution within a dataset, a common
scenario in anomaly detection contexts. To tackle this issue in anomaly detection, Dixit and Verma [16]
employed a conditional variational AE along with a centroide loss function, aiming to overcome limitations
posed by a rare training samples. Furthermore, there is a growing interest in utilizing GANa for data
augmentation [17], [18]. Alzantot et al. [17] introduced a generative model incorporating multiple long short-
term memory (LSTM) networks and a mixture density network to generate synthetic sensory data. However,
their primary objective was to substitute real datasets with syntetic samples to ensure patient privacy instead
of focusing on improving diagnosis performance. In contrast, [18] employed an auxilliary classifier GAN
(ACGAN) with staked convolution leyers to generate one-dimensionall raws signals from mechanical sonsor
data.

In summary, data augmantation methods prove effective in mitigating the challenges posed by data
imbalance and enhancing model classification accuracy. In conclusion, the suggested data augmentation
methods, especially those rooted in GANs [18], enhance detection accuracy. However, it is crucial to
recognize that the training of GANs is recognized for being time-intensive, primarily due to challenges
related to stabillity and convergence, particularly in diverse robotic sonsor scenarios. As a result, our model
incorporates the Waserstein distance with a gradient penalty to improve training stability and adopts an adaptive
update approach to accelerate training convergence [19], [20].

3. GENERATIVE ADVERSARIAL NETWORKS
GAN introduced by Goodfellow [6] is considered as one of the most powerful member of the neural

network family, due to realistic data-generation capacities Figure 1. The principal advantage of GANs is
their ability to generate data. This property has enabled GANs to perform well in anomaly detection, image
generation and image super-resolution, as well as other computer vision tasks.

GAN stands out as a potent member within the neural network category, specifically employed for
unsupervised deep learning. It comprises two adversarial algorithms : generator and a discriminator. The
generator is responsible for generating synthetic samples from the noise, residing in the latent z-space, while
the discriminator is tasked with distinguishing between real and syntetic samples. we can schematize the GAN
architecture as showen in Figure 1.

Figure 1. Architecture of a generative adversarial network

Training the two components introduces two main objectives:
− Discriminator maximizes the probability of asigning the correct label to the real data and the data produced

by the generator.
− Generator minimizes the probability that the discriminator will predict that what it generates is false.
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Learning a GAN takes place in several stages:
− From a random distribution, a noise is transformed to the G generator, which will then generate false pairs

(x, y) with label y = 0.
− Discriminator D receives the false pair produced by generator G and the real pair with label y = 1.
− Each component has a different objective function, so the D discriminator calculates the loss for the false x

and the real x and combines them as the final D loss. On the other hand, the G generator also calculates the
loss of its noise as a G loss.

− Both losses return to their respective networks to learn about the loss and adjust their parameters.
− Optimization algorithm (Grad descent, ADAM, prop RMS, etc.) loops until a satisfactory level of perfor-

mance is reached.
This mode of competition between the two components allows the generator to generate samples

closer to the real data, and the discriminator becomes increasingly strong in distinguishing between false and
true data. The objective function of GAN : as we have defined, the discriminator is a binary clasifier, so it aims
to produce a high probability for real data and a low probability for false data (generator output). The variables
will be defined as follows:
− z Noise vector ;
− G(z) Generator output xf ake

− x Learning sample xreal

− D(x) is the probability that x comes from the original data→ The discriminator output for
− xreal → P(x|xreal)→ {0, 1}
− D(G(z))→ Discriminator output for xf ake → P(y|xf ake)→ {0, 1}

At discriminator level D: D(x)→must be maximized and D(G(z)) must be minimized. At generator
level G: D(G(z)) must be maximized. On the mathematical side:
At the discriminator level D:

DlossReal = log(D(x))

DlossF ake = log(1−D(G(x)))

Dloss = DlossReal +DlossF ake = log(D(x)) + log(1−D(G(x))) (1)

the total cost of the loss is:

1

m

m∑
i=0

log(D(xi)) + log(1−D(G(zi)))

at generator level G:

Gloss = log(1−D(G(z))) = −log(D(G(z))) (2)

the total cost of the loss.

1

m

m∑
i=0

log(1−D(G(zi))) =
1

m

m∑
i=0

−log(D(G(zi)))

The discriminator must classify false and true data, before calculating the final loss, so (1) must be
maximized. For the generator, it must fool the discriminator by producing simulated data similar to the original
data, so: (2) must be minimized D(G(z)) = 1. We move forward to compute the gradients along with their
parameters and propagate them through their respective networks independently. As per Ian’s publication, the
ultimate equation in terms of expectation is presented below. D and G engage in the following adversarial game
with the value function V(G, D):

min
G

max
D

V (D,G) = E(log(D(x))) + E(log(1−D(G(z)))) (3)

where E(log(D(x))) recognize real images and E(log(1−D(G(z)))) recognize generated images better. And
max
G

V (G) optimize G that can fool the discriminator the most.
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4. METHOD: GANS FOR ANOMALY DETECTION
In this section, we present an overview of the GAN models utilized in our study. Our selection of

these models was informed by a thorough review of scientific literature, where we identified them as the most
appropriate algorithms for our research. Factors considered included the diverse characteristics of the datasets
in terms of their types, sizes, and dimensions, as well as the specific objectives of our research task.

4.1. BiGAN
Bidirectional-GAN (BiGAN) [13] enhances generative capabilities by integrating an encoder network,

enabling data generation from a latent space while simultaneously mapping real data to this latent space. This
dual functionality is well-suited for anomaly detection, allowing both synthetic data generation and similarity
measurement between real data and their latent representations. This approach improves accuracy and
robustness in identifying anomalies by detecting data points that deviate from expected latent representations.
Figure 2 illustrate AnoGAN, BiGAN, GANomaly and Skip-GANomaly’s architectures.

Figure 2. Architectures comparison: AnoGAN, BiGAN, GANomaly, Skip-GANomaly

4.2. AnoGAN
AnoGAN, short for ”Anomalous GAN,” [11] Figure 2 represents a pioneering effort in the adaptation

of GANs for anomaly detection. It introduces an innovative approach by combining a GAN framework with
gradient-based optimization. The model’s core idea is to generate synthetic data samples that closely resemble
the normal training data and then assess the dissimilarity between these generated samples and the real data to
detect anomalies. AnoGAN marked a significant milestone in the evolution of GAN-based anomaly detection,
serving as a foundation for subsequent research in the field.

4.3. GANomaly
GANomaly [10] Figure 2 builds upon the foundation laid by AnoGAN by incorporating an

autoencoder network, enhancing the quality of the generated data samples. This hybrid model leverages
the strengths of both GANs and autoencoders, with the GAN generator producing synthetic samples and the
autoencoder quantifying the reconstruction errors. By doing so, GANomaly not only improves the quality of
the generated data but also enhances the accuracy of anomaly detection. This approach has proven effective in
addressing data imbalance and achieving better anomaly classification results.

4.4. Skip-GANomaly
Skip-GANomaly [15] Figure 2 is a groundbreaking anomaly detection model that enhances GANs

with skip connections, improving feature extraction and gradient flow. This design empowers Skip-GANomaly
to handle complex data distributions effectively, making it a robust choice for anomaly detection. While it
delivers high accuracy in anomaly detection, its increased complexity can result in longer training times, and
fine-tuning skip connections can be intricate. Nonetheless, Skip-GANomaly is a valuable tool for detecting
subtle or rare anomalies in various applications, including medical imaging.

4.5. GAAL: generative adversarial active learning for unsupervised outlier detection
Liu et al. [14] introduce an alternative GAN representation, which assesses the posterior probability

of test samples generated by the same generative model to identify an anomaly marker in medical images. In
an unsupervised context, the generator produces anomalies that will be the discriminator input with real data.
This will enable the discriminator to differentiate between normal and abnormal data. The models discussed
above all consider the GAN as a variable extractor or reconstructor.
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4.5.1. SOGAAL
In SO-GAAL [14], as illustrated in Figure 3, the G generator takes noise variables z as input to

generate potential outliers, and the discriminator describes the dividing boundary between the two classes. At
the start of training, the G generator is unable to produce a significant number of potential outliers, allowing the
discriminator to create an approximate boundary between the generated data and the real data. After several
iterations, the generator improves the mechanism for generating potential outliers that occur within or close to
the real data. As a result, the dividing boundary created by the discriminator becomes more precise. In simpler
terms, the generator enhances the accuracy of the discriminator by producing potentially informative outliers,
essentially engaging in an active learning procedure.

Figure 3. SOGAAL’s architecture [14]

4.5.2. MOGAAL
The core concept behind MO-GAAL [14] involves each sub-generator, Gi, proactively learning the

data generation mechanism for a specific subset of real data. MO-GAAL’s performance and optimization
process align with that of SO-GAAL during the initial iterations. However, MO-GAAL manages to sustain its
high accuracy even after surpassing 400 iterations.

4.6. MadGAN
MadGAN [21] is an innovative anomaly detection model that extends the capabilities of GANs for

anomaly identification. What sets MadGAN apart is its unique approach of incorporating multiple generators
within the GAN framework. These generators collaborate to comprehensively capture the underlying data
distribution. By training on both normal and anomalous data, MadGAN becomes adept at effectively
distinguishing between the two. This multi-generator strategy significantly enhances anomaly detection
accuracy, rendering MadGAN a promising solution for challenging anomaly detection tasks, especially when
anomalies are subtle or rare in the dataset. MadGAN’s ingenuity lies in its capacity to harness the diversity
of multiple generators, ultimately improving the performance of anomaly detection and providing a robust and
effective tool for this purpose.

4.7. RandGAN
RandGAN [22] is tailored for anomaly detection, with a specific emphasis on COVID-19

detection. It consists of two key components: a generator and a discriminator as illustrated in Figure 4.
Notably, RandGAN’s architecture incorporates Inception and residual blocks. To enhance its generalizability,
RandGAN adopts a unique approach where images are randomly selected from the training class cohort
and encoded into a lower-dimensional representation space using inception layers. This approach introduces
variability in each iteration of the generator’s training, encompassing both random noise vectors and real
random image representations, making it effective for anomaly detection, particularly in COVID-19
identification.

Advancing medical imaging with GAN-based anomaly detection (Nabila Ounasser)
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Figure 4. RandGAN’s generator architecture [22]

5. EXPERIMENT
his section provides an evaluation of the proposed methodology using three diverse medical datasets,

each characterized by different modalities. Additionally, detailed project code and resources utilized in
this study are comprehensively outlined. They are openly accessible on GitHub at the following link:
https://github.com/nabinabila/GAN- based-Anomaly-Detection.

5.1. Dataset description
In this study, we have gathered three unique medical imaging datasets, each representing a specific

imaging modality and focusing on distinct anatomical structures. The subsequent section offers a succinct
overview of these datasets, accompanied by their summarized characteristics, as presented in Table 1. These
datasets are essential for our research, providing diverse insights into anomaly detection across various medical
imaging modalities.

Table 1. Summary of medical image datasets characteristics
Dataset Speciality Total

images
Number of
normal im-
ages

Number of
abnormal
images

Number of
organs

Number of
classes

Modality

RibFrac Rib fractures de-
tection

660 20 640 1 6 CT Scan

MURA Bone fractures
detection

40,656 8,941 5,715 7 2 Radiograph

xVertSeg Spinal fractures
diagnosis

25 - - 1 2 CT Scan

5.1.1. MURA
The MURA dataset [23] is a highly regarded resource in musculoskeletal imaging, encompassing a

wide range of radiographic images across various anatomical regions, including the upper extremities, lower
extremities, and torso Figure 5. It focuses on diverse musculoskeletal conditions, such as fractures, ligamentous
injuries, and joint abnormalities, with each image meticulously annotated by radiologists. Serving as a valuable
source of ground truth data for training and evaluation, the MURA dataset plays a vital role in advancing the
field by facilitating algorithm development and evaluation tailored to musculoskeletal radiography. Researchers
widely utilize this dataset to enhance diagnostic diagnosis systems, and strengthen computer-assisted fracture
detection methods. Provided by the Stanford Program for Artificial Intelligence in Medicine, the dataset is
accessible at [23].

5.1.2. xVertSeg
The xVertSeg challenge, Figure 6, aims to unite researchers interested in spinal imaging and

analysis, focusing on vertebra segmentation and fracture classification. It provides a standardized clinical
image database comprising 25 CT lumbar spine images with both non-fractured and fractured vertebrae.
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For research and training, 15 images include segmentation masks and fracture classification scores, while 10
images are reserved for testing and evaluation by challenge organizers. It is obtained from the public SpineWeb
repository 6.

Figure 5. MURA dataset Figure 6. xVertSeg dataset

5.1.3. RibFrac
Diagnosing rib fractures [24] is crucial in clinical, forensic, and business settings like insurance claims.

However, automated machine learning approaches for this task are limited. To bridge this gap, a benchmark
dataset Figure 7 has been established. It includes about 5,000 rib fractures detected from 660 CT scans, with
420 scans for training (all with fractures), 80 for validation (20 without fractures), and 160 for evaluation.
Each annotation provides a pixel-level mask for fracture regions and a four-type classification. The intention
behind this challenge is to facilitate and advance the research and practical application of automated rib fracture
detection and diagnosis.

Figure 7. Rib dataset

5.2. Evaluation metrics
Accuracy: accuracy [25] is a straightforward metric for anomaly detection, calculating the ratio of

correctly detected anomalies and normal instances to the total number of instances.

Accuracy =
TruePositives+ TrueNegatives

TotalSamples

Precision: precision assesses the model’s ability to avoid false positives by measuring the proportion of
correctly identified anomalies among predicted anomalies [25].

Precision =
TruePositives

TruePositives+ FalsePositives
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F1-score: harmonizes precision and recall [25], offering a concise summary of a model’s anomaly detection
performance, especially in imbalanced datasets or rare anomaly scenarios.

F1Score = 2 ∗ Precision ∗Recall

Precision+Recall

Detection speed: assesses the speed of anomaly detection in a model [25], crucial in real-time applications like
network intrusion detection or industrial equipment monitoring.
These metrics provide insight into the model’s ability to accurately detect fractures, minimize false positives,
and efficiently process radiographic images.

5.3. Results and discussion
In this section, we conduct a thorough evaluation of GAN models for bone fracture detection in

radiographs and CT scans, with a specific focus on critical evaluation metrics such as accuracy, precision,
F1-score, and detection speed in Table 2. These metrics serve as essential indicators of the models’ effectiveness
and efficiency in identifying fractures, thereby supporting informed clinical decision-making. The models’
performance is influenced by various factors, including architectural choices, layer design, padding, shape,
normalization, activation functions, loss functions, optimizers, batch sizes, learning rates, pooling methods,
and output layers. Achieving optimal results often required multiple rounds of fine-tuning. Some of our models
incorporated computationally intensive layers and modules, resulting in extended training times that surpassed
the capabilities of standard hardware or laptop configurations.

Table 2. Models evaluation
Dataset Model AUC Precision F1 score Detection speed

RibFract

GANomaly 96.2 97.6 95.10 8.450
SkipGANomaly 97.8 98.3 96.70 10.730
BiGAN 88.5 88.9 83.60 13.230
AnoGAN 89.0 89.8 88.80 11.030
SOGAAL 72.1 76.9 73.50 17.450
MOGAAL 79.8 79.9 80.20 8.880
RandGAN 96.2 91.6 97.40 5.760
MadGAN 97.6 96.9 98.00 2.370

MURA

GANomaly 86.1 87.3 88.10 2.987
SkipGANomaly 90.1 90.3 90.70 5.837
BiGAN 83.0 82.5 83.70 4.320
AnoGAN 83.8 84.8 84.20 3.738
SOGAAL 64.2 65.3 65.80 11.980
MOGAAL 70.3 72.4 70.50 8.760
RandGAN 84.2 87.7 84.18 3.291
MadGAN 95.4 95.8 95.30 1.418

xVertSeg

GANomaly 90.7 91.4 90.80 4.570
SkipGANomaly 92.3 93.5 92.90 9.340
BiGAN 85.4 85.7 84.70 11.270
AnoGAN 78.3 79.8 80.70 10.120
SOGAAL 51.0 51.4 53.40 15.110
MOGAAL 63.9 65.1 67.50 7.450
RandGAN 91.3 89.2 90.00 5.870
MadGAN 93.6 94.8 96.30 2.890

Preprocessing emerged as a pivotal element in achieving successful outcomes in our DL tasks.
Following the careful selection of GAN models based on benchmarking, meticulous data preparation
became imperative. The image size emerged as a crucial parameter influencing fracture detection accuracy.
Several treatments were applied to our dataset. Furthermore, in addressing data limitations, we employed data
augmentation techniques to expand the dataset during training. It’s worth noting that we exercised caution
when considering rotation methods, extensive compression, and shear, as these techniques had the potential to
impact bone fracture diagnosis performance. By carefully examining these factors and conducting a series of
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rigorous experiments, our aim was to fine-tune models and improve the precision of our findings. By carefully
examining these factors and conducting a series of rigorous experiments, our aim was to fine-tune models and
improve the precision of our findings.

Table 2 presents the results obtained from our experiments involving eight AD methods across the
three medical image datasets. Evaluation metrics such as precision, recall, F1-score, ROC AUC, and PR
AUC are used to assess performance. One notable observation from the summarized findings in Table 2 is
the considerable variability in the performance of GAN models across different datasets. The effectiveness
of a GAN-based anomaly detection model in capturing the concept of ”normality” from the training data
significantly impacts its performance. This relationship is intricately linked to both the inherent characteristics
of the provided dataset and the specific mechanisms employed by the model for this purpose.

The models exhibited a noteworthy level of accuracy, with their performance ranging from 0.7%
to 0.954%. These outcomes underscore the substantial potential of the GAN-based approach in enhancing
fracture diagnosis within the field of orthopedics. The most favorable results were achieved when working
with the MURA dataset, notable for its extensive training sample size. It is worth noting that GAN-based
methods exhibited nearly consistent performance across all seven different anatomical organs. However,
when examining the RibFrac dataset, we encountered a specific challenge: if the training dataset’s size is not
adequately substantial relative to the GAN-based anomaly detection model’s capacity, the discriminator module
may tend to excessively memorize the training data during the training process. This situation can lead to
overfitting and, in turn, a collapse of the model. Consequently, the quality of the generated images deteriorates,
which is a significant concern, particularly in the field of medical imaging, where data collection is a resource-
intensive and expensive endeavor. One potential solution to tackle this challenge and enhance the performance
and robustness of GANs is data augmentation. Research has shown that data augmentation, when applied to
both real and generated images, can substantially enhance the performance of GANs. The impact may not be
as pronounced if data augmentation is exclusively applied to real images.

In the context of GANs, assessing the quality of generated images from both normal and abnormal
samples is crucial for evaluating the performance of anomaly detection models and explaining their decisions.
MRI typically offers superior anatomical detail and sharper images for soft tissues, while CT scans provide
comprehensive views of cortical bones with enhanced contrast. With smaller training datasets, GANs may
struggle to capture fine details, leading to more generalized representations. For instance, in the xVertSeg
dataset, GANs reconstruct bones effectively due to the region’s high contrast, despite potential limitations in
capturing finer details.

Detailly, in Table 2, it becomes apparent that MadGAN and SkipGANomaly consistently deliver the
highest accuracy scores. The architectural design of these models plays a pivotal role in their
performance. MadGAN’s incorporation of multiple discriminators enhances its ability to detect fractures by
recognizing anomalous patterns in radiographs. On the other hand, Skip-GANomaly’s innovative inclusion of
skip connections within the GAN structure enhances feature extraction and gradient flow, making it robust in
handling complex data distributions, particularly in the field of medical imaging. Subsequently, GANomaly
and RandGAN achieve respectable accuracy scores of 0.861% and 0.842%, respectively. GANomaly leverages
GANs to reconstruct normal data and quantify anomalies through anomaly scores, offering a flexible and
effective approach to anomaly detection in medical imaging. RandGAN introduces randomness using
inception layers, enhancing generalizability and excelling in detecting subtle or rare anomalies, although this
randomness occasionally leads to unpredictability in the synthetic data generation process, contributing to
the margin of error. AnoGAN and BiGAN exhibit relatively lower performance in fracture detection. This
disparity in performance is attributed to their architectural design, which is not inherently optimized for
fracture detection. Furthermore, the high number of convolutional layers in these models leads to extended
prediction times. AnoGAN’s performance is also influenced by the quality of the AE, which sometimes
struggles to capture complex multimodal distributions in medical images. Additionally, training a BiGAN
is computationally intensive and slower in convergence compared to other models.

In the case of the GAAL method, MOGAAL outperforms SOGAAL. Initially, SOGAAL reaches
maximum accuracy (AUC=1) within the first 100 iterations, but its accuracy substantially declines afterward,
leading to the ”Mode collapse problem.” MO-GAAL, consisting of k sub-generators and a discriminator, proves
more efficient than SOGAAL. MO-GAAL mirrors SO-GAAL’s performance and optimization process in the
early iterations but maintains higher accuracy even after exceeding 400 iterations.

It is noteworthy that the runtime of AnoGAN, BiGAN, SOGAAL, MOGAAL, and SkipGANomaly
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may not be suitable for real-time anomaly detection due to their iterative algorithms. While SkipGANomaly’s
performance is commendable, the increased complexity results in longer training times, and fine-tuning the skip
connections can be intricate. In contrast, MadGAN exhibits a shorter processing time, making it a favorable
choice for applications that require speed detection.

Ultimately, the selection of the model should align with the specific requirements of the medical
imaging anomaly detection task. BiGAN and Skip-GANomaly are ideal for complex data distributions, while
RandGAN and MadGAN excel in detecting subtle anomalies. AnoGAN and GANomaly offer flexibility,
MOGAAL and SOGAAL present strong options for active learning in scenarios with limited labeled data.
Factors such as dataset characteristics, and available computational resources should guide the model choice.
If the objective is to develop a platform for detecting fractures across various organs, MadGAN and
SkipGANomaly emerge as robust models to integrate into the framework.

Our research is centered on the development of a computer-aided diagnosis (CAD) system, specifically
designed for the detection of fractures. We evaluate various methodologies, with a particular focus on GAN-
based approaches, to identify the most effective technique for incorporation into the CAD system. This chosen
methodology aims to improve the CAD system’s efficiency and accuracy in detecting fractures within medical
imaging, thereby aiding healthcare professionals in making faster and more precise diagnostic decisions.

By leveraging the capabilities of GAN models, such as their proficiency in generating synthetic data
and identifying anomalies, our CAD system is positioned to significantly enhance the interpretation of medical
images by doctors. The integration of these advanced machine learning techniques into clinical settings is
anticipated to elevate patient care and outcomes, thereby advancing the effectiveness of healthcare services.

Our study stands out due to several key strengths. Technically, GANs are highlighted for their
exceptional capability to create synthetic data that is indistinguishable from real data, which is critical for
improving anomaly detection accuracy in medical imaging [26], [27]. Moreover, our research diverges from
other studies by utilizing a diverse array of datasets rather than depending solely on the MURA dataset [3],
[28]. This approach not only broadens the scope of our findings but also ensures a thorough evaluation of
GAN-based anomaly detection across various medical imaging fields. Additionally, unlike studies that focus
on a single modality [3], [24], [28], our research incorporates multiple imaging modalities, such as radiographs
and CT scans. This multi-modal strategy increases the robustness of our results. Furthermore, by diagnosing
conditions across different organs, our study transcends the limitations of single-task frameworks and adopts a
multi-task approach. This broadens the understanding of GAN-based anomaly detection in medical imaging,
setting the stage for the development of more effective and versatile diagnostic tools in the healthcare sector.

Presently, the primary impediment to integrating AI-based solutions into healthcare systems is their
limited generalization capacity. Anomaly detection [3], [5] grapples with generalization challenges. In the
broader context, ensuring ”trustworthiness” in AI algorithms necessitates considering a multitude of factors.
Crucially, adherence to best practices for AI model development and validation is imperative. These guidelines
encompass critical aspects of study design, data collection, model development, training, testing, and
evaluation. Furthermore, it is essential to distinguish proof-of-concept assessments from more comprehensive
technical and clinical evaluations.

6. CONCLUSION
The use of GANs for anomaly detection shows significant promise and growth. This paper provides

a thorough investigation into the effectiveness of GAN-based approaches for detecting anomalies in medical
images. Through extensive experiments on diverse medical image datasets, we gained valuable insights into
the capabilities and limitations of various GAN-based models for anomaly detection. BiGAN, AnoGAN,
GANomaly, Skip-GANomaly, RandGAN, MadGAN, MOGAAL, and SOGAAL showed varying effectiveness
in detecting anomalies across different organs and imaging modalities. These findings promise to assist
medical professionals in early and accurate diagnosis across various conditions. Harnessing the full
potential of GAN-based anomaly detection in medical imaging faces challenges, notably interpretability and
model opacity. These issues hinder widespread adoption, requiring the integration of XAI methods to enhance
transparency and trust, especially in critical healthcare settings. Our research contributes to the growing body
of knowledge on GAN-based anomaly detection in medical imaging. Our findings highlight both successes
and challenges, indicating a promising path with significant potential to impact medical diagnostics.
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