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 In the context of rapidly advancing smart education systems, the effective 

management and optimization of modern classroom remain critical 

challenges. This research presents a novel methodology leveraging cloud 
and fog computing-based simulations, with a specific focus on the 

implementation of iFogSim. Empirical findings validate the efficacy  

of fog computing in monitoring classrooms, demonstrating significant 

improvements in performance metrics compared to traditional cloud 
computing architectures. Specifically, fog computing ensures remarkably 

low latency, with a mere 7 milliseconds, even with scalable integration 

across multiple classrooms. In contrast, cloud computing infrastructures 

exhibit considerably higher initial latencies, starting at 210 milliseconds, 
which further escalate with the increasing number of monitored classrooms. 

Furthermore, our analysis reveals substantially lower network overhead 

associated with fog computing, measuring at 5,231.8 kilobytes, in sharp 

contrast to the significantly higher network usage of 80,808 kilobytes 
observed with cloud computing solutions. These findings underscore the 

potential of fog computing as a promising solution for efficient and real-time 

management classroom in smart education environments. 
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1. INTRODUCTION 

Swift advancements in technology have found application across diverse aspects of our lives.  

The adoption of technology serves to minimize energy consumption and time inefficiencies associated with 

traditional approaches. Among the cutting-edge technological trends today is the prevalence of the internet of 

things (IoT) [1]. The integration of IoT technology into the learning process has ushered in a transformative 

period in the realm of education, facilitated by the implementation of modern classrooms. Universities and 

colleges are increasingly acknowledging the crucial role of initiatives aimed at enhancing the learning quality 

facilitated by educators and students with the integration of information technology [2]. Digital 

advancements in education [3], [4] serve as guiding principles for contemporary pedagogical methods that 

foster students’ cognitive development [5]. This research focused on developing a novel smart framework 

intended for use in online education. The primary objective of this smart framework was to empower users in 

accessing online learning resources tailored to their individual abilities. Artificial intelligence (AI) was 

utilized to categorize user capabilities. The classification of user abilities through AI aimed to ensure the 

delivery of materials aligned with the user’s proficiency level [6]. Survey data indicate that students are 

https://creativecommons.org/licenses/by-sa/4.0/
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receptive to modern classroom services, partly due to their supportive attitude towards the integration of 

innovative teaching and learning technologies [7]. 

Modern classroom technology stands as an innovative educational platform, acting as a bridge 

between the virtual and physical worlds, thereby fostering hyper learning experiences [8]. This technology 

not only facilitates active participation and collaboration but also empowers students to engage in classroom 

activities utilizing the diverse capabilities of IoT technology [9]. In the pursuit of effective educational 

processes, a platform-centered learning approach has been employed to empower lecturers with control over 

various facets of the educational process, including task management, verification, activity monitoring, and 

student performance assessment [10]. Utilizing cameras to monitor the condition of classrooms has proven to 

be an efficient method for enhancing the quality of education [11]. This approach generates substantial real-

time data, which is subsequently stored in a server database. However, notwithstanding the progress made in 

smart class systems integrating cutting-edge technologies, achieving widespread adoption continues to pose a 

challenge. One potential obstacle to their broad acceptance is the high latency rate and network usage 

intrinsic to existing cloud-based implementations. For example, in [12], participants in a recent study pointed 

out a deficiency in video communication, restricted one-on-one interaction, and problems with sound 

synchronization as further difficulties encountered during synchronous courses. 

We introduce the fog-based smart class architecture (FBSCA) in this paper, which constitutes a 

novel approach to enhance the efficiency and effectiveness of smart class systems. The contributions of this 

research are outlined as follows: 

 A three-tiered architecture is proposed for the smart class system, leveraging fog computing at the 

intermediary tier. This architecture employs intelligent cameras to capture and record specialized events 

within the classroom environment. Notably, intelligent cameras necessitate reduced storage capacity for 

storing recorded footage. Raw video data is processed at the fog node instead of being transmitted to the 

cloud, thereby circumventing the transfer of massive data volumes to the data center. The fog node 

undertakes tasks related to object detection and tracking, while the intelligent cameras autonomously 

handle functions such as classroom detection and camera feedback operations. Additionally, the fog node 

is responsible for tasks including alert generation and result display. 

 The FBSCA takes into account factors such as latency and network usage, aiming to minimize their 

impact. Through careful design considerations, latency and network usage are effectively mitigated. 

 Extensive simulations are conducted to assess the performance of the proposed FBSCA. Experimental 

evaluations reveal a notable reduction in latency and network usage when compared to cloud-based 

implementations of smart class systems. 

The proposed framework is implemented in the iFogSim simulator [13]. We conducted a comparative 

analysis between the proposed fog computing-based smart class and the cloud computing-based smart class. 

This proposed framework demonstrates a significant improvement in several parameters such as latency and 

network utilization. 

 

 

2. METHOD 

2.1.  Fog computing and IoT 

The evolution of the IoT alongside fog computing infrastructure introduces a novel concept known 

as the smart home. Innovations within the smart home sector serve the purpose of regulating the usage of 

electronic devices and implementing security automation through hardware control [14]. The progress in 

communication technology has led to advancements in various aspects. For instance, the internet is now 

employed in the control system of traffic lights, allowing for adjustments based on specific settings and real-

time monitoring. As communication technology continues to evolve, the concept of the IoT has emerged, 

aiming to extend the advantages of internet communication systems to influence other interconnected 

systems [15]. This scientific inquiry elucidates the inherent advantages of fog computing, particularly in its 

capacity to perform processing tasks locally, thereby reducing reliance on distant cloud servers [16]. By 

minimizing latency and mitigating the challenges associated with traditional cloud computing networks, fog 

computing emerges as an effective solution [17]. The investigation not only tackles processing delays but 

also enhances the utilization of network resources, there by fostering a more responsive and efficient network 

environment [18]. 

The research aligns with prevailing trends in fog-based architectures, emphasizing the optimization 

of resource utilization, enhanced security, and cost-effective solutions [19]. Fog computing augments 

network efficiency, resulting in an improved user experience by creating a smarter and more responsive 

network environment [20]. Notably, this approach significantly diminishes overall network traffic, a critical 

advantage in the burgeoning IoT framework [21]. In the IoT landscape, characterized by devices requiring 

real-time data exchange, fog computing emerges as an optimal solution [22]. By curbing network traffic, 
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real-time data can be exchanged swiftly and efficiently, ensuring seamless user experiences [23]. Moreover, 

fog nodes extend beyond mere data storage and processing; they facilitate device interaction within the IoT 

ecosystem, enable real-time data analysis, and facilitate swift decision-making at the network’s edge [24]. 

Far from being mere technological infrastructure, fog nodes serve as pillars supporting the digital civilization 

of the future, driving innovation, and imparting tangible benefits to diverse facets of our lives [25]. 

 

2.2.  Proposed framework 

This article proposes a modern classroom system based on fog computing and compares it with 

cloud computing across several parameters. We carried out an examination on a surveillance system, utilizing 

an application module placement algorithm implemented on both fog node servers and the cloud, considering 

their computing capabilities. In the module placement algorithm to achieve appropriate latency, the complete 

task is divided into several modules. Some tasks involve determining whether the module should be placed 

on a fog node server. Figure 1 illustrates the architecture of a modern classroom in a fog computing 

environment. It is a three-tier architecture, with the top layer containing the cloud data center. The middle 

layer comprises fog nodes. The bottom layer consists of all devices (sensors and actuators) referred to as the 

device layer. Cameras generate video streams and upload them to the fog node server for video analysis.  

The cloud is utilized for storing video recordings for future use. In Figure 1, there are several classrooms, 

each equipped with 2 surveillance cameras and one fog node server. The proposed model is depicted in 

Figure 1. This framework comprises three modules: classroom space detection, object tracking within the 

classroom, and decision-making, all of which are necessary for simulation purposes. 

While cloud computing excels in managing and monitoring data over extended periods, frequent 

reliance on the cloud for data transmission can lead to increased delays and network resource utilization. 

These undesirable consequences can adversely impact the performance of concurrently running programs.  

To mitigate these challenges, an intermediary layer, known as the fog node server, is integrated, substantially 

reducing delays. This reduction is achieved by minimizing the need to send video streams to the cloud for 

frequent analysis and data retrieval related to classroom conditions. Operations performed in the cloud 

typically take longer than in the fog. In the proposed architecture, a two-way communication channel is 

established between the fog node and the cloud. video processing and storage predominantly occur at the fog 

node level, with periodic data transmission to the cloud for long-term storage. This research explores the 

efficiency benefits derived from this fog-to-cloud integration, providing valuable insights for optimizing data 

management and real-time operations in modern educational settings. 

This scientific paper explores the innovative architectural paradigm of fog-based architecture,  

a recent concept that integrates multiple devices such as cameras, Raspberry Pi, fog points, gateways, and a 

centralized cloud server. Within this architectural framework, cameras play a pivotal role by recording the 

classroom environment in real-time. Each time a student occupies a seat upon entering the classroom,  

the associated intelligent cameras record specialized event, which is then processed on a fog node server 

situated at the fog point. Subsequently, a processed video depicting the ‘classroom condition,’ including the 

student, is relayed to the modern classroom management system residing within fog nodes. 

To ensure comprehensive classroom monitoring, two strategically positioned cameras are employed 

in each classroom, record all specialized events from seating positions. The Raspberry Pi plays a vital role in 

this architecture, facilitating seamless communication between the cameras and the fog spots. This paper 

provides an in-depth exploration of the integration and functionality of camera-centric systems within the 

context of fog-based architectures, shedding light on the mechanisms driving efficient classroom monitoring 

solutions. This scientific paper investigates the integration of fog-based architecture with cloud computing in 

the context of modern educational environments. Within this framework, fog nodes establish connections 

with a central cloud server, transmitting data acquired through strategic placement of fog points within each 

faculty. Each faculty incorporates at least one fog point into the modern class management system, enabling 

the processing, and transmission. The cloud-based modern classroom management system serves as a 

repository for this information, acting as a reference point for future analysis and goal-setting. 

This scientific paper presents an advanced fog-centric classroom architecture for each faculty, 

depicted in Figure 1. Figure 2 shows fog node configuration, while Figure 2(a) showcases a single classroom 

scenario with strategically placed fog nodes enabling efficient data transmission to the cloud for long-term 

storage. In contrast, Figure 2(b) demonstrates a multi-classroom configuration, where each faculty is 

equipped with its own fog spot, interconnected with a centralized cloud server. This setting ensures stable 

network delay and fog node consumption while potentially increasing the time and network resources 

required for data upload and retrieval from the central cloud server. 
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Figure 1. Modern class using fog node and cameras 
 

 

 
(a) 

 

 
(b) 

 

Figure 2. Fog node configuration (a) single class room and (b) multiple class room 
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Exploring the components of the proposed architecture reveals key insights. The configuration of 

fog nodes in a classroom setting is crucial for optimizing data handling and processing speed. Each node is 

strategically integrated to support real-time educational applications and analytics. Delving into the 

components of the proposed architecture. 

 

2.2.1. Cameras 

The fundamental component of contemporary classroom systems is the camera layer, which is 

pivotal in capturing visual data for the comparative analysis between fog and cloud infrastructure networks. 

This layer utilizes high-definition cameras to record video data. The resulting audio is subsequently 

transmitted to a fog node server for detailed analysis. 

 

2.2.2. Fog nodes 

Fog nodes act as intermediaries between cameras and cloud servers, processing video streams data 

using mid-range servers. Each class is assigned a unique identifier (e.g., “U_301” for “Class 301” on the 3rd 

floor of room 301). The modern class management system on the fog node updates data regularly, providing 

real-time information. Fog nodes serve as temporary data storage before transmission to the cloud, 

facilitating real-time processing and inspection at the edge. 

 

2.2.3. Cloud layers 

In this design, the cloud primarily stores image data after it is no longer needed by fog nodes. 

Gateways enable seamless data exchange between fog and cloud, ensuring data availability and update 

continuity. Fog nodes collaborate, allocating resources and exchanging critical information, enabling robust 

data storage and management. Notably, fog nodes have the capacity to store data independently, ensuring 

data persistence during gateway downtime. This comprehensive fog-cloud integrated architecture presents a 

sophisticated solution for managing modern classrooms, offering real-time data processing, robust storage, 

and enhanced reliability in diverse educational environments. 

 

 

3. RESULTS AND DISCUSSION 

The simulation carried out requires the use of a high-definition smart camera for video collection 

purposes at the classroom location. These videos are then sent to the fog point, where they are analyzed to 

classrooms status. After this analysis, the videos are then processed on modern class management systems 

located in the fog and in the cloud using a Wi-Fi connection. The establishment of relationships between fog 

nodes and cloud servers is facilitated by gateways. In our simulations, we use iFogSim, a custom tool 

designed specifically for IoT devices. Delay and network usage were evaluated using iFogSim, with variables 

set to represent classrooms and the number of fog spots, where each classroom has 2 cameras.  

The experimental configuration consisted of four different classrooms. Initially, 2 cameras were installed in 

each classroom area to take videos. A primary cloud device is implemented, where fog nodes establish a 

connection through a gateway. It is worth noting that each particular region in each faculty comes with its 

own unique fog node. The camera is emulated as a sensor, in line with specified policies, due to its smart 

features and its integration with the Raspberry Pi.  

The number of classes was systematically increased step by step to assess the impact on various 

scenarios. To evaluate the impact of the number of class areas on network delay and utilization in fog nodes, 

we introduce more areas into a given configuration. Figure 2 presents the topology designed for the purpose 

of assessing fog-centric scenarios. The topology considered consists of one fog node, where each node is 

interconnected with at least two cameras located in 1 class area. The main objective of this research is to 

assess network delay and utilization in the iFogSim framework. Additionally, fog points transmit revised 

class status to the modern class system. As the number of classrooms increases, the distribution of fog spots 

also increases. Increasing the number of class areas placed in a given fog node results in a simultaneous 

increase in network delay and utilization. One of the significant benefits of this configuration is the reduced 

computing load on the cloud infrastructure, as most of the computing is done in the fog nodes. However,  

the act of connecting the camera, then the Raspberry Pi, and to the cloud server via the gateway results in 

increased delays and increased network bandwidth usage. Cloud server, gateway, and fog server 

configuration parameters during fog-centric simulations use standards provided by iFogSim. The parameters 

include factors such as processing capability, random access memory (RAM), uplink and downlink 

bandwidth, performance level, processing speed to cost ratio, and power consumption metrics. In the context 

of performance evaluation in a cloud-based environment, it is proven that many cameras are interconnected 

with cloud servers through the use of Raspberry Pi and gateways. The camera sends classroom visual data to 

a remote server located in the cloud, where the received videos are then analyzed and processed. 
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This section presents the results derived from the proposed fog-centric architecture, focusing 

specifically on metrics pertaining to network delays and utilization. Comparative analyses are conducted with 

findings obtained through cloud-based methodologies. The experimental outcomes underscore the superior 

performance of the fog-centric approach, particularly in terms of reduced delays and minimized network 

utilization when contrasted with cloud-based models. Table 1 provides a comprehensive breakdown of 

network delay and usage statistics observed within the fog environment, juxtaposed with results obtained 

from the cloud-based framework. 

 

 

Table 1. Simulation results for the modern class architecture leveraging fog and cloud technologies 
Number of classes Fog delay (ms) Cloud delay (ms) Fog network usage (kb) Cloud network usage (kb) 

1 7.038571 210.1974192 5,231.8 80,808.4 

2 7.038571 210.3836752 11,687.6 161,521.8 

3 7.038571 210.5791015 16,409.4 242,235.2 

4 7.038571 210.7766248 22,865.2 322,948.6 

5 7.038571 210.26 29,525 403,662 

6 7.038571 211.1738768 32,818.8 484,375.4 

7 7.038571 211.3728351 38,866.6 564,888.8 

8 7.038571 211.5721701 4,2058.4 645,402.2 

9 7.038571 211.9709328 46,678.2 725,915.6 

10 7.038571 211.9710134 5,6704 806,429 

11 7.038571 212.1707695 63,057.8 886,942.4 

12 7.038571 212.3701597 64,719.6 967,455.8 

13 7.038571 247.795416 74,541.4 1,009,269.2 

14 7.038571 310.8803952 75,591.2 1,012,382.6 

15 7.038571 365.5686994 83,679 1,015,496 

16 7.038571 413.3915468 91,868.8 1,018,609.4 

17 7.038571 455.6011463 93,836.6 1,021,722.8 

25 7.038571 671.7672221 136,507 1,046,630 

33 7.038571 783.0507958 180,503.4 1,071,537.2 

41 7.038571 851.0084865 228,885.8 1,096,444.4 

50 7.038571 901.3414827 272,812 1,124,465 

 

 

Network delay stands as a critical metric, especially in environments requiring instantaneous and 

high-end performance. One of the pivotal advantages of fog computing lies in its capacity to minimize 

frequent cloud access. This paradigm mandates the execution of computing at the network edge, ensuring 

rapid responses to client devices and significant reductions in delays. The computational analysis of visual 

representations from specific locations is transmitted to the fog spot, strategically positioned at the network’s 

edge. Each fog spot is meticulously dedicated to a particular area. The delay computing mechanism is 

encapsulated in (1). 
 

𝐷𝑒𝑙𝑎𝑦 = 𝛼 + µ (1) 
 

Delay is represented by an equation involving two primary variables: 

α: the time taken to fetch the video from the camera to the modern class management system. 

μ: the time expended to transmit the video from the modern class management system to the user. 

Network utilization emerges as a significant concern, especially amidst substantial increases in data 

volume directed towards cloud servers. In such scenarios, cloud resource utilization becomes pivotal. 

Persistent spikes in network traffic targeting cloud servers invariably lead to escalated network utilization, 

consequently slowing down data transmission speeds. To address this challenge, a well-structured 

configuration allocates specific fog nodes to each faculty, exclusively catering to requests originating from 

designated regions. This setup yields two primary outcomes: diminished network utilization and accelerated 

transmission speeds for the remaining data traffic. The results highlight the efficiency and potential of fog-

centric architectures in optimizing network performance and data transmission in diverse real-time 

applications. 

This research offers experimental observations regarding the effectiveness of modern fog-centric 

classroom architecture, exemplified in Figure 1. Table 1 provides a detailed analysis of diverse scenarios 

encompassing fog and cloud configurations, elucidating the setup variations involving cameras connected to 

fog points and cloud servers. The research utilizes a single fog node in its experimentation, examining 

scenarios ranging from 1 to 50 classrooms, with each point connected to 2 cameras. The observed trend of 

escalating classroom size remains consistent across all situations, emphasizing the scalability of the proposed 

architecture. The evaluation, conducted using iFogSim, focuses on assessing network delay, and utilization data. 
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In the fog-centric configuration, local processing capabilities of fog points enable specific video 

handling in designated areas. Conversely, cloud servers engage in processing videos from disparate regions, 

leading to increased delays as the number of cameras augments. Comparative analysis presented in  

Figures 3 shows comparative analysis of fog vs cloud in a smart classroom network, Figures 3(a) and 3(b) 

illustrates a pronounced correlation between the upsurge in classroom numbers and amplified cloud delays, 

underscoring the advantage of fog-centric architecture in mitigating delays. 

Additionally, Figure 3(b) visualizes the network utilization results in the fog scenario, demonstrating 

an increase corresponding to the addition of fog points and cameras. This observed increment aligns with the 

growing prevalence of cloud computing, as data tuples are consolidated in a single cloud server, amplifying 

network requirements. Each fog node, in contrast, exclusively handles data originating from its designated 

camera, exemplifying the efficacy of fog-centric architectures in optimizing data processing and 

transmission. 

This research explored how using cameras to monitor classrooms can improve education quality. 

Previous studies have examined how this generates real-time data stored in cloud servers, but haven’t focused 

on its impact on latency and network usage, which are issues with current cloud-based systems.  

We discovered that a fog-centric approach, emphasizing local processing, reduces delays and network usage.  

Our method significantly favors this fog-centric approach over cloud-based models. 

Our findings suggest that leveraging fog and edge devices doesn’t compromise performance, unlike 

existing systems which struggle with simultaneous student-instructor interaction [26]. Our proposed method 

benefits from a streaming server ensuring uninterrupted communication. The results of our study underscore 

the potential of fog computing in revolutionizing classroom monitoring systems. By shifting processing tasks 

closer to the data source, our approach offers a more efficient and reliable solution compared to traditional 

cloud-based models. However, challenges remain, including the need for further refinement in object 

detection and tracking algorithms. Future research should focus on addressing these limitations to fully 

realize the potential of fog-centric classroom monitoring systems. 

 

 

  
(a) (b) 

 

Figure 3. Comparative analysis, (a) end to end latency between fog cloud and (b) network usage between fog 

and cloud 

 

 

4. CONCLUSION 

Fog computing has emerged as a pivotal element in contemporary technology landscapes, 

particularly for applications necessitating swift responses. The proliferation of data-generating devices has 

accentuated the demand for rapid, efficient processing. Our proposed modern fog-based classroom design 

employs computer vision techniques, thereby enhancing resource allocation within classrooms. The empirical 

evidence provided in this research unequivocally showcases the superiority of fog-based strategies compared 

to cloud-based alternatives, notably in terms of diminished delays and reduced network requirements. 

However, a notable limitation of our methodology lies in its dependence on cameras for classroom 

monitoring, potentially eliciting privacy concerns, especially concerning data storage on cloud platforms. 

Data privacy is a paramount concern in cloud-based data storage, notwithstanding the fact that the majority 

of storage and processing activities occur in nearby fog nodes. Future research endeavors may explore the 

integration of robust encryption algorithms as a viable solution to address these concerns effectively. 

Furthermore, as we delve into larger class areas, the implementation of efficient load balancing mechanisms 

at fog points becomes indispensable to sustain optimal performance. Our forthcoming efforts will be devoted 
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to exploring strategies for load balancing at fog points and determining the ideal number of classrooms, 

ensuring the seamless integration of fog computing solutions in real-time classroom monitoring applications. 
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