
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 37, No. 1, January 2025, pp. 241∼249
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v37.i1.pp241-249 ❒ 241

A comparative study of pre-trained models for image
feature extraction in weather image classification using

orange data mining
Pafan Doungpaisan1, Peerapol Khunarsa2

1Department of Information Technology, Faculty of Industrial Technology and Management,
King Mongkut’s University of Technology North Bangkok, Bangsue, Thailand

2Department of Data Science, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, Thailand

Article Info

Article history:

Received Jan 28, 2024
Revised Aug 20, 2024
Accepted Aug 31, 2024

Keywords:

Deep learning
Image classification
Image embeddings
Inception-V3
Machine learning
Neural networks
Weather classification

ABSTRACT

This paper presents a detailed comparative analysis of pre-trained models for
feature extraction in the domain of weather image classification. Utilizing the
orange data mining toolkit, we investigated the effectiveness of six prominent
pre-trained models-InceptionV3, SqueezeNet, VGG-16, VGG-19, painter, and
DeepLoc-in accurately classifying weather phenomena images. Among these
models, InceptionV3, in conjunction with neural networks, emerged as the
most effective, achieving a classification accuracy (CA) of 96.1%. Painter and
SqueezeNet also showed strong performance, with accuracies of 95.1% and
86.7%, respectively, although they were surpassed by InceptionV3. VGG-16
and VGG-19 provided moderate accuracy, while DeepLoc underperformed sig-
nificantly with a maximum accuracy of 56%. Neural networks consistently out-
performed other classifiers across all models. This study highlights the critical
importance of selecting appropriate pre-trained models to enhance the accuracy
and reliability of weather image classification systems.
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1. INTRODUCTION
Weather image classification involves automatically categorizing images based on depicted weather

conditions, such as sunny, cloudy, rainy, snowy, foggy, and stormy [1]. This task necessitates the development
of sophisticated machine learning models, particularly convolutional neural networks (CNNs), that can accu-
rately recognize and classify diverse weather patterns. The challenge lies in designing algorithms that reliably
analyze weather-related imagery, providing precise labels essential for improving weather forecasting accuracy,
which is crucial for disaster preparedness and response [2]-[4].

Accurate weather image classification is vital across various sectors. In transportation, it enhances
road safety by enabling vehicles to detect and adapt to changing weather conditions [5], [6]. In agriculture, it
improves crop management and irrigation through effective monitoring of weather conditions [7], [8]. Environ-
mental monitoring agencies rely on weather classification for tracking air quality and other ecological factors,
contributing to environmental protection [9], [10]. Additionally, it is crucial for assessing the impact of weather
on critical infrastructure, ensuring safety and durability [11], [12].
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Advanced techniques are employed to address the challenges of weather image classification. CNNs
are widely adopted due to their proficiency in learning hierarchical features from images [2], [3]. Transfer
learning, where pre-trained CNN models are fine-tuned [3], [4], and ensemble learning methods, which com-
bine multiple models, further enhance classification performance [5], [6]. Recurrent neural networks (RNNs)
are pivotal in capturing temporal dependencies in sequences of weather images [13], [14]. Data augmenta-
tion techniques, such as rotations and translations, help address limited training data by generating additional
samples [7], [8]. Spatial-temporal models, attention mechanisms, and the fusion of data from diverse sources,
including satellite imagery and radar data, contribute to more accurate predictions [15]-[19]. Semi-supervised
and weakly supervised learning approaches leverage both labeled and unlabeled data, especially in scenarios
with limited labeled data [20]-[22]. The selection of suitable techniques depends on specific problem require-
ments, dataset characteristics, computational resources, and desired accuracy. Continuous exploration of novel
methodologies and engagement with the latest research developments are essential for enhancing the efficacy
of weather image classification systems, driving innovation, and advancing the field.

2. RELATED WORK
The classification and prediction of weather conditions based on image data has become an increas-

ingly important field of research, driven by advancements in deep learning and computer vision. Accurate
weather classification not only improves forecasting accuracy but also enhances various applications, such as
autonomous driving, environmental monitoring, and disaster management. Traditional methods of weather pre-
diction rely on complex meteorological models, satellite data, and human expertise, which are often resource-
intensive and not always practical for real-time applications [23]. In contrast, recent developments in machine
learning, particularly CNNs, have demonstrated significant potential for automating and improving weather
classification tasks [23], [24].

Deep learning techniques, especially CNNs, have been widely used in image classification tasks,
and their application in weather image classification has gained substantial attention. For instance, Cao and
Yang [23] developed a CNN-based model for weather classification that outperformed several state-of-the-
art methods, achieving a remarkable 98% accuracy. Their approach utilized data augmentation techniques to
overcome the challenges posed by imbalanced datasets and varying weather conditions. Similarly, Li et al. [24]
introduced a vision transformer (ViT)-based model for multi-class weather image classification, demonstrating
the advantages of using transformer architectures over traditional CNNs. Their model achieved an impressive
accuracy of 92.83% across 14 different weather classes [25].

Moreover, hybrid models that combine CNNs with other machine learning techniques, such as support
vector machines (SVMs), have been explored to enhance classification performance. For example, a study
by Triva et al. [26] developed a CNN-SVM hybrid model that improved classification accuracy (CA) for
various weather conditions, particularly in adverse environments like fog and rain. This hybrid approach proved
effective in applications such as autonomous driving, where precise weather condition recognition is critical
for safety [26].

Beyond CNNs, the use of cloud image classification for weather prediction has also emerged as a
promising approach. Cao and Yang [23] developed a mobile application that utilizes CNNs to classify cloud
images into four categories: rain clouds, fair-weather clouds, tornado clouds, and fog. Their system demon-
strated high accuracy in identifying rain and fog, though further improvements were needed for tornado pre-
diction [23]. This development reflects the growing interest in portable, real-time weather prediction tools that
leverage modern smartphone capabilities.

Other researchers have also focused on the challenges of weather classification in specific domains,
such as vehicle environments. In one such study, a CNN model was designed to classify weather conditions
from front-view camera images in autonomous vehicles. The model achieved high performance, with an F1
measure of 98.3%, demonstrating its potential for real-world applications in autonomous driving [26]. Overall,
the integration of deep learning techniques, particularly CNNs, with weather image data has revolutionized the
field of weather classification.

This study focuses on evaluating pre-trained models for feature extraction in weather image classi-
fication using orange data mining. Models such as InceptionV3, VGG16, VGG19, SqueezeNet, painter, and
DeepLoc were assessed, with InceptionV3 consistently outperforming others across various classifiers, under-
scoring its effectiveness for this task.
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3. MATERIAL AND METHODS
This study uses the weather phenomenon image database (WEAPD), developed by Xiao et al. [27], as

the main dataset. WEAPD consists of 6,877 images, which are organized into 11 different categories as shown
in Figure 1, including (a) dew, (b) fog/smoke, (c) frost, (d) glaze, (e) hail, (f) lightning, (g) rain, (h) rainbow,
(i) frost, (j) sandstorm, and (k) snow, which are classified based on their visual shapes and color attributes.
All example images are presented in Figure 1. To facilitate comprehensive model evaluation, K-fold cross
validation is applied, which divides the dataset into several subsets for training and validation.

Weather image classification was performed using the orange data mining toolkit, an open-source
platform developed in Python at the University of Ljubljana, Slovenia [28]. Orange supports various machine
learning tasks, including regression, classification, and clustering, making it ideal for educational use and
prototyping.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 1. The representative examples of 11 WEAPD; (a) dew, (b) fog/smog, (c) frost, (d) glaze, (e) hail,
(f) lightning, (g) rain, (h) rainbow, (i) rime, (j) sandstorm, and (k) snow

In this study, pre-trained models such as InceptionV3, VGG16, VGG19, SqueezeNet, painter, and
DeepLoc were employed for image embedding to generate vector representations of each image. These em-
beddings were then used to train classifiers including neural networks, K-nearest neighbors (KNN), and SVM.
Transfer learning techniques were applied, leveraging limited data from fruits and vegetables to enhance model
accuracy and reduce data requirements [29]-[34]. Model performance was assessed using orange’s test and
score widget, which calculated metrics like accuracy, precision, recall, and F1-score. The use of K-fold cross
validation enhanced the robustness of model evaluation by providing comprehensive metrics such as CA, AUC,
and F1-score across different test folds. Detailed experiment parameters are presented in Table 1.

Table 1. Evaluating the classification of weather phenomenon image using InceptionV3 as a feature
Model Algorithm parameter

Neural network Neural in hidden layer = 100
Activation = ReLu
Solver = Adam
Regularization, α = 0.0001
Maximal number of iterations = 200

KNN Euclidean distance, Manhattan distance, Chebyshev distance
Number of neighbors = 5

SVM (Linear) Kernel = Linear, Polynomial, RBF, Sigmoid
Optimization parameters (Numerical tolerance = 0.0010)
Optimization parameters (Iteration limit = 100)
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4. RESULTS AND DISCUSSION
A systematic empirical evaluation of multiple classification approaches was conducted for weather

image categorization using the WEAPD [27]. The pre-trained InceptionV3 model played a pivotal role in our
approach, serving as a feature extractor within the Orange toolkit, generating vector representations for each
image, and enhancing the feature space for classification. Among the various machine learning classifiers
applied, neural networks demonstrated superior performance in weather image classification. The integration
of InceptionV3 embeddings with neural networks resulted in high accuracy and precision, with the neural
network model excelling in capturing complex patterns within the dataset.

The experimental results, summarized in Table 2, indicate that the combination of InceptionV3 for
feature extraction and classifiers such as neural networks provides a successful strategy for high-performance
weather image classification. This approach enabled efficient feature extraction and demonstrated the potential
of advanced classifiers to achieve accurate categorization of weather phenomena with a high level of precision.
Specifically, the neural network model with InceptionV3 embeddings achieved an AUC of 0.971, a CA of
96.1%, an F1-score of 0.778, and a matthews correlation coefficient (MCC) of 0.757, indicating a strong and
balanced classification performance.

Other classifiers, such as KNN with various distance metrics, and SVM with different kernels, showed
varying levels of performance. KNN models, while achieving respectable results, exhibited lower precision and
recall balance compared to neural networks. The SVM models, particularly with Polynomial and RBF kernels,
performed well, but still fell short of the neural network model in terms of overall accuracy and precision.

Overall, the neural network model with InceptionV3 embeddings proved to be the most effective
approach for weather image classification, surpassing other classifiers in terms of both accuracy and precision.
This study emphasizes the effectiveness of combining pre-trained models for feature extraction with advanced
classifiers, highlighting the critical importance of selecting appropriate models and metrics for achieving high-
performance image classification

Table 2. Performance metrics for weather classification using InceptionV3 embeddings as a feature
Model Area under Classification F1-score Precision Recall MCC

an ROC curve accuracy
Neural network 0.971 0.961 0.778 0.792 0.765 0.757

KNN (Euclidean distance) 0.889 0.940 0.603 0.757 0.501 0.586
KNN (Manhattan distance) 0.886 0.941 0.603 0.773 0.494 0.590
KNN (Chebyshev distance) 0.841 0.930 0.503 0.702 0.391 0.491

SVM (Linear) 0.962 0.952 0.723 0.762 0.688 0.698
SVM (Polynomial) 0.966 0.958 0.769 0.761 0.778 0.746

SVM (RBF) 0.968 0.959 0.773 0.773 0.773 0.750
SVM (Sigmoid) 0.949 0.934 0.685 0.600 0.797 0.657

4.1. Comparison with other image embeddings
In our experiments, InceptionV3 was used for image embedding feature extraction. We performed

a detailed comparative analysis with other methods, including SqueezeNet, VGG-16, VGG-19, painters, and
DeepLoc, to evaluate the effectiveness of InceptionV3 relative to these alternative techniques. This comparison
aimed to assess the reliability and robustness of InceptionV3 in the context of image feature extraction. By
examining these different methods, we aimed to better understand the performance and advantages of Incep-
tionV3 compared to other feature extraction methodologies. The architecture is illustrated in Figure 2.

4.1.1. Experimental results using SqueezeNet embeddings
The experimental results, as presented in Table 3, provide a thorough evaluation of various classifiers

utilizing SqueezeNet embeddings for weather classification. Among the tested models, the neural network
classifier emerged as the optimal choice, achieving the highest accuracy of 86.7% across key evaluation metrics,
including AUC, F1-score, precision, recall, and MCC. This highlights the strong synergy between the neural
network architecture and the features extracted by SqueezeNet.

KNN classifiers, despite using different distance metrics, achieved similar performance, with accura-
cies around 77-78%. However, these models were outperformed by the neural network classifier, indicating
that while KNNs performed reasonably well, they were less effective in leveraging SqueezeNet embeddings.

SVM classifiers demonstrated varied performance depending on the kernel used. Polynomial and
RBF kernels were the most competitive, achieving an accuracy of 78%, comparable to the best KNN models.
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In contrast, the linear kernel lagged behind with an accuracy of 71.4%, and the Sigmoid kernel performed
poorly, with a significantly lower accuracy of 37.4%. This suggests that the Sigmoid kernel is not well-suited
for SqueezeNet features in the context of weather classification.

Overall, the neural network classifier was the most effective model when paired with SqueezeNet
embeddings, with SVM classifiers using polynomial or RBF kernels being the closest competitors. KNN
models, while performing adequately, did not match the accuracy of neural networks or the top-performing
SVM kernels. The Sigmoid SVM kernel notably underperformed, reinforcing the importance of selecting
appropriate kernels for optimal classification results.

Figure 2. Structure for utilizing orange data mining in image classification

Table 3. Evaluating the classification of weather phenomenon image using SqueezeNet embeddings as
features

Model Area under Classification F1-score Precision Recall MCC
an ROC curve accuracy

Neural network 0.983 0.847 0.846 0.846 0.847 0.829
KNN (Euclidean distance ) 0.947 0.777 0.771 0.776 0.777 0.752
KNN (Manhattan distance ) 0.946 0.778 0.772 0.777 0.778 0.752
KNN (Chebyshev distance) 0.938 0.752 0.743 0.751 0.752 0.724

SVM (Linear) 0.967 0.714 0.714 0.719 0.714 0.683
SVM (Polynomial) 0.977 0.783 0.780 0.781 0.783 0.759

SVM (RBF) 0.977 0.785 0.782 0.786 0.785 0.761
SVM (Sigmoid) 0.870 0.374 0.397 0.500 0.374 0.319

4.1.2. Experimental results using VGG-16 embeddings
The experimental results in Table 4 present a comprehensive analysis of classifier performance when

paired with VGG-16 embeddings for weather classification. Among the models tested, the neural network clas-
sifier emerged as the top performer, achieving the highest accuracy of 84% across key metrics, including AUC,
F1-score, precision, recall, and MCC. This indicates a strong synergy between the neural network architecture
and VGG-16 features, demonstrating the effectiveness of this combination for accurate weather classification.

KNN classifiers, while performing reasonably well with accuracies in the range of 74-75%, were
outperformed by the neural network model. The variations in distance metrics had a marginal impact on KNN
performance, but these models did not match the accuracy levels of neural networks when utilizing VGG-16
embeddings.

SVM classifiers exhibited varied performance based on the kernel used. Polynomial and RBF kernels
were the most competitive among SVMs, achieving an accuracy of around 76%, comparable to the best KNN
models. However, the linear kernel showed lower accuracy at 71.2%, and the Sigmoid kernel significantly
underperformed, with an accuracy of 57.8%, indicating its unsuitability for VGG-16 features in this task.

Overall, the neural network classifier proved to be the most effective model when paired with VGG-
16 embeddings, with SVMs using polynomial or RBF kernels as the closest competitors. KNN classifiers, al-
though performing adequately, did not achieve the same level of accuracy as neural networks or top-performing
SVM kernels. The Sigmoid SVM kernel once again demonstrated significant weaknesses in this context.
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Table 4. Evaluating the classification of weather phenomenon image using VGG-16 embeddings as features
Model Area under Classification F1-score Precision Recall MCC

an ROC curve accuracy
Neural network 0.982 0.840 0.840 0.841 0.840 0.822

KNN (Euclidean distance ) 0.942 0.754 0.749 0.763 0.754 0.727
KNN (Manhattan distance ) 0.941 0.747 0.741 0.756 0.747 0.719
KNN (Chebyshev distance) 0.939 0.734 0.728 0.745 0.734 0.705

SVM (Linear) 0.969 0.712 0.712 0.718 0.712 0.680
SVM (Polynomial) 0.975 0.764 0.763 0.776 0.764 0.739

SVM (RBF) 0.974 0.760 0.761 0.771 0.760 0.734
SVM (Sigmoid) 0.939 0.578 0.573 0.649 0.578 0.545

4.1.3. Experimental results using VGG-19 embeddings
The experimental results in Table 5 show that the neural network classifier performed best with VGG-

19 embeddings, making it the most effective choice for weather classification. The neural network achieved
an accuracy of 82% and excelled across all evaluation metrics, including AUC, F1-score, precision, recall, and
MCC.

KNN classifiers, regardless of the distance metric used, showed moderate performance with accuracies
ranging from 71% to 74%. The choice of distance metric had little impact on the KNN results. SVM classifiers
with polynomial, RBF, and linear kernels achieved similar accuracies around 71%, close to those of the KNN
classifiers. However, the Sigmoid kernel underperformed significantly, with an accuracy of 55%, indicating it
was not well-suited for use with VGG-19 features.

In summary, the neural network was the top-performing model with VGG-19 embeddings, achieving
an accuracy of 82%. SVM and KNN classifiers had lower performance, with accuracies in the low 70% range,
while the Sigmoid kernel was notably less effective in this context.

Table 5. Evaluating the classification of weather phenomenon image using VGG-19 embeddings as features
Model Area under Classification F1-score Precision Recall MCC

an ROC curve accuracy
Neural network 0.978 0.820 0.820 0.822 0.820 0.799
KNN Euclidean 0.939 0.744 0.738 0.750 0.744 0.715
KNN Manhattan 0.928 0.788 0.732 0.746 0.738 0.708
KNN Chebyshev 0.929 0.714 0.708 0.722 0.714 0.682

SVM linear 0.967 0.714 0.712 0.717 0.714 0.682
SVM Polynomial 0.968 0.711 0.703 0.750 0.711 0.686

SVM RBF 0.968 0.712 0.705 0.743 0.712 0.686
SVM Sigmoid 0.924 0.550 0.547 0.635 0.550 0.514

4.1.4. Experimental results using painter embeddings
The experimental results in Table 6 demonstrate that the neural network classifier achieved the best

performance with painter embeddings for weather classification, with an accuracy of 95.1% and high scores
across all evaluation metrics, including AUC, F1-score, precision, recall, and MCC. This suggests a strong
compatibility between the neural network and painter embeddings for accurate weather classification.

KNN classifiers also performed well, with the Manhattan distance metric achieving an accuracy of
93.8%, slightly higher than the Euclidean metric at 93.6%. The Chebyshev metric was less effective, resulting
in an accuracy of 92.4. SVM classifiers performed competitively with painter embeddings, with polynomial,
RBF, and linear kernels achieving accuracies between 94% and 95%. The polynomial kernel achieved the
highest accuracy among the SVM classifiers at 94.6%, while the Sigmoid kernel had a lower accuracy of 90%,
indicating it was less suitable for this task.

In summary, neural networks, SVM kernels, and KNN classifiers all achieved strong performance
above 90% accuracy with painter embeddings. The neural network classifier was the top performer with an
accuracy of 95.1%, highlighting the importance of selecting suitable classifiers and distance metrics based on
the data’s characteristics.

4.1.5. Experimental results using DeepLoc embeddings
The experimental results in Table 7 show that DeepLoc embeddings were less effective for weather

classification compared to other embedding methods. The neural network classifier performed the best with
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Table 6. Evaluating the classification of weather phenomenon image using painter embeddings as features
Model Area under Classification F1-score Precision Recall MCC

an ROC curve accuracy
Neural network 0.961 0.951 0.724 0.744 0.704 0.697
KNN Euclidean 0.887 0.936 0.579 0.720 0.485 0.559
KNN Manhattan 0.886 0.938 0.590 0.741 0.494 0.570
KNN Chebyshev 0.829 0.924 0.450 0.647 0.345 0.436

SVM linear 0.949 0.943 0.675 0.690 0.660 0.644
SVM Polynomial 0.951 0.946 0.694 0.715 0.675 0.665

SVM RBF 0.953 0.944 0.692 0.687 0.697 0.661
SVM Sigmoid 0.930 0.900 0.585 0.468 0.781 0.555

DeepLoc embeddings, achieving an accuracy of 56%, but this was still significantly lower than accuracies
obtained with other embeddings, which ranged from 86% to 95%. KNN classifiers showed even lower accuracy,
around 47%, regardless of the distance metric used. SVM classifiers performed poorly as well, with accuracies
ranging from 22.8% to 47.4%, depending on the kernel. These results suggest that DeepLoc embeddings are
not well-suited for weather classification tasks.

Table 7. Evaluating the classification of weather phenomenon image using DeepLoc embeddings as features
Model Area under Classification F1-score Precision Recall MCC

an ROC curve accuracy
Neural network 0.886 0.560 0.559 0.559 0.560 0.508
KNN Euclidean 0.816 0.474 0.468 0.473 0.474 0.413
KNN Manhattan 0.817 0.477 0.470 0.477 0.477 0.417
KNN Chebyshev 0.800 0.439 0.432 0.437 0.439 0.374

SVM Linear 0.816 0.474 0.468 0.473 0.474 0.413
SVM Polynomial 0.789 0.272 0.231 0.360 0.272 0.222

SVM RBF 0.843 0.379 0.367 0.413 0.379 0.319
SVM Sigmoid 0.746 0.228 0.183 0.262 0.228 0.154

4.2. Comparative analysis of experimental findings across various image embeddings
The experimental outcomes, as detailed in Tables 2-7, indicate that the neural network classifier con-

sistently surpassed other classifiers across all tested image embeddings, establishing it as the most effective
approach for weather image classification. The highest accuracy was observed with the InceptionV3 embed-
ding, achieving 96.1%, closely followed by the painter embedding at 95.1%. The SqueezeNet, VGG-16, and
VGG-19 models yielded accuracies of 86.7%, 84%, and 82%, respectively. SVM with polynomial or RBF
kernels emerged as the most competitive alternatives to neural networks, outperforming the KNN classifiers.
Although KNN achieved reasonably good accuracy, its performance was inferior to that of SVM and neural
networks. Notably, the DeepLoc embedding was an outlier, with the neural network classifier attaining only
56% accuracy, signifying that this embedding was less suitable for weather classification across all classifiers.

Within the KNN variants, the choice of distance metric generally did not exert a significant influence
on performance, although in certain instances, the Manhattan distance provided a marginal improvement over
Euclidean distance. The Sigmoid kernel for SVM consistently underperformed across all embeddings, with
accuracy dropping as low as 22.8%. In summary, neural networks emerged as the most effective classifier
across all image embeddings, with InceptionV3 achieving the highest accuracy at 96.1%. While SVM and
KNN classifiers produced competitive results, they were generally outperformed by neural networks. The
DeepLoc embedding was found to be unsuitable for this classification task across all evaluated classifiers.

5. CONCLUSION
In this study, we compared several pre-trained models for feature extraction in weather image classi-

fication using the orange data mining toolkit. The models evaluated were InceptionV3, SqueezeNet, VGG-16,
VGG-19, painter, and DeepLoc, which were tested with neural networks, KNN, and SVM using different ker-
nels. Our findings show that InceptionV3 was the most effective model, achieving the highest CA of 96.1%
when paired with neural networks. It also excelled in other evaluation metrics such as AUC, F1-score, pre-
cision, recall, and MCC. Painter and SqueezeNet also performed well, with accuracies of 95.1% and 86.7%
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respectively, while VGG-16 and VGG-19 were less effective with accuracies of 84% and 82%. DeepLoc sig-
nificantly lagged behind, with only a 56% accuracy.

Additionally, neural networks were consistently superior to KNN and SVM classifiers across all mod-
els. Among SVM kernels, Polynomial and RBF kernels were competitive, but still not as effective as neural
networks. The Sigmoid kernel underperformed, emphasizing its unsuitability for this task. This analysis high-
lights the importance of choosing the right pre-trained model for enhancing CA in weather image classification
tasks. The optimal performance achieved by InceptionV3 and neural networks suggests this combination as the
best approach for similar machine learning applications.
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