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Abstract
This paper studies the globally stochastic synchronization problem for a class of neutral-type chaotic

neural networks with Markovian jumping parameters under impulsive perturbations. By virtue of drive-
response concept and time-delay feedback control techniques, by using the Lyapunov functional method,
Jensen integral inequality, a novel reciprocal convex lemma and the free-weight matrix method, a novel
sufficient condition is derived to ensure the asymptotic synchronization of two identical Markovian jumping
chaotic delayed neural networks with impulsive perturbation. The proposed results, which do not require
the differentiability and monotonicity of the activation functions, can be easily checked via Matlab software.
Finally, a numerical example with their simulations is provided to illustrate the effectiveness of the presented
synchronization scheme.
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1. Introduction
The problem of synchronization arises in numerous practical problems in physics, ecol-

ogy, and physiology. In 1990, the pioneering work of Pecora and Carroll [6] brought attention to
the importance of control and synchronization of chaotic systems. In their seminal paper, Pec-
ora and Carrol proposed the drive-response concept for constructing synchronization of coupled
chaotic systems. The idea is to use the output of the driving system to control the response sys-
tem so that they oscillate in a synchronization manner. Since then, chaos synchronization has
been widely investigated with a view to its applications in secure communication systems [8].

Markovian jump system, introduced by Krasovskii and Lidskii in 1961, is a special class
of hybrid systems. In a Markovian jump system, the random jump of parameters is governed by a
Markov process which takes values in a finite set. Thus, Markov jump systems can describe some
physical systems with abrupt variations very well, e.g., solar thermal central receivers, economic
systems [5], and so on. Recently, a lot of research results on the stability analysis for delayed
neural networks with Markovian jumping parameters have been reported, see, for instance, [8].

Impulsive effect is likely to exist in a wide variety of evolutionary processes in which states
are changed abruptly at certain moments of time in the fields such as medicine and biology, eco-
nomics, electronics and telecommunications. Neural networks are often subject to impulsive per-
turbation that in turn affect dynamical behaviors of systems. Therefore, it is necessary to consider
both the impulsive effect and delay effect when investigating the stability of neural networks. So
far, several interesting results have been reported that have focused on the impulsive effect of
delayed neural networks [1, 7].

Motivated by aforementioned discussion, this paper investigates the globally stochastic
synchronization of a class of neutral-type chaotic neural networks with Markovian jumping pa-
rameters under impulsive perturbations. The mixed delays consists of discrete and distributed
time-varying delays. By virtue of drive-response concept and time-delay feedback control tech-
niques, by using the Lyapunov functional method, Jensen integral inequality, a novel reciprocal
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convex lemma and the free-weight matrix method, a novel sufficient condition is derived to as-
sure the stochastic synchronization of two identical Markovian jumping chaotic delayed neural
networks with impulsive perturbation. The proposed results, which do not require the differen-
tiability and monotonicity of the activation functions, can be easily checked via Matlab software.
Finally, a numerical example with their simulations is provided to illustrate the effectiveness of the
presented synchronization scheme.

Notations: Throughout this paper, WT ,W−1 denote the transpose and the inverse of
a square matrix W, respectively. W > 0(< 0) denotes a positive (negative) definite symmetric
matrix, I denotes the identity matrix with compatible dimension, the symbol “*” denotes a block
that is readily inferred by symmetry. The shorthand col{M1,M2, ...,Mk} denotes a column matrix
with the matrices M1,M2, ...,Mk. sym(A) is defined as A + AT , diag{·} stands for a diagonal
or block-diagonal matrix. For τ > 0, C

(
[−τ, 0];Rn

)
denotes the family of continuous functions φ

from [−τ, 0] to Rn with the norm ||φ|| = sup−τ≤s≤0 |φ(s)|. Moreover, let (Ω,F,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions and E{·} representing the
mathematical expectation. Denote by CpF0

(
[−τ, 0];Rn

)
the family of all bounded, F0-measurable,

C
(
[−τ, 0];Rn

)
-valued random variables ξ = {ξ(s) : −τ ≤ s ≤ 0} such that sup−τ≤s≤0 E|ξ(s)|p <

∞. || · || stands for the Euclidean norm; Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2. Problem description and preliminaries
In this paper, we consider the following neutral-type chaotic neural networks with Marko-

vian jumping parameters under impulsive perturbations
ẋ(t) = −C(η(t))x(t) +A(η(t))g(x(t)) +B(η(t))g(x(t− τ(t, η(t)))

+D(η(t))
∫ t
t−σ(t)

g(x(s))ds+ E(η(t))ẋ(t− ρ(t)) + J,

x(t) = ϕ1(t), s ∈ [−τ̂ , 0] ,

(1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn is the state vector associated with n neurons, real con-
stant matrices C(η(t)), A(η(t)), B(η(t)), D(η(t)), E(η(t)) are the interconnection matrices repre-
senting the weight coefficients of the neurons. g(x(t)) =

(
g1(x1(t)), g2(x2(t)), ..., gn(xn(t))

)T ∈ Rn
denotes the neural activation function. The bounded functions τ(t), ρ(t) represent unknown time-
varying delays with 0 ≤ τ(t, η(t)) ≤ τ̄(η(t)) ≤ τ̄ , τ̇(t, η(t)) ≤ τ ′(η(t)) ≤ τ ′ < 1, 0 ≤ σ(t) ≤ σ̄, σ̇(t) ≤
σ′ < 1, 0 ≤ ρ(t) ≤ ρ̄, ρ̇(t) ≤ ρ′ < 1, where τ̄ , σ̄, ρ̄ are positive scalars, τ̂ = max{τ̄ , σ̄, ρ̄}. J is an
external input, ϕ1(t) is a real-valued initial vector function that is continuous on the interval [−τ̂ , 0].
{η(t), t ≥ 0} is a homogeneous, finite-state Markovian process with right continuous trajectories
and taking values in finite setN = {1, 2, ..., N} based on given probability space (Ω,F,P) with and
the initial model η0. Let Π = [πij ]N×N denote the transition rate matrix with transition probability:

P(η(t+ δ) = j|η(t) = i) =

{
πijδ + o(δ), i 6= j,

1 + πiiδ + o(δ), i = j,

where δ > 0, limδ→0+
o(δ)
δ = 0 and πij is the transition rate from mode i to mode j satisfying

πij ≥ 0 for i 6= j with

πii = −
N∑

j=1,j 6=i

πij , i, j ∈ N .

For convenience, each possible value of η(t) is denoted by ι(ι ∈ N ) in the sequel. Then
we have

Aι = A(η(t)), Bι = B(η(t)), Cι = C(η(t)), Dι = D(η(t)), Eι = E(η(t)).

Throughout this paper, we make the following assumptions:
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Assumption 1. Each neural activation function gj(·)(j = 1, 2, ..., n) is bounded, differen-
tiable and satisfies the following condition

δ−j ≤
gj(ξ)− gj(ζ)

ξ − ζ
≤ δ+

j , ∀ ξ, ζ ∈ R, ξ 6= ζ,

where δ−j , δ
+
j are known real constants.

For simplicity, we denote ∆1 = diag
{
δ−1 , δ

−
2 , · · · , δ−n

}
, ∆2 = diag

{
δ+
1 , δ

+
2 , · · · , δ+

n

}
, ∆3 =

diag
{
δ−1 δ

+
1 , δ

−
2 δ

+
2 , · · · , δ−n δ+

n } , ∆4 = 1
2diag

{
δ−1 + δ+

1 , δ
−
2 + δ+

2 , · · · , δ−n + δ+
n

}
.

The system (1) is considered as a drive system, the corresponding response system of
(1) is given in the following form:

ẏ(t) = −Cιy(t) +Aιg(y(t)) +Bιg(y(t− τι(t))
+Dι

∫ t
t−σ(t)

g(y(s))ds+ Eιẏ(t− ρ(t)) + J + uι(t), t > 0, t 6= tk,

∆y(tk) = y(tk)− y(t−k ) = −Γk
{
y(t−k )− x(t−k )

}
, k ∈ Z+,

y(t) = ϕ2(t), s ∈ [−τ̂ , 0] ,

(2)

where y(t) = (y1(t), y2(t), ..., yn(t))T ∈ Rn is the state vector associated with n neurons, uι(t) =
(uι1(t), ..., uιn(t))T ∈ Rn is the state feedback controller given to achieve the exponential synchro-
nization between the drive and response systems, Γk is a known matrix, ϕ2(t) is a real-valued
continuous vector function on the interval [−τ̂ , 0].

In order to investigate the synchronization for the chaotic delayed neural networks with
impulsive perturbation, ej(t) = yj(t) − xj(t) is defined as the synchronization error, where xj(t)
and yj(t) are the i-th state variables of drive system (1) and response system (2), respectively.
Therefore, the error dynamical system between (1) and (2) is given as follows:

ė(t) = −Cιe(t) +Aιf(e(t)) +Bιf(e(t− τι(t))
+Dι

∫ t
t−σ(t)

f(e(s))ds+ Eιė(t− ρ(t)) + uι(t), t > 0, t 6= tk,

∆e(tk) = e(tk)− e(t−k ) = −Γke(t
−
k ), k ∈ Z+,

e(t) = ϕ(t)
.
= ϕ2(t)− ϕ1(t), t ∈ [−τ̂ , 0],

(3)

where e(t) = (e1(t), e2(t), ..., en(t))T , fj(ej(t)) = gj(yj(t))− gj(xj(t)).
In this paper, the control input vector with state feedback is designed as follows:

uι(t) = Y1ιe(t) + Y2ιe(t− τι(t)). (4)

Therefore, it follows from [2] that system (3) admits a trivial solution e(t) = 0.

The development of the work in this paper requires the following lemmas.
Lemma 1 (see [4]). Let z(t) ∈ Rn has continuous derived function ż(t) on interval [a, a+

ω], then for any n× n−matrix Θ > 0, the following inequality holds:

−
∫ a+ω

a

żT (s)Θż(s)ds ≤− 2

ω

(
1

ω

∫ a+ω

a

z(s)ds− z(a)

)T
Θ

(
1

ω

∫ a+ω

a

z(s)ds− z(a)

)
.

Lemma 2 (see [9]). Assume that ν, µ, ϑ, ϑ̄ are real scalars such that ν ≤ 1, ν +µ ≤ 4, and
ϑ < ϑ̄. Let ϑ : R → (ϑ, ϑ̄) be a real function. Then for any non-negative scalars a, b, the following
inequality holds

− a

ϑ(t)− ϑ
− b

ϑ̄− ϑ(t)
≤ 1

ϑ̄− ϑ
max{−νa− µb,−µa− νb}.
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3. Main result
Now, we begin to state our result for error system (3) with input (4).
Theorem 1. Assume that Assumption 1 hold, the drive system (1) and the response

system (2) with (4) can be stochastically asymptotically synchronized in mean square if there exist
positive definite matrices Pι, Qι, Rι, Sι, Zι, Ui(i = 1, ..., 7), positive diagonal matrices Λ,Γ, Tι,Wι,
real matrices X1ι, X2ι of appropriate dimensions such that

N∑
j=1

πιjQj < U1,

N∑
j=1

πιjRj < U2, (5)

τ̄ι

N∑
j=1

πιjSj < U3, τ̄ι

N∑
j=1

πιj τ̄jSι < U4, (6)[
Pι (I − Γk)Pι
∗ Pι

]
≥ 0, k ∈ Z+, (7)

(I − Γk)TPι(I − Γk) ≤ Pl, l 6= ι, l, ι ∈ N , (8)

Φι − 4($8 −$2)TSι($8 −$2) < 0, (9)

Φι − 4($9 −$3)TSι($9 −$3) < 0, (10)

where

Φι = [ Φij ]9×9 , $i =
[

0(i−1)n×n I 0(10−i)n×n
]
, i = 1, 2, ..., 10,

with

Φ1,1 =Qι + τ̄U1 + U6 −Wι∆3 +
∑N

j=1
πιjPj , Φ1,4 = Wι∆4,

Φ1,7 =Pι −∆1Λ + ∆2Γ− CιZι +X1ι, Φ2,2 = −(1− τ ′ι)Qι − Tι∆3 − 2Sι +
∑N

j=1
π̄ιj τ̄jQι,

Φ2,5 =Tι∆4, Φ2,7 = X2ι, Φ2,8 = 2Sι, Φ3,3 = −U6 − 2Sι, Φ3,9 = 2Sι,

Φ4,4 =Rι + τ̄U2 + σ̄2U5 −Wι, Φ4,7 = Λ− Γ +ATι Zι, Φ5,5 = −(1− τ ′ι)Rι − Tι +
∑N

j=1
π̄ιj τ̄jRι,

Φ5,7 =BTι Zι, Φ6,6 = −U5, Φ6,7 = DT
ι Zι, Φ7,7 = τ̄2

ι Sι +
τ̄2

2
U3 + τ̄U4 + U7 − 2Zι,

Φ7,10 =ZιEι, Φ8,8 = −2Sι, Φ9,9 = −2Sι, Φ10,10 = −(1− ρ′)U7, π̄ιj = max{πιj , 0},

and the control gain matrices Y1ι and Y2ι in (4) are given as Y T1ι = X1ιZ
−1
ι , Y T2ι = X2ιZ

−1
ι .

Proof. Construct a Lyapunov-Krasovskii functional in the following form

Vι(t, e(t)) = e(t)TPιe(t) +

3∑
i=1

Viι(t, e(t)),

where

V1ι(t, e(t)) =2

n∑
j=1

∫ ei(t)

0

{
λi
[
fi(s)− δ−i s

]
+ γi

[
δ+
i s− fi(s)

] }
ds

+

∫ t

t−τι(t)

[
e(s)TQιe(s) + f(e(s))TRιf(e(s))

]
ds+ τ̄ι

∫ t

t−τ̄ι

∫ t

θ

ė(s)TSιė(s)dsdθ,

V2ι(t, e(t)) =

∫ t

t−τ̄

∫ t

θ

[
e(s)TU1e(s) + f(e(s))TU2f(e(s))

]
dsdθ

+

∫ t

t−τ̄

∫ t

θ

∫ t

η

ė(s)TU3ė(s)dsdηdθ +

∫ t

t−τ̄

∫ t

θ

ė(s)TU4ė(s)dsdθ,

V3ι(t, e(t)) =σ̄

∫ t

t−σ(t)

∫ t

θ

f(e(s))TU5f(e(s))dsdθ +

∫ t

t−τ̄
e(s)TU6e(s)ds+

∫ t

t−ρ(t)
ė(s)TU6ė(s)ds.
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Denoting eι = e(t − τι(t)), calculating the weak infinitesimal operator along the system
(3) gives

LVι(t, e(t)) =2e(t)TPιė(t) +

N∑
j=1

πιje(t)
TPje(t) +

3∑
i=1

LViι(t, e(t)), (11)

where

LV1ι(t, e(t)) =2ė(t)T
{

Λ [f(e(t))−∆1e(t)] + Γ [∆2e(t)− f(e(t))]
}

+ e(t)TQιe(t)

+ f(e(t))TRιf(e(t))− (1− τ̇ι(t))
[
eTι Qιeι + f(eι)

TRιf(eι)
]

+

N∑
j=1

πιj

∫ t

t−τι(t)

[
e(s)TQje(s) + f(e(s))TRjf(e(s))

]
ds

+

N∑
j=1

πιjτj(t)
[
eTι Qιeι + f(eι)

TRιf(eι)
]

+ τ̄2
ι ė(t)

TSιė(t)− τ̄ι
∫ t

t−τ̄ι
ė(s)TSιė(s)ds

+ τ̄ι

N∑
j=1

πιj

∫ t

t−τ̄ι

∫ t

θ

ė(s)TSιė(s)dsdθ + τ̄ι

N∑
j=1

πιj τ̄j

∫ t

t−τ̄ι
ė(s)TSιė(s)ds, (12)

LV2ι(t, e(t)) =τ̄
[
e(t)TU1e(t) + f(e(t))TU2f(e(t))

]
−
∫ t

t−τ̄

[
e(s)TU1e(s) + f(e(s))TU2f(e(s))

]
ds

+
τ̄2

2
ė(t)TU3ė(t)−

∫ t

t−τ̄

∫ t

θ

ė(s)TU3ė(s)dsdθ + τ̄ ė(t)TU4ė(t)−
∫ t

t−τ̄
ė(s)TU4ė(s)ds,

(13)

LV3ι(t, e(t)) =σ̄σ(t)f(e(t))TU5f(e(t))− σ̄
∫ t

t−σ(t)

f(e(s))TU5f(e(s))ds+ e(t)TU6e(t)

− e(t− τ̄)TU6e(t− τ̄) + ė(t)TU7ė(t)− (1− ρ̇(t))ė(t− ρ(t))TU4ė(t− ρ(t)). (14)

For 0 < τι(t) ≤ τ̄ι, define ζ1(t) = 1
τι(t)

∫ t
t−τι(t) e(s)ds. It is easy to see that ζ1(t) → e(t)

while τι(t) → 0. Therefore we can define ζ1(t) = e(t) when τι(t) = 0. Similarly, for 0 ≤ τι(t) < τ̄ι,

define ζ2(t) = 1
τ̄ι−τι(t)

∫ t−τι(t)
t−τ̄ι e(s)ds; when τι(t) = τ̄ι, define ζ2(t) = e(t− τ̄ι).

For 0 < τι(t) < τ̄ι, utilizing Lemma 1 gives

−
∫ t

t−τ̄ι
ė(s)TSιė(s)ds

=−
∫ t

t−τι(t)
ė(s)TSιė(s)ds−

∫ t−τι(t)

t−τ̄ι
ė(s)TSιė(s)ds ≤ −

2

τι(t)
Ξ1 −

2

τ̄ι − τι(t)
Ξ2, (15)

where Ξ1 = [ζ1(t)− eι]T Sι [ζ1(t)− eι] , Ξ2 = [ζ2(t)− e(t− τ̄ι)]T Sι [ζ2(t)− e(t− τ̄ι)] .
It is easy to see that inequality (15) holds for any t > 0 with τι(t) = 0 or τι(t) = τ̄ι.
From inequality (15) and Lemma 2, we get the following inequality

−τ̄ι
∫ t

t−τ̄ι
ė(s)TSιė(s)ds ≤2 max

{
− Ξ1 − 3Ξ2, −3Ξ1 − Ξ2

}
. (16)

Furthermore, from the Jensen inequality we have

−σ̄
∫ t

t−σ(t)

f(e(s))TU5f(e(s))ds ≤ −

(∫ t

t−σ(t)

f(e(s))ds

)T
U5

(∫ t

t−σ(t)

f(e(s))ds

)
. (17)
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Moreover, based on (H2), the following matrix inequalities hold for any positive diagonal matrices
Lι, Tι

0 ≤− e(t)TWι∆3e(t) + 2e(t)TWι∆4f(e(t))− f(e(t))TWιf(e(t)), (18)

0 ≤− eTι Tι∆3eι + 2eTι Tι∆4f(eι)− f(eι)
TTιf(eι). (19)

Furthermore, the following equality is true for any real matrix Zι

0 = 2ė(t)TZTι

[
− ė(t)− Cιe(t) +Aιf(e(t)) +Bιf(e(t− τι(t))

+Dι

∫ t

t−σ(t)

f(e(s))ds+ Eιė(t− ρ(t)) + Y1ιe(t) + Y2ιe(t− τι(t))
]
. (20)

Denoting ZιY1ι = XT
1ι, ZιY2ι = XT

2ι, substituting (12)-(20) into (11) and taking mathemati-
cal expectation gives

dEVι(t, e(t))
dt

= Eζ(t)TΦιζ(t), t ∈ [tk−1, tk), k ∈ Z+. (21)

where

ζ(t) =col

{
e(t), eι, e(t− τ̄), f(e(t)), f(eι),

∫ t

t−σ(t)

f(e(s))ds, ė(t), ζ1(t), ζ2(t), ė(t− ρ(t))

}
,

Φι =Φι + 4 max
{
−($8 −$2)TSι($8 −$2), −($9 −$3)TSι($9 −$3)

}
.

We deduce that inequality Φι < 0 is equivalent to inequalities (9) and (10) respectively.
Therefore, if inequalities (9) and (10) hold, then from (21) we derive that

dEVι(t, e(t))
dt

< 0, ∀ t ∈ [tk−1, tk), k ∈ Z+. (22)

When t = tk, k ∈ Z+, from the condition (H5), we have

Vι(tk, e(tk)) =Vι(t
−
k , e(t

−
k )) + e(t−k )T

[
(I − Γk)TPι(I − Γk)− Pι

]
e(t−k ). (23)

On the other hand, it follows from (7) that(
I 0
0 P−1

ι

)(
Pι (I − Γk)Pι
∗ Pι

)(
I 0
0 P−1

ι

)
≥ 0,

that is (
Pι I − Γk
∗ P−1

ι

)
≥ 0.

From the Schur complement, we have

Pι − (I − Γk)TPι(I − Γk) ≥ 0. (24)

Combining (23) with (24), we can deduce that

Vι(tk, e(tk)) ≤ Vι(t−k , e(t
−
k )), k ∈ Z+.

By simple calculation, it can be verified from (8) that

Vι(tk, e(tk)) ≤ Vl(t−k , e(t
−
k )). (25)

For t ∈ [tk−1, tk], k ∈ Z+, in view of (22) and (25), we have

Vι(tk, e(tk)) ≤ Vl(t−k , e(t
−
k )) ≤ Vl(tk−1, e(tk−1)). (26)

By the similar proof and Mathematical induction, we can derive that (26) is true for any
m, l, η(0) = η0 ∈ N , k ∈ Z+

Vι(tk, e(tk)) ≤ Vl(t−k , e(t
−
k )) ≤ Vl(tk−1, e(tk−1)) ≤ · · · ≤ Vη0(t0, e(t0)).

Therefore, the system (4) is asymptotically stable in mean square. This completes the
proof of Theorem 1.
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4. Illustrative example
In this section, we give a example to demonstrate the effectiveness of our theoretical

results.
Example 1. Consider system (1) with n = N = 2 and the following parameters:

A1 =

[
1.9 −0.18
4.2 3.0

]
, A2 =

[
2.0 −0.23
4.1 3.1

]
, B1 =

[
−1.8 −0.3
0.4 −2.7

]
,

B2 =

[
−1.9 −0.4
0.3 −2.8

]
, C1 =

[
2.7 0
0 2.2

]
, C2 =

[
2.8 0
0 2.1

]
,

D1 = 2I, D2 =

[
1.8 0
0 2.1

]
, E1 = 0.25I, E2 =

[
0.5 −0.4
−1 0.6

]
, J = 0.

The activation functions are g1(x) = g2(x) = tanh(x), and the time-varying delays are
τ1(t) = 0.8 + 0.3 sin t, τ2(t) = 0.65 + 0.25 sin t, σ(t) = 0.5 + 0.3 cos t, ρ(t) = 0.6 + 0.2 cos t. Then
Assumption 1 is satisfied with ∆1 = 0,∆2 = I,∆3 = 0,∆4 = 0.5I and τ̄ = τ̄1 = 1.1, τ̄2 = 0.9, τ ′1 =
0.3, τ ′2 = 0.25, σ̄ = 0.8, σ′ = 0.3, ρ̄ = 0.8, ρ′ = 0.2.

In this paper, the transition rate matrix is given as follows

Π =

[
−0.7 0.7
0.3 −0.3

]
.

Solving the LMIs (5)-(10) in Theorem 1 by resorting to the Matlab LMI Control Toolbox,
we can obtain one feasible solution. The control input vector with state feedback is designed as
(4) with

Y11 = −15.4038I, Y12 = −12.7158I, Y21 = 2.0655I, Y22 = 2.4185I.

Therefore, we conclude that system (1) and (2) with (4) can be stochastically asymptotically syn-
chronized.
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Fig. 1. Chaotic attractor of Example 1.

Fig. 1 shows the neural network model has a chaotic attractor with initial values x1(t) =
0.3, x2(t) = 0.4, t ∈ [−1, 0]. The initial values of the response system are taken as y1(t) =
1.1, y2(t) = −1.6, t ∈ [−1, 0]. Fig. 2 shows the error states. By numerical simulation, we can see
that the dynamical behaviors of response system (2) synchronize with master system (1).

5. Conclusion
This paper deals with the synchronization problem for a class of neutral-type chaotic

neural networks with both leakage delay and Markovian jumping parameters under impulsive

TELKOMNIKA Vol. 12, No. 7, July 2014 : 5430 ∼ 5437



TELKOMNIKA ISSN: 2302-4046 � 5437

Fig. 2. The error state of t− e1(t)− e2(t).

perturbations. By virtue of drive-response concept and time-delay feedback control techniques,
by using the Lyapunov functional method, Jensen integral inequality, a novel reciprocal convex
lemma and the free-weight matrix method, a novel sufficient condition is derived to assure the
stochastic synchronization of two identical Markovian jumping chaotic delayed neural networks
with impulsive perturbation. The proposed results, which do not require the differentiability and
monotonicity of the activation functions, can be easily checked via Matlab software. Finally, a
numerical example with their simulations is provided to illustrate the effectiveness of the presented
synchronization scheme.
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