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 Diabetic retinopathy (DR), a progressive eye disorder, can lead to 

irreversible vision impairment ranging from no DR to severe DR, 

necessitating precise identification for early treatment. This study introduces 

an innovative deep learning (DL) approach, surpassing traditional methods 

in detecting DR stages. It evaluated two scenarios for training DL models on 

balanced datasets. The first employed image enhancement via contrast 

limited adaptive histogram equalization (CLAHE) and a generative 

adversarial network (GAN), while the second did not involve any image 

enhancement. Tested on the Asia pacific tele-ophthalmology society 2019 

blindness detection (APTOS-2019 BD) dataset, the enhanced model 

(scenario 1) reached 98% accuracy and a 99% Cohen kappa score (CKS), 

with the non-enhanced model (scenario 2) achieving 95.4% accuracy and a 

90.5% CKS. The combination of CLAHE and GAN, termed CLANG, 

significantly boosted the model's performance and generalizability. This 

advancement is pivotal for early DR detection and intervention, offering a 

new pathway to prevent irreversible vision loss in diabetic patients. 
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1. INTRODUCTION 

The last decade has seen a marked increase in the prevalence of eye diseases, among which diabetic 

retinopathy (DR) poses a significant threat due to its ability to lead to severe vision impairment or even 

blindness. The World Health Organization (WHO) reports that over 2.2 billion individuals globally suffer 

from vision impairment, with nearly half of these cases being preventable or treatable [1], [2]. The link 

between diabetes, a condition affecting millions worldwide, and DR is particularly concerning as it leads to 

damage in the retinal blood vessels, often progressing unnoticed until vision loss becomes evident. The silent 

progression of DR in its initial stages highlights an urgent need for enhanced diagnostic methodologies 

capable of early and precise detection [2]. While public awareness campaigns are crucial for early 

intervention, the traditional diagnostic methods, such as ophthalmoscopy, which rely heavily on manual 

annotation and are time-consuming, fall short in early-stage detection due to a lack of precision [3]. Routine 

eye examinations play a significant role in early DR detection, identifying early signs such as 

microaneurysms (MAs), hemorrhages (HMs), and exudates (EXs) [4]. 

For diagnosing DR, ophthalmologists categorize retinal lesions into MAs, HEMs, soft exudates 

(SE), and hard exudates (HE) [5], [6]. MAs are small, red dots, indicative of early DR, while HEMs are 

larger, irregularly shaped dots. SEs appear as white ovals, and HEs as yellow spots on the retina [5]-[10]. 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Enhanced diabetic retinopathy detection and classification … (Sowmyashree Bhoopal) 

367 

Figure 1 depicts DR’s varying severity stages, ranging from normal (a) to proliferate (e). Figure 1(a) shows a 

normal retina, without any signs of DR. Figure 1(b) represents mild DR, where minimal abnormalities such 

as microaneurysms begin to appear. Figure 1(c) depicts moderate DR, highlighting more evident signs such 

as increased microaneurysms and hemorrhages. While Figure 1(d) illustrates severe DR, where significant 

abnormalities are present, including severe hemorrhages and exudates. Finally, Figure 1(e) shows 

proliferative DR, the most advanced stage, characterized by the growth of new blood vessels on the retina, 

leading to severe vision impairment or blindness. 
 
 

     
(a) (b) (c) (d) (e) 
 

Figure 1. The five sub-classes of DR by severity: (a) normal, (b) mild, (c) moderate, (d) severe, and  

(e) proliferate 
 

 

Prior research has laid a significant foundation by identifying the characteristic lesions associated 

with DR, and categorizing the severity into distinct stages. However, these efforts have been hindered by 

challenges such as data scarcity, variability, and the manual, labor-intensive nature of diagnostic processes. 

In response to these challenges, this study proposes an automated deep learning model that significantly 

enhances the precision of DR detection. By leveraging image enhancement methods like contrast limited 

adaptive histogram equalization (CLAHE) and employing ensemble learning techniques benefiting from 

batch normalization and fine-tuning techniques, our model aims to overcome the limitations of current 

diagnostic approaches. Our contributions to the field of ophthalmology and DR detection are manifold and 

address several gaps in the current diagnostic landscape: 

− Introduces a new method for enriching training and validation datasets, which addresses the crucial issues 

of data scarcity and variability. This advancement ensures a more robust model training process, leading 

to improved diagnostic accuracy. 

− Our approach incorporates ensemble learning strategies, including a batch normalization layer and fine-

tuning techniques, to enhance the model’s robustness and accuracy, marking a significant improvement 

over existing model. 

− The application of CLAHE for enhanced image quality, crucial for accurate DR detection on the APTOS-

2019 dataset. 

− We employ a thorough evaluation framework utilizing precision, recall, Kappa score, and classification 

matrices to validate the effectiveness of our model comprehensively. 

− The innovative application of pre-trained networks, with ResNet50 serving as the backbone, optimizes the 

detection efficiency, setting a new standard in DR diagnostic methodologies. 

The models’ training and testing was done using the APTOS-2019 dataset, demonstrating a 98% 

classification accuracy with enhancement techniques and 95.4% without, validated through a 70:30 hold-out 

method. Enhanced image analysis was performed using CLAHE and GAN (referred to as CLANG), proving 

effective in DR stage classification. Conversely, in non-enhanced cases, image oversampling was vital due to 

dataset class imbalance. The models were developed using ResNet-50, comparing their performance on the 

APTOS-2019 dataset. 

This paper is structured into five main sections: in section 1, the background and motivation for our 

study is presented, a review of related work is highlighted in section 2. A detailed description of the proposed 

methodology is presented in section 3. In section 4, a comparative analysis of the results against existing 

state-of-the-art models is presented, and a conclusion that outlines future research directions is in section 5. 

By bridging critical gaps in early DR detection, our study not only contributes to the field of ophthalmology 

but also opens new pathways for future advancements in diagnostic technologies, ultimately aiming to reduce 

the global burden of vision impairment caused by diabetic retinopathy. 

 

 

2. RELATED WORK 

The detection of DR has been thoroughly investigated from two primary perspectives. It is the 

traditional approach and the deep learning approach. Given the focus of this research on deep learning (DL) 

techniques, relevant literature within this specific field is presented. 
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2.1.  Deep learning approaches for DR diagnosis 

DL algorithms, particularly convolutional neural networks (CNNs), have revolutionized DR 

diagnosis by their exceptional ability to classify and predict DR severity from fundus images without the 

need for explicit feature annotation by experts. This is a stark departure from traditional machine learning 

methods that rely heavily on manually annotated features, which are not only time-consuming but also prone 

to overlooking critical lesion features in the images. CNNs, through their hierarchical feature extraction 

capabilities, can discern both fine-grained details and higher-level semantic information from the full image, 

facilitating a more comprehensive analysis of potential DR indicators. 

Pratt et al. [11] leveraged data augmentation and CNNs for feature extraction, successfully 

identifying complex lesion features that are crucial for DR diagnosis. Abbas et al. [12] proposed a novel 

approach that bypasses the need for pre- or post-processing by utilizing scale-invariant color density and 

gradient location direction histograms for deep visual feature extraction. This methodology enhances the 

efficiency and efficacy of DR detection by simplifying the feature extraction and classification process. 

Kanungo et al. [13] emphasized the impact of hyperparameters, training data quality, and quantity 

on model performance, underscoring the importance of optimal dataset utilization and parameter tuning. 

Quellec et al. [14] introduced an innovative method to generate heatmaps for visualizing the pixels 

influencing image-level predictions, offering insights into the “black box” of CNN decision-making 

processes. 

The integration of attention mechanisms for refining DR severity classification was exemplified by 

Zhao et al. [15], demonstrating the utility of focusing on small, significant lesions in fundus images.  

Orujov et al. [16] employed adaptive histogram equalization and a modified fuzzy rule for enhanced vascular 

detection, showcasing the potential for combining image processing techniques with DL for improved DR 

diagnosis. Then the images of the fundus are preprocessed such that a segmentation model can recover the 

vascular branches; the regions of interest are then adjusted using an approach proposed by Das et al. [17]. 

Fan et al. [18] developed a residual convolutional block attention model, utilizing adaptive weights 

within a MobileNetV3 network for DR severity classification. This approach, along with Liu et al. [19] 

compact bilinear pooling network model, highlights the advancements in creating efficient, accurate, and 

accessible DL models for DR detection. Macsik et al. [20] suggest a new alternative to local binary CNN 

deterministic filter generation that can get close to replicating the conventional CNN’s performance with less 

training set and memory use. Quantitative tests were done on a publicly available dataset using VGG16, 

ResNet50 [21], and VGG19 [22] models that had already been trained. These models were picked above 

dense net and inception-Resnet owing to their simpler structure. As a result of adding more data, the models 

were more accurate and had less overfitting. Similarly, the researches [23]–[26] investigated the use of 

ensemble approaches for semantic segmentation using pre-trained U-Net and VGG19 models. The success of 

ensemble approaches and CNN-based detectors in achieving high accuracy and precision further attests to the 

potent capabilities of DL in transforming DR diagnostic processes. Ikechukwu and S. Murali [27] favoured 

the classification of normal and abnormal patients using fundus images. To reconstruct blood vessels from 

images, maximal primary curvature was used. Missing regions were fixed by adjusting the histogram’s 

equalization and opening up the morphology. With a precision of 0.97, DIARETDB1 performed admirably.  

 

2.2.  Survey findings 

The comparative analysis between DL and traditional machine learning approaches for DR detection 

underscores the superior accuracy and efficiency of DL models. The utilization of publicly available datasets 

like Kaggle DRD and DRIVE has been instrumental in training and evaluating these models. Despite the 

encouraging outcomes, challenges such as dataset diversity and model interpretability persist, affecting the 

generalization of DL models across different populations and obscuring the understanding of model 

predictions. This comprehensive examination of DL approaches for DR diagnosis underscores a collective 

move towards creating more explainable, accurate, and efficient diagnostic tools. The ongoing research aims 

to harness the power of DL ensembles and fine-tuning methodologies to develop an automated, explainable 

model capable of early DR diagnosis, addressing both the technical and practical challenges in the field. 

 

 

3. METHOD 

The study utilizes the APTOS-2019 dataset [28], known for its diversity in high-resolution retinal 

images across all five DR stages. With 3,662 images, the dataset presents challenges like data imbalance and 

variation in image quality due to different photographers and conditions. Figure 2 and Table 1 detail the 

dataset's distribution with the number of classes in each subtype. 
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Figure 2. APTOS dataset description with more of class 0 cases 

 

 

Table 1. Variations in inter-class distribution on APTOS 2019 dataset 
Class index Description Number of samples 

0 No DR 1,805 
1 Mild DR 370 

2 Moderate DR 999 

3 Severe DR 193 
4 Proliferate DR 295 

 

 

The methodology comprises two scenarios: case 1 uses CLAHE [29] preprocessing followed by 

GAN, while case 2 involves no preprocessing. Both cases focus on preventing overfitting and maintaining 

image quality. The CLAHE technique is used to control contrast amplification, and GAN is applied for 

gradient control. ResNet50 [30] is employed for image classification, with preprocessing tasks like resizing 

and normalization. Figure 3 illustrates the methodology block diagram, including steps like data 

augmentation and image enhancement. 

 

 

 
 

Figure 3. The block diagram of the proposed DR detection (CLANG) approach 
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3.1.  Effect of data augmentation 

Data augmentation plays a key role in addressing data scarcity and enhancing dataset diversity [31]. 

Techniques like horizontal and vertical flips, rescaling, zooming, rotations, and shifts are employed as 

detailed in Table 2. Figure 4 provides a comprehensive view of the effects of image augmentation on the 

dataset, enhancing our understanding of its contribution to model generalization. Specifically, Figure 4(a) 

illustrates the class distribution before image augmentation, while Figure 4(b) showcases the improved 

number of training samples subsequent to the augmentation process. 

 

 

Table 2. Parameters for data augmentation 
Method Default Augmented 

Horizontal flip None True(p=0.5) 

Vertical flip None True(p=0.5) 

Rescale (normalization) - 1./255 
Zoom range - 0.25 

Rotation (°) - 60, 90 & 120 

x-Shift, y-Shift None [-0.1, +0.1] 
x-Scale, y-Scale None [0.75, 1.25] 

Adjusted image 3216 x 2136 224 x 224 

 

 

  
(a) (b) 

 

Figure 4. Comparison of training data (a) before augmentation and (b) after augmentation 

 

 

3.2.  Pretrained ResNet50 

ResNet-50, a 50-layer CNN, is utilized for its ability to learn residuals [32], addressing vanishing 

and exploding gradient problems. It employs a residual function, adding the input x to the final output of 

layers in (1) to (5).  

 

𝑦 =  𝐹(𝑥)  +  𝑥 (1) 

 

𝐹(𝑥)  =  𝐻(𝑥) –  𝑥 (2) 

 

𝐴𝑛𝑑 𝑦 =  𝑃(𝑥) + 𝑥 =  𝐻(𝑥)  −  𝑥 +  𝑥 =  𝐻(𝑥) (3) 

 

Since it is now possible to learn identity mappings by simply setting all weights to zero, H(x)=0, and F(x)=x, 

the mapping y=x can be learned. Next, the activation function f() is applied, and the final result is H(x), as 

illustrated in (5). Figure 5 shows the difficulty in separating overlapping class boundaries. Figure 6 shows the 

ResNet50 with residual blocks, and Figure 7 presents the model hyperparameters, focusing on preventing 

overfitting [33]. 

 

The formula for: 

 

𝑃(𝑥)  =  𝑓 (𝑤𝑥 +  𝑏) (4) 

 

whereas the formula for: 

 

𝑃(𝑥)  =  𝑓(𝑥)  +  𝑥 (5) 
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Figure 5. TSNE plot showing the challenges in inter-class separation 
 

 

 
 

Figure 6. ResNet50 with residual blocks 

 

 

 
 

Figure 7. Hyperparameters used in ResNet50 on APTOS dataset 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Experimental setup and model training 

The study employed the APTOS 2019 dataset, dividing it into training (70%), testing (20%), and 

validation (10%) subsets. Training involved resizing images to 224×224×3 pixels, using an Intel® CPU with 

a GTX 1060 GPU. The Adam optimizer was utilized with specific hyperparameters, including a learning rate 

of 0.0001, a batch size of 8, and 40 epochs. Table 3 details these parameters. The training accuracy reached 

98.0%, with early stoppage after the 17th epoch due to no further improvements. 
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Table 3. Model parameters for training on APTOS-19 
Parameter Value 

Batch size 8 
Epochs 40 

Learning rate 1e-4 

Patience 5 
Early stoppage True 

Reduce on plateau patience 3 

Decay drop 0.5 
Kernel size  (3,3) 

Filter size 64 

 

 

4.2.  Performance evaluation 

Performance was assessed using metrics like accuracy, precision, recall, Cohen's kappa score 

(CKS), and F-measure, calculated based on true/false positives/negatives in (6) to (10). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦% =  (
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝐹𝑃+ 𝑇𝑁+ 𝐹𝑁
) ∗ 100 (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛% = (
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 ) ∗ 100 (7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙% = (
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
) ∗ 100 (8) 

 

𝐶𝐾𝑆% = (
𝑃𝑜−𝑃𝑒

1− 𝑃𝑒
 ) ∗ 100 (9) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒% =  2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) (10) 

 

Where TP=true positive, FP=false positive, TN=true negative, and FN=false negative. 

The model’s classification accuracy for each DR stage is displayed in Figure 8, with a focus on the correct 

predictions and misclassifications. 

 

 

4.3.  Performance of ResNet50 model 

In examining the performance of the ResNet50 model, this study explored two different approaches: 

one with image enhancement called CLANG and one without it. The results showed a significant 

improvement in accuracy when using the CLANG enhancement, achieving 98.0% accuracy compared to 

95.4% without it. This improvement highlights the value of using enhanced images for better model 

performance. The findings, including detailed performance metrics, are presented in Tables 4 and 5, focusing 

specifically on validation accuracy as a key measure of success. 

The accuracy of the ResNet50 model, both with and without the use of an early stopping parameter, 

is visually demonstrated in Figures 9 and 10. Additionally, Figures 11 and 12 showcase examples of the 

model's predictions on the severity of diabetic retinopathy, providing a clear comparison between the two 

approaches. Finally, Figure 13 summarizes the performance metrics, highlighting the overall effectiveness of 

the model. 

This comparison clearly shows that using image enhancement techniques like CLANG can lead to 

better outcomes. Such techniques not only improve the accuracy of models but also make them more reliable 

for analyzing medical images, an essential factor in healthcare settings. The study strongly supports the 

integration of image enhancement as a way to enhance the performance of deep learning models in medical 

diagnostics. 
 
 

Table 4. Optimal performance metrics on APTOS-19 with enhancement (CLANG) 
Accuracy (val) Precision Recall CKS F-measure Top-2 acc Top-2 acc 

98.0 99.1 99.0 99.0 99.0 99.7 99.9 

 
 

Table 5. Optimal performance metrics on APTOS-19 without enhancement 
Accuracy(val) Precision Recall CKS F-measure Top-2 acc Top-2 acc 

95.4 89.2 81.0 90.5 82.3 92.3 95.2 
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Figure 8. ResNet50 accuracy with an early stoppage factor for case 1 

 

 

 
 

Figure 9. Predicted image corresponding to the DR severity for case 1 

 

 

 
 

Figure 10. ResNet50 accuracy without an early stoppage factor for case 2 

 

 

 
 

Figure 11. Predicted image corresponding to the DR severity for case 2 
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Figure 12. Confusion matrix of the validation set 

 

 

 
 

Figure 13. Performance comparison of case 1 vs case 2 

 

 

4.4.  Comparison with other models 

The model was compared with other state-of-the-art techniques as shown in Table 6. It 

outperformed these models, achieving the highest accuracy with CLANG at 98.0%. The study highlighted 

the importance of data augmentation and CLANG in enhancing accuracy, as shown in Figure 13. 

 

 

Table 6. Comparisons with relevant literatures 
S. No Method (technique) Performance accuracy (%) 

[34] CNN 95 

[35] Inception-V2 97 

[36] VGG-16 75 
[37] EfficientNet-B6 86 

[38] Inception-V3, ResNet50 85 

[39] Inception-V2 72 
[40] MobileNetV2 93 

[41] DenseNet 96 

[42] Hybrid U-Net 94 
Proposed Case 1: (ResNet50 with CLANG) 98 

Case 2: (ResNet50 without CLANG) 95.4 
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The findings demonstrate a significant improvement in the accuracy of DR detection, with the 

enhanced model achieving a 98% classification accuracy. This surpasses existing models, which typically 

report accuracies below this benchmark. The integration of CLAHE and GAN for image enhancement has 

been pivotal. This approach outperforms traditional methods by enhancing the visibility of crucial retinal 

features, thus facilitating more accurate and early detection of DR. The comparison with state-of-the-art 

models reveals our model’s superior ability to detect subtle indicators of DR at earlier stages, a key factor in 

preventing the progression of the disease. 

 

 

4.5.  Implications and future directions 

The implications of our study extend beyond academic circles, offering a blueprint for the 

integration of advanced artificial intelligent (AI) models into clinical practice. By automating the detection of 

DR, our model has the potential to streamline diagnostic processes, enabling earlier interventions and 

reducing the burden on healthcare professionals. However, challenges such as data privacy, model 

interpretability, and integration with existing medical records systems must be addressed. Future research 

should focus on enhancing the model's generalizability, exploring its applicability to other eye diseases, and 

developing real-time diagnostic systems. This research direction holds promise for revolutionizing 

ophthalmic care, making early and accurate diagnosis more accessible worldwide. 

 

 

5. CONCLUSION 

The study presents a novel approach for diagnosing DR using the APTOS dataset. Two scenarios 

are explored: case 1 with CLANG (CLAHE and GAN) image enhancement, and case 2 without it. The 

enhanced image technique in case 1 significantly improves image quality, contributing to a 98% accuracy 

rate, compared to 95.4% in case 2. This approach, particularly with CLANG, shows potential to match expert 

diagnostic accuracy. This limitations include its reliance on a specific dataset, which may not fully represent 

the global diversity of DR cases. Future work would aim to validate and refine the model using a broader 

array of datasets to ensure its effectiveness across different populations. Despite these challenges, our 

contributions significantly advance the field of DR detection, offering a new paradigm for the use of AI in 

medical diagnostics. Our findings underscore the potential of AI to enhance healthcare delivery, urging 

continued exploration and development of innovative diagnostic tools. Moving forward, it is imperative to 

focus on the ethical and practical aspects of AI implementation in healthcare to fully realize its benefits for 

patient care.  
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