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 Redundancy analysis is a widely used method in fault-tolerant memory 

systems, and it is essential for large-size memories. In current security 

operations centers (SoCs), memory occupies most of the chip space. To 

correct these memories using a conventional external equipment test 

approach is more difficult. To overcome this issue, memory creators utilize 

redundancy mechanism for substituting the columns and rows along with a 

spare one to increase output of the memories. In this study, a built-in-self-

test (BIST) to test memories and built-in-self-repair (BISR) mechanism to 

repair the faulty cells for any recent SoC devices is proposed. The BIST, 

based on adaptive activation functions with a deep Kronecker neural 

network (ADKNN), not only detects the defect but also determines the kind 

of defect. The BISR block uses the Namib Beetle optimization algorithm 

(NBOA) to fix the mistakes in the memory under test (MUT). The study 

attempts to determine how the characteristics of SoC-based devices change 

in the real world and then contributes to the suggested controller blocks. 

Performance metrics such as slice register, region, delay, maximum 

operating frequency, power consumption, minimum clock period, and access 

time evaluate performance. Comparing the proposed ADKNN-NBOA-

BIST-BISR scheme to existing BIST, BISR, and BISD-based methods 

reveals its significant performance. 
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1. INTRODUCTION  

The initial need for memory in SOCs is to store a large number of data. The memories cover a huge 

area in the system-on-chips design, developed using complementary metal–oxide–semiconductor (CMOS) 

technology [1]. The system-on-chips are smaller in size, denoting that the memories are necessary for the 

greater result. The memory repair mechanism consists of both column and row repair. The memory repair 

mechanisms are of 2 phases. The 1st phase verifies the failure detected by the memory built-in self test 

(MBIST) controller via repaired memory testing. The 2nd phase obtains the signature of repair to repair the 

memory [2], [3]. Furthermore, the built-in redundancy analysis approach evaluates the repair signatures 

based on memory failure information and implements the memory redundancy technique [4]. The repair 

signature is saved in the BIRA registers here for processing by the memory built in self test controllers [5]. 

Then, the scan chain of the repair register is used to apply the repair signature [6]. The read-write test access 

port for fuse boxes is controlled. A specific repair log keeps track of the scan chains connecting the memory 
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and the fuse [7]. While using the greater voltage nut, the repair data is scanned [8]. Following an on-chip 

reset, restoration data is imported as well as debugged in repair logs. And each recollection is held together 

by redundancy. Finally, the memory built in self-test runs on restored memory to test memory accuracy [9]. 

Memory does not, as is customary, consist of logic gates and flip-flops. Here, numerous fault algorithms and 

test models are necessary to test memories. System-on-chips’ overall outcome is affected by any memory 

defects [10]. To overcome this issue, the spare columns and rows are included in memory. Using built-in 

self-repair logic, spare columns/rows are employed in place of damaged cells [11]. Repair logic includes 

either line/column repair or both. As a result, MBIST and repair tools rapidly assess memory to find defects 

in normal memory cells [12]. Coupling, transition, stuck-at-fault, neighborhood design sensitive fault 

(NBSF), and address decoder faults are appropriate fault models for testing memory [13]. The error detection 

model gives a way to identify the faulty sites, and RA state-of-the-art models. The repaired solutions consist 

of spare columns and rows for memory replacement [14]−[16]. As a result, while implementing field 

programmable gate array (FPGA), it does not minimize power consumption, region, or access time [17].  

It tests memory using a memory built-in-self-test (BIST) controller and a built-in-self-repair (BISR) 

algorithm developed on application-specific integrated circuits (ASIC), and the March approach is utilized to 

test memory under test [18]. 

The memories in system-on-chip consist of different sizes and lower accessibility. Hence, repairing 

this memory is not as much easier with the conventional external equipment test model. As a result, memory 

designers frequently employ redundancy. Mechanism to replace the columns-rows with spare ones which is 

utilized to increase the better output result of the memories. 

In this study, we presented a BIST mechanism to test memory and a BISR method to fix damaged 

cells for any modern (ADKNN-NBOA-BIST-BISR) based on security operations center (SoC) devices.  

The BIST based on adaptive activation functions with deep Kronecker neural network not only detects the 

defect as well as determines the kind of defect. BISR block, based on the Namib beetle optimization 

algorithm (NBOA), it remedies MUT faults based on the fault signature of built-in redundancy analysis.  

The study gives empirical insights into how changes in SoC-based device characteristics are brought about 

after incorporating the suggested controller blocks. This work’s contribution is noted below. 

− In this manuscript, adaptive activation functions with deep Kronecker neural network fostered BIST with 

NBOA espoused built-in self-repair for SoC based devices suggested for SRAM. 

− The suggested hybrid approach is then the combination of both the adaptive activation functions with 

deep Kronecker neural network (ADKNN) [19] NBOA [20]; hence it is named the ADKNN-NBOA 

technique. 

− The proposed adaptive activation functions with deep ADKNN based on BIST is utilized for verifying 

memory array circuit and injecting fault in memory.  

− Furthermore, based on built-in redundancy analysis, NBOA-based BISR is used to repair faulty memory 

cells, and fault memory is corrected with ADKNN for the BISR mechanism after introducing faults in the 

memory cell. 

− Verilog hardware description language (HDL) was used to write the register transfer logic (RTL) code. 

− The experiment was carried out on the Xilinx simulator. Moreover, the design and implementation of 

FPGA architecture by MBIST and BISR hardware structure for SRAM are tested using the Xilinx 

simulator. 

− The simulation outcomes of the ADKNN-NBOA-BIST-BISR method are compared to the art methods, 

namely, BIST, BISR, and BISD-based BFTCP-RLSCD-BIST-BISR [21], BIST and BISR for AI 

Accelerator (STRAIT-BIST-BISR) [22], BIST based saboteur and mutant and BISR based counting 

threshold for memories (VHDL-FIT-BIST-BISR) [23], respectively. 

Several studies have been conducted on BIST and BISR approaches. A few of the selected BIST 

approaches are [24], [25], and some of the selected BISR [26]–[28] approaches are targeted in this research. 

A survey [29] on the special session, machine learning in test: analogue, digital, memory, and RF integrated 

circuits, was covered. The remaining section of this manuscript is organized as follows: Segment 2 the 

method of the proposed approach is described. Segment 3, outcomes and discussion are demonstrated.  

In segment 4, the conclusion is presented. 

 

 

2. METHOD 

This section describes the proposed methodology (adaptive activation functions with deep 

Kronecker neural network fostered Built in self test with NBOA espoused built-in self-repair for SoC based 

devices). The block diagram of ADKNN-NBOA-BIST-BISR is represented in Figure 1. It contains two 

stages, BIST and BISR. Thus, a detailed description of each step is given. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 1, July 2024: 90-101 

92 

 
 

Figure 1. Block diagram of the proposed (ADKNN-NBOA-BIST-BISR) method 

 

 

2.1.  BIST and BISR approaches 

Before the system is marketed, the problem is added and evaluated to improve its performance.  

The process of adding flaws to a system is called fault injection. Memory takes up a lot of space in SOC, and 

memory errors will impair the SOC’s results. Here, spare columns and rows are present in the memory.  

In this framework, adaptive activation functions with deep Kronecker neural network (AFKNN) and NBOA 

for BIST and BISR for SRAM are proposed. For verifying the memory array unit, the AFKNN-based BIST 

is used, and defects are injected into the storage via the AFKNN defect injection method. After putting faults 

into the memory cell, the defect memory is repaired utilizing the BISR approach based on ADKNN.  

The operations used in BIST and BISR for the embedded memories block are listed in Table 1. 

 

 

Table 1. Notation in BIST and BISR for embedded memories block 
S.No Operation Description 

1 Wr-data Write the information to the storage position specified by the address. 

2 addr Specifies the address of the area in the memory where the memory’s data will be accessed. 

3 wr To write to memory, use the writes-enabled signaling. 
4 rd The read enable signal indicates that the memory is being read. 

5 Rd-data The read data bus holds the read data from a specified memory address. 
6 w0 To the memory address, write the logic value ‘0’. 

7 w1 To the memory address, write the logic value ‘1’. 

8 r0 Read the storage cell’s logic value ‘0’. 
9 r1 Read the storage cell’s logic value ‘1’. 

 

 

A test controller, comparator, start register, test pattern generator, memory under test, output BISR 

and response recorder are all part of the suggested architectural model. The suggested AFKNN approach is 

used for test controller and test pattern generator. Furthermore, the suggested AFKNN model is used to inject 

faults, while the proposed ADKNN model is used to restore fault memory. 

 

2.2.  BIST 

BIST is a low-cost integrated circuit that is combined into SRAM memories to test for faults that 

arise during memory read or write operations. BIST neglects the requirements for automated test equipment 

(ATE), an expensive as well as time-consuming external hardware component. Since it is more expensive, 

the BIST includes more structures than the external ATE. The BIST circuit comprises several blocks, 

including a number of blocks, a level-shifting buffer circuit, an amplifier circuit for amplifying defect signals, 

and an operational amplifier for increasing weak signals, which acts as a phase amplifier and comparator 

circuit for comparing faulty output and fault-free SRA memory. The memory test controller utilizes adaptive 

activation functions with a deep Kronecker neural network to maximize fault coverage and is used to detect 

the coupling faults. The adaptive activation function with deep Kronecker neural network obtains the test 

pattern that performs the test controller to implement defects to the memory. After implementing memory 

faults, defect memory is constant utilizing ADKNN for the BIRST. 
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2.2.1. Test pattern generator 

An adaptive activation function with a deep Kronecker neural network is utilized to analyze memory 

array units for faults. The test pattern generator performs on the ADKNN approach, which designs the 

patterns that are necessary to inject defects and propagate effect to the result. The memory array unit is 

expressed in the (1). 
 

𝐿1(𝑍
𝑙−1)𝛥𝑤𝑙𝑍𝑙−1 + 𝐵𝑙  (1) 

 

Here, 𝑤𝑙  represents the weight matrix 𝐵𝑙  represents the bias vector associated with the 𝑙𝑡ℎ layer. The fault in 

adaptive activation function with deep Kronecker neural network is expressed in (2), 
 

𝑈𝑓𝑓(𝑍) = (𝐿𝑑 ∘ 𝜙1 ∘ 𝐿𝑑−1 ∘. . .∘ 𝜙1 ∘ 𝐿𝑑) (2) 
 

here, 𝑑 represents the depth of the feed-forward neural network 𝜙1 represents the fault memories. After an 

output layer, the process of activation function is an identity function. The fault injection process is expressed 

in the (3), 
 

‖𝑉‖1 = ∑ |𝑉𝑖|,
𝑛
𝑖=1 ‖𝑉‖2 = ∑ 𝑉𝑖

2,𝑛
𝑖=1 ‖𝑉‖∝1 = 𝑚𝑎𝑥

1≤𝑖≤𝑛
|𝑉𝑖| (3) 

 

here, 𝑉 represents the fault injection process. The memory array unit for faults is expressed in the (4), 
 

‖𝛭‖ = 𝑚𝑎𝑥
‖𝑋‖=1

‖𝛭𝑋‖, ‖𝛭‖𝑓
2 = ∑ ∑ 𝛭𝑖𝑗

2𝑛
𝑗=1

𝑚
𝑖=1  (4) 

 

here, 𝛭 represents the memory array unit for faults, 𝛭𝑖𝑗 represents the 𝑖, 𝑗 component of 𝛭. The total weight 

and block in the memory is expressed in the (5), 
 

1𝛫×𝛫 ⊗ 𝑤𝑙 = [
𝑤𝑙 ⋯ 𝑤𝑙

⋮ ⋱ ⋮
𝑤𝑙 ⋯ 𝑤𝑙

] ∈ ℜ𝛮𝑙𝛫×𝛮𝑙−1𝛫, 1𝛫×1 ⊗ 𝐵𝑙 = [
𝐵𝑙

⋮
𝐵𝑙

] ∈ ℜ𝛮𝑙𝛫 (5) 

 

here, 𝛮𝑙 represents the number of chips. The activation function is expressed in the (6), 
 

�⃗� (𝑍) = [
𝜙1(𝑍1)

⋮
𝜙𝛫(𝑍𝛫)

]  (6) 

 

here, 𝜙 represents the block activation function. The memory chip is expressed in the (7), 
 

𝑍𝑙 = (1𝛫×𝛫 ⊗ 𝑤𝑙)�⃗� (𝑍𝑙−1) + 1𝛫×1 ⊗ 𝐵𝑙  (7) 
 

the weight and blocks in the memory were expressed in the (8), 
 

�̃�𝑙 = (𝜛𝑙 ⊗ 𝛼𝑙) ⊗ 𝑤𝑙 , �̃�𝑙 = 𝜛𝑙 ⊗ 𝐵𝑙 , 1 ≤ 1 < 𝑑 (8) 
 

here, ⊗ represents the Kronecker product, 𝜙𝛫 represents the fixed activation functions. The Kronecker 

neural network using composition operator is expressed in the (9), 
 

𝑈𝛫(𝑍) = (𝐿𝑑 ∘ �̃�𝑑−1 ∘ 𝐿𝑑−1 ∘. . .∘ �̃�1 ∘ 𝐿1) (9) 

 

here, ∘ represents the composition operator. The activation function is expressed in the (10), 
 

�̃�𝑙(𝐿1(𝑍);𝜛𝑙 , 𝛼𝑙) = ∑ 𝛼𝛫
𝑙 𝜙𝛫 (𝜛𝛫

𝑙 𝐿1(𝑍))𝛫
𝛫=1 , 𝑙 = 1, . . . , 𝑑 − 1 (10) 

 

Here, 𝜛𝑙 represents the column vector, 𝛼𝑙 represents the row vector. To improve the training,  

the weight of target network regularly recorded via repetition. The produced test patterns stored and applied 

at the execution of BIST. Here, the patterns obtained at random by an AFKNN-related test pattern creator 

perform as a test pattern. A key focus of registration architecture is the smaller area that is built with as many 

designs as feasible. 
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2.2.2. Test controller 

The MUT controllers in the test controller have registers that track failure data details. When the 

start register’s start signal has been programmed, starts the test controller. In this case, the start register 

comprises clock, stop, start, resume, reset, halt-on-error, and memory ID. The AFKNN technique-based test 

pattern generator’s operation produces patterns and sends them to the memory block under test during the 

reading process. The read data was analyzed during the testing procedure to determine the produced patterns. 

Finally, the output response recorder monitors the ID of memory, count of faulty cells, and faulty MUT 

address. Furthermore, unsuccessful data are sent to a BISR block for the use of spare memory at defective 

cell substitution. 
 

2.3.  MUT 

The created pattern is applied to the MUT during read and write operations. Several states are 

covered here: idle, write 0 (w0) in the memory position, read 0 write 1 (r0w1), r1w0r0, w0r0w1, r1w0, r0, 

failed record status. The test controller waits at an idle state to receive a start signal only once, and then it 

jumps into the w0 state and starts the memory test operation from the w0 state. When memory under test 

goes to another state like r0w1, it is full with ‘0’ patterns. A test controller is used to execute read and write 

activities. Finally, the test controller performs all operations in sequence at all states. 
 

2.4.  Comparator 

From the MUT block, the comparator examines the result and pattern. Furthermore, when executing 

testing under-read operation, read data are evaluated using chosen patterns. The test controller advances into 

the level of failure-registration to save the result if the comparison result is unsuccessful, then returning to the 

original position. 
 

2.5.  Output response recorder 

The output response is evaluated by the output response recorder. Here, the computer reaction to the 

test vector that has to be validated. Furthermore, the choice is made as to while the PC is defective or not. 

The output response recorder stores defective cells, fail address, memory ID, and memory under the test 

count of a faulty cell. In addition, previously determined sequences are fed into the MUT, and the result is 

recorded in the response output recorder. 

The result is obtained at the failed record state when all tasks are finished. Furthermore, the test 

controller identifies the failure memory ID, fault position, and hand number of defective cells. The present 

approach’s experimental outputs analyze a variety of defect types, including SF, CF, RDF, WDF, TCF, SCF, 

DCCF, IRF, DRDF, and ICF. 
 

2.6.  Fault modelling of SRAM 

SRAM fault modeling is defined as an explanation of potential failure modes. This research study 

targeted several failure modes, or fault types, in SRAM. We intend to target various fault types with the 

AFKNN technique. The fault types in SRAM memory are described as follows: 

− Stuck fault: the single-cell error known as a “stuck fault (SF)” occurs when an SRAM memory cell’s 

logic value is locked at 0/1. 

− Coupling faults: this is a fault type of SRM cells as a result of its contact with another cell is known as 

coupling faults (CF). This is the result of dual cell faults, it involves 2 states: (i) growing state implies “0” 

to “1” (ii) falling state that does the same. 

− Read destructive error: the single-cell errors called read destructive error (RDF) that occurred when 

SRAM cell values are reversed. The incorrect value is output, while a read operation is performed in the 

cell. It is stated as 0r0/1/1 at the end and reads ‘0’ take place if memory is ‘0,’ and the cell memory 

becomes ‘1’ if memory is ‘1,’ reads ‘1’ take place, and memory becomes ‘0.’ Finally, it is found to be 

1r1/0/0. 

− Write destructive faults: the single-cell fault category known as write destructive faults (WDF) includes 

non-transitional actions when memory cells begin to flip. Additionally, two additional models with the 

write destructive defect are introduced in WDF. If memory is zero, the cell becomes zero, and the write 

‘0’ is obtained. Last but not least, it is defined as 1w1/0/, which means that if memory is “1,” then writing 

“1” will occur, and the cell will become “0.” 

− Transition coupling fault: a double cell error known as a “transition coupling fault (TCF)” occurs when 

cells from the victim word are used in a write transition operation. The fault is 0W1/0/ in the up transition 

and 1W0/1 in the down transition. 

− Static coupling faults: static coupling faults (SCF) are dual cell faults that occur at 0/1 and then force the 

aggressor word into the victim word’s cells when the cell is given a 0 to 1 value. 
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− Disturb cell coupling faults: “disturb cell coupling faults (DCCF),” a subset of dual cell faults, arise when 

writing otherwise read operation is carried out over word that is being attacked, disrupting the cell of the 

word that is being attacked. 

− Incorrect read fault (IRF): when a read operation occurs at an SRAM cell and returns an inaccurate value 

while the memory cell’s status is stable, this is referred to as an IRF, a kind of double-cell fault. When 

memory is ‘0,’ reading happens; however, when cell memory is ‘0,’ reading changes to ‘0' and is stated as 

0r0/0/1. Memory reads as ‘1’ if it is ‘1,’ but when a cell’s memory changes to ‘1’, it goes back to ‘0’ and 

defines ‘1r1/1/0.’ The read procedure produces an aggressor value at the conclusion. 

− Deceptive read destructive fault (DRDF): a single-cell problem called DRDF happens when the cell value 

is inverted and receives the correct value during a read operation. When memory is “0,” a read “0” 

occurs, and cell memory changes to “0” after the reading process completes. If memory is “1,” a read “1” 

occurs. After the read operation, the value is reversed, changing from ‘0’ in the cell memory to ‘1’ 

indicated as 1r1/0/0. 

− Idempotent coupling fault (ICF): a double cell defect is called an ICF that performs when pushed through 

the aggressor text cell contains minimum/maximum transition of write operation for producing the victim 

word displays the result in the cell. 

 

2.7.  BISR 

This work deals with two certain processes that are explained in the flowchart of Figure 2.  

The NBOA is utilized to perform a BISR operation. The NBOA actually improves its work performance.  

The spare columns and rows are utilized in preference to faulty cells utilizing the NBOA BISR method.  

The primary focus of NBOA work will minimize the power dissipation through minimizing alteration 

procedure on conventional NBOA without compromising its efficacy. The NBOA performs repair analyzer 

owing to minimum energy consumption. At first, the information on memory loss, namely memory ID, faulty 

cell, faulty position, and defect information, is transmitted to BISR to repair the failed memory faulty cells. 

Redundancy logic (RL) and extra memory or column-row blocks are used in NBOA BISR. 

The problematic addresses discovered during the memory test procedure are stored using 

redundancy management logic. Therefore, it analyzes the faulty addresses along with earlier saved addresses 

in the defect table based on numerous defects while memory’s read and write operations coincide, the NBOA 

BISR model starts working and data is accessed through spare memory. The defective address is saved in the 

fault database in case of numerous faults. The address is kept in memory operations that are read and written 

but are not recorded at the fault table. BIRA planned that the spare column or row be allocated with 

information on a number of defective cells at a certain address. 

In NBOA built-in self-repair, the analysis or problem diagnosis is repaired utilizing a pre-charge 

process. Therefore, relocating the XOR gate will reduce the circuit’s latency and power usage. By enhancing 

the circuit’s performance, the maximum operating frequency is attained. Additionally, the typical repairing 

works in a simple manner. If rows consist of huge defects, then it must be repaired, and if a column consists 

of more defects, then the columns and rows are constant. The number of defective cells is determined based 

on the memory test controller used as a benchmark through NBOA to calculate the repairing procedure. 
 

 

 
 

Figure 2. Flow chart of proposed BIST and BISR 
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In NBOA built-in self-repair, the analysis or problem diagnosis is repaired utilizing a pre-charge 

process. Therefore, relocating the XOR gate will reduce the circuit’s latency and power usage. By enhancing 

the circuit’s performance Namib beetles tries to collect the water and moves towards the highest hills.  

All over the hill, they search for places that are good for moisture to access huge amounts of water. Early in 

the morning, they reach the highest hills and raise their bodies up to feel the humid air. After that, they take 

in moisture from the air and put it in their mouths. The moisture settles on the beetle’s body and then forms 

water droplets. This process repeats, and the water droplets become bigger and heavier. This water droplet 

directly enters the beetle’s mouth as a fresh drink. The beetle’s tough, oily skin and solitary mechanism for 

maintaining the foot in the air prevent water loss. The Namib beetle optimization approach performs the 

analysis of redundancy that affects the faulty cells using spare columns and rows instead of defective cells. 

The Namib beetle is expressed in (11). 
 

𝑁 = {𝑋1,  𝑋2, 𝑋3, . . . ,  𝑋𝑑} (11) 
 

Here, 𝑑 represents the decision variable. The initial population of the Namib beetle is expressed in the (12). 
 

𝑃 = [

𝑁1,1 𝑁1,2 ⋯ 𝑁1,𝑑

𝑁2,1 𝑁2,2 ⋯ 𝑁2,𝑑

⋮ ⋮ ⋮ ⋮
𝑁𝑛,1 𝑁𝑛.2 ⋯ 𝑁𝑛.𝑑

] (12) 

 

Here, 𝑃 represents the initial population of the Namib beetle. The population of beetles for the objective 

function is evaluated and expressed in (13). 
 

𝐹 =

[
 
 
 
𝐹(𝑁1,1 𝑁1,2 ⋯ 𝑁1,𝑑

𝐹(𝑁2,1 𝑁2,2 ⋯ 𝑁2,𝑑

⋮ ⋮ ⋮ ⋮
𝐹(𝑁𝑛,1 𝑁𝑛.2 ⋯ 𝑁𝑛.𝑑]

 
 
 

= [

𝐹(𝑁1)
𝐹(𝑁2)

⋮
𝐹(𝑁𝑛)

] (13) 

 

Here, 𝐹 represents the objective function of the Namib beetle. The capacity of the numerous beetles in a 

place is expressed in (14). 
 

𝐶𝑏 = 𝑀𝑐 . 𝑠𝑖𝑛 (
𝐹(𝑁𝑖)−𝐹𝑚𝑖𝑛

𝐹𝑚𝑖𝑛𝑚𝑎𝑥.
𝜋

2
()
) (14) 

 

Here, 𝐶𝑏 represents capability of the beetle count in the region, 𝑀𝑐 represents maximum capability of the 

beetle count at 1 region, 𝐹(𝑁𝑖) represents competence of the beetle, 𝐹𝑚𝑖𝑛 represents the minimum 

competencies of the population beetles, 𝐹𝑚𝑎𝑥 represents the maximum competencies of the populace beetles. 

The total population of beetle that seek water is expressed in (15) and (16), 
 

𝐶 = ∑ 𝐶𝑏 = 𝐶1 + 𝐶2+. . . +𝐶𝑛
𝑛
𝑖=1  (15) 

 

𝐶 ∑ 𝑀𝑐. 𝑠𝑖𝑛 (
𝐹(𝑁𝑖)−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
.
𝜋

2
)

𝑛

𝑖=1
= 𝑀𝑐 . 𝑠𝑖𝑛 (

𝐹(𝑁1)−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
.
𝜋

2
) + ⋯+ 𝑀𝑐 . 𝑠𝑖𝑛 (

𝐹(𝑁𝑛)−𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
.
𝜋

2
) (16) 

 

the method through which 1 beetle attracts another by using its present location and moisture sensing 

coefficient is expressed in (17), 
 

𝑁𝑗
𝑛𝑒𝑤 = 𝑁𝑗

𝑜𝑙𝑑 + 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦. (𝑁𝑖 − 𝑁𝑗
𝑜𝑙𝑑) + 𝑉 (17) 

 

in the (17), perform the redundancy operation. The redundancy operation detects faults in the memory. 

Gravity regions are the regions with the greatest potential for determining water, as expressed in (18). 
 

𝑁𝑖
𝑛𝑒𝑤 = 𝑁𝑜𝑙𝑑 + 𝑟𝑛𝑑. (𝑁∗ − �̄�) + 𝑉 (18) 

 

After injecting the defective memory cells, the defective memory is repaired using (18). 

Additionally, the threshold value utilizes spare columns and rows, which are planned according to the 

number of defective cells in defective rows or columns. The predetermined threshold exceeds or is similar to 

‘two.’ The spare row will be assigned first if the number of rows with defects is more than or equal to two, or 
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the spare column will be assigned next. * If the allocated spare memory (row or column) is full,  

the verification procedure will continue. The spare row distributes the verifying process if it is not zero by 

continuing to check until it achieves the null state. Hence, spare memory is maximized according to the 

number of defected cells. Therefore, the proposed approach gradually produces a memory test and fault 

repair through utilizing control flow. 

 

 

3. RESULTS AND DISCUSSION 

The experimental result of the proposed ADKNN-NBOA-BIST-BISR method is discussed in this 

section. The Verilog HDL was used to write RTL code. The simulation was carried out using the Xilinx 

simulator. The performance metrics, like access time, region, energy consumption, maximum operating 

frequency, minimum clock period, slice register, and delay, are compared with the efficacy of the proposed 

approach. The obtained results of the IoT-IDS-BWOA-ASRNN algorithm are analyzed with its state-of-the-

art model, namely, BIST, BISR, and BISD-based BFTCP-RLSCD-BIST-BISR [21], BIST and BISR for AI 

accelerator (STRAIT-BIST-BISR) [22], BIST based saboteur and mutant, and BISR based counting 

threshold for memories (VHDL-FIT-BIST-BISR) [23], respectively. 

 

3.1.  Simulation output 

The proposed IoT-IDS-BWOA-ASRNN technique attains higher performance based on power, 

region, and delay compared to the other existing approaches. A simulation and synthesis result are achieved 

utilizing Xilinx ISE 14.5 design suite and mentor graphics, where the Virtex-5 FPGA is executed in design. 

During the testing period, several defects are injected inside the memory using BWOA along with test design 

generation. The testing equipment created to check the memories is in charge of controlling the test patterns 

and defect injection into the memory. By utilizing multiple test designs and then inserting several defects for 

negative testing, numerous test scenarios are taken into consideration to test the memory. For 8-bit memory, 

256 distinct test patterns are needed. Also, the created patterns are employed to identify any potential 

memory faults. The proposed IoT-IDS-BWOA-ASRNN algorithm yields the injected faults and creates test 

patterns. Here, the numbers of faulty cells are detected through the IoT-IDS-BWOA-ASRNN algorithm for 

assigning spare rows and columns. 

Simulation outcomes for controller functional checking is shown in Figure 3, where read write 

operations are represented in Figure 3(a), and defect kind detection are displayed in Figure 3(b). The writing 

and reading data patterns within the MUT are represented by this simulated waveform. The writing and 

reading tasks were completed in accordance with the approach. The fault table for BIRA computes and writes 

the coupling fault, transition fault, SA fault, and address decoder faults. 

The repair procedure starts as soon as information about the defective cell is collected from the test 

controller. After receiving the output, the simulator’s screens are displayed with simulation output for fixing 

the faulty cells in rows and columns. The spare rows and columns are assigned for defective cell information 

obtained through the IoT-IDS-BWOA-ASRNN block. 
 

 

 
 

(a) (b) 

 

Figure 3. Simulation result (a) read write operations and (b) faults and fault type detection 

 

 

3.1.1. Performance metrics 

Performance metrics are created for the obtained results. It targets the key parameters of speed, 

power, and area. The parameters access time, region, power consumption, slice register, delay, minimum 

clock period, and maximum operating frequency are compared to evaluate the efficacy of the proposed 

method. 
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3.1.2. Power consumption  

The quantity of energy utilized per unit of time is known as power consumption. Power 

consumption in digital systems is crucial. It limits the battery life span of portable devices, including smart 

phones and laptops. The average power consumption of this ADKNN-NBOA-BIST-BISR approach is 

expressed in the (19). 

 

𝛲𝑎 = 𝜂𝑆𝑣𝑜𝑙
2 (𝐿𝑐 . 𝐶𝑓) (19) 

 

Here, 𝐶𝑓 represents the clock frequency, 𝐿𝑐 represents the load capacitance, 𝜂 represents the activation factor, 

and 𝑆𝑣𝑜𝑙
2  represents the supply voltage. 

 

3.1.3. Delay 

The duration of time required to send and receive a packet. It is measured in seconds and calculated 

by (20), 

 

𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑆 − 𝑇𝑅 (20) 

 

where, 𝑇𝑆 indicates message sending time, 𝑇𝑅 denotes message receiving time. 

 

3.1.4. Performance measures 

The proposed model of ADKNN-NBOA-BIST-BISR attains greater results in the case of slice 

register, maximum operating frequency, area, power consumption, access time, minimum clock period and 

delay while analysed with their state of art models. Area analysis is shown in Figure 4. Here, the proposed 

ADKNN-NBOA-BIST-BISR method attains 33.88%, 35.75%, and 36.16% lower area while comparing to 

the existing BFTCP-RLSCD-BIST-BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR methods 

respectively. Delay analysis is shown in Figure 5. Here, the proposed ADKNN-NBOA-BIST-BISR method 

attains 31.78%, 36.45%, and 32.87% lower delay while comparing to the existing BFTCP-RLSCD-BIST-

BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR methods respectively. 

 

 

 
 

Figure 4. Performance of area analysis 

 

 

 
 

Figure 5. Performance of delay analysis 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

ADKNN fostered BIST with Namib Beetle optimization algorithm … (Suleman Alnatheer) 

99 

The consumption analysis is shown in Figure 6. Here, the proposed ADKNN-NBOA-BIST-BISR 

method attains 34.66%, 32.67%, and 35.86% lower power consumption while compared with existing 

methods such as, BFTCP-RLSCD-BIST-BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR, respectively. 

Figure 7 shows slice register analysis. Here, the proposed ADKNN-NBOA-BIST-BISR method attains 

35.44%, 34.57%, and 32.76% lower slice register while compared with existing methods such as,  

BFTCP-RLSCD-BIST-BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR, respectively. 
 

 

 
 

Figure 6. The performance analysis of power consumption 

 

 

 
 

Figure 7. The performance of slice register analysis 

 

 

Figure 8 shows maximum operating frequency analysis. Here, the proposed ADKNN-NBOA-BIST-

BISR method attains 34.99%, 32.89%, and 33.78% higher maximum operating frequency while compared 

with existing methods such as, BFTCP-RLSCD-BIST-BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR, 

respectively. Time analysis is shown in Figure 9. Here, the proposed ADKNN-NBOA-BIST-BISR method 

attains 35.51%, 37.21, and 32.99% lower access time while compared with existing methods such as, 

BFTCP-RLSCD-BIST-BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR, respectively. Figure 10 shows 

minimum clock period analysis. Here, the proposed ADKNN-NBOA-BIST-BISR method attains 35.73%, 

33.18%, and 32.01% lesser minimum clock period while compared with existing BFTCP-RLSCD-BIST-

BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR, methods respectively. 
 

 

 
 

Figure 8. Performance of maximum operating frequency analysis 
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Figure 9. the performance analysis of access 

time 

Figure 10. The performance analysis of minimum clock 

period 
 

 

4. CONCLUSION 

This research presented BIST is to test the memories and BISR methods to repair faulty cells for any 

recent (ADKNN-NBOA-BIST-BISR) based on SoC devices was successfully implemented. The proposed 

ADKNN-NBOA-BIST-BISR approach is performed in Xilinx simulator. The performance of the proposed 

ADKNN-NBOA-BIST-BISR approach attains 7.69%, 9.504%, and 10.805% lower minimum clock period; 

6.04%, 10.749%, and 13.73% higher maximum operating frequency; 5.23%, 4.305%, and 5.75% lower 

access time; 9.52%, 10.28%, and 8.14% high lower power consumption; while compared with the existing 

methods such as, BFTCP-RLSCD-BIST-BISR, STRAIT-BIST-BISR, VHDL-FIT-BIST-BISR, respectively. 

The proposed study can open up many research tracks where further improvements are possible to reduce the 

cost and improve parameters like area, power, and frequency of the products. 
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