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 The burgeoning demand for efficient urban traffic management necessitates 

accurate prediction of traffic congestion, spotlighting the essence of time 

series data analysis. This paper delves into the utilization of sophisticated 

deep learning methodologies, particularly long short-term memory (LSTM) 

networks, convolutional neural networks (CNN), and their amalgamations 

like Conv-LSTM and bidirectional-LSTM (Bi-LSTM), to elevate the 

precision of traffic pattern forecasting. These techniques showcase promise 

in encapsulating the intricate dynamics of traffic flow, yet their efficacy 

hinges upon the quality of input data, emphasizing the pivotal role of data 

preprocessing. This study meticulously investigates diverse preprocessing 

techniques encompassing normalization, transformation, outlier detection, 

and feature engineering. Its discerning implementation significantly 

heightens the performance of deep learning models. By synthesizing 

advanced deep learning architectures with varied preprocessing 

methodologies, this research presents invaluable insights fostering enhanced 

accuracy and reliability in traffic prediction. The innovative RD-LSTM 

approach introduced herein harnesses the hybridization of a reverse 

AutoEncoder and LSTM models, marking a novel contribution to the field. 

The implementation of these progressive strategies within urban traffic 

management portends substantial enhancements in efficiency and congestion 

mitigation. Ultimately, these advancements pave the way for a superior 

urban experience, enriching the quality of life within cities through 

optimized traffic management systems. 
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1. INTRODUCTION 

Modern urban environments grapple with a significant obstacle: the prevalence of traffic congestion, 

causing widespread inconvenience and imposing substantial economic burdens on countless commuters. 

Deep learning, as a novel paradigm, emerges as a promising solution to address this challenge [1]. It 

distinguishes itself by its dynamic, data-centric approach to traffic prediction, diverging from traditional 

methodologies reliant on historical data and statistical models [2], [3]. The rapid advancement in data 

accessibility and efficient processing of extensive datasets has propelled the evolution of deep learning 

theories, exploring their potential in predicting urban traffic dynamics, including indicators such as speed, 

throughput, and accident risk [4], [5]. Recent investigations have underscored the indispensable role of deep 

learning in managing burgeoning vehicle volumes within intelligent transportation systems, diverging 

significantly from conventional machine learning models like support vector machines (SVM) and artificial 
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neural networks (ANN) [6], [7]. Deep learning models utilize multi-layer structures to uncover intricate 

traffic patterns, employing architectures such as convolutional neural networks (CNN) [8], recurrent neural 

network (RNN), long short-term memory (LSTM) [9]–[11], restricted Boltzmann machine (RBM), and stacked 

AutoEncoder (SAE), shedding light on their efficacy across diverse traffic forecasting scenarios [12], [13].  

This work chronicles the methodical development of an intelligent short- and long-term urban traffic 

prediction system [14], [15], encompassing various mobility data types, traffic modeling techniques, and critical 

traffic indicators such as speed, flow, and accident risk [16], [17]. Special emphasis is placed on time series 

analysis and the pivotal role of data preprocessing, encompassing normalization, transformation, outlier 

handling, and feature engineering, crucial in enhancing the predictive accuracy of deep learning models [18]. 

Notably, LSTM demonstrates remarkable proficiency in handling prolonged time series data [19], [20]. 

Additionally, novel hybrid methodologies like RD-LSTM, a fusion of reversed AutoEncoder and LSTM models 

[21], [22], show promise in surpassing conventional methods. This article documents the comprehensive 

process involved in developing this approach, commencing with an overview, dataset exploration, 

methodological descriptions, results, and future prospects for enhancement [23], [24]. Recent advancements 

have resulted in precision improvements, evident in reduced mean squared errors (MSE) and the evolution of 

methodologies like the NTP method based on Conv-LSTM models for traffic synchronization [22], [25]. The 

innovative RD-LSTM methodology, combining reversed AutoEncoder and LSTM models, emerges as a 

pioneering contribution. Its application in urban traffic management promises significant efficiency 

enhancements and congestion mitigation, paving the way for an elevated urban experience and improved quality 

of life through optimized traffic management systems. 

 

 

2. METHOD 

The precise anticipation of traffic congestion, particularly within the domain of time series data, has 

gained paramount importance in urban planning and transportation governance. Deep learning algorithms 

have emerged as a robust tool to address this challenge, adept at capturing the intricate temporal patterns 

inherent in traffic datasets [26], [27]. However, the efficacy of these models is intricately linked to the quality 

of the input data. Essential to this optimization are preprocessing techniques that refine and enhance raw data, 

encompassing vital processes such as data cleansing, feature engineering, and normalization. These 

techniques ensure that the model effectively assimilates time series data, facilitating accurate predictions 

[28], [29]. The RD-LSTM model proposed in this study stems from the fusion of two disparate model 

architectures: AutoEncoder and LSTM, both renowned for their adeptness in learning and extracting features 

from target data. This amalgamation forms a potent synergy, notably proficient in the specific task of 

predicting road congestion. This prowess is conspicuous in comparative evaluations against alternative 

algorithms and when subjected to rigorous testing for prediction accuracy. Subsequent sections elaborate 

extensively on the operational mechanics of this approach. 

Figure 1 represents the proposed architecture governing the functionality of the RD-LSTM. Herein, the 

data flow stemming from the encoder output of the reverse AutoEncoder serves as the input to the LSTM. This 

fusion facilitates the utilization of the enhanced features derived by the AutoEncoder while leveraging the 

LSTM's adeptness in capturing intricate temporal configurations. Consequently, the RD-LSTM model 

demonstrates an enhanced capacity to comprehend data, particularly within the domain of time series, offering a 

resilient and high-performance framework adaptable for diverse machine learning endeavors. 
 

 

 
 

Figure 1. Proposed RD-LSTM architecture 
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2.1.  Data collection 

Moumen et al. [30], we extensively explored the intersection between the internet of things (IoT) 

and artificial intelligence (AI) within the context of smart cities, focusing on a case study. In our current 

research, we utilize data sourced from IoT sensors deployed in the Smart City of Aarhus, Denmark. The 

dataset comprises 9 columns of numeric and categorical data, totaling 25,097,093 rows. Our primary focus 

centers on determining the average speed of vehicles over specific time intervals, making 'avgSpeed' our 

target variable. To refine the dataset for this scientific inquiry, an exhaustive data inspection and cleansing 

process were executed. This rigorous procedure significantly reduced the dataset's volume. The primary aim 

was to isolate and extract the pertinent target data and their relevant intersections. Figure 2 illustrates a 

sample of the data, providing a visual representation. This endeavor was facilitated by integrating 

meteorological metadata with the proprietary dataset, aiding in pinpointing and extracting precise intersection 

points related to the primary target. Through the elimination of extraneous information and irrelevant variables, 

the resultant dataset retained only the essential components crucial for achieving our study objectives. 
 
 

 
 

Figure 2. Sample data illustration and dataset overview 

 

 

2.2.  Data preprocessing 

To facilitate the prediction of traffic patterns, aggregating data from 5-minute intervals into 1-hour 

intervals proves advantageous. This consolidation condenses 12 rows of data into a single row, yielding a 

new dataset where each row corresponds to hourly intervals. Such aggregation significantly reduces data 

volume, enhancing manageability and analysis efficiency, a critical consideration for extensive datasets 

spanning prolonged periods. During the ongoing data preprocessing phase, before model construction, 

comprehensive analysis and data suitability checks were conducted. Notably, several crucial steps were taken 

to optimize model performance. Initially, we standardized the varied time series intervals (ranging from | 

5 minutes to 1 hour) into a unified time unit, aligning data for more efficient processing. Identifying 

intersection points critical to our target variable was pivotal. 

Analysis of diverse characteristics around these points, especially average speeds on the left and 

right paths, highlighted influential features. This exploration led to the strategic introduction of two new 

features: "avgspeed on the left" and "avgspeed on the right." These features aimed to enhance model 

performance by offering critical insights into average vehicle speeds preceding and succeeding intersection 

points, refining our understanding of traffic dynamics in these key locations. This meticulous preprocessing, 

creating informative features, constitutes a vital stride towards optimizing our prediction model. The 

objective was to provide the model with informative, relevant data to facilitate more efficient training and 

achieve superior prediction accuracy, thus optimizing traffic management and future analysis precision. 

Recognizing the limitations of the date time column's string format and linear time treatment, we 

sought to address the daily periodicity in time-related patterns. Employing sine and cosine transformations 

allowed for the extraction of meaningful signals representing "time of day" and "time of year." Incorporating 

these components for each day improved the model's ability to capture temporal dynamics. Graphical 

representations demonstrated the positive impact of these transformations on the model's performance, 

showcasing improved correlation for both short- and long-term predictions compared to the initial version. 

Figure 3 visually represents the time in its original form (green plot), ranging from 0 to 23 hours, contrasted 

with plots reflecting the effects of sinusoidal and cosine transformations. 

Improving functionalities stands as a crucial precursor to training deep learning models. Normalization, 

a prevalent technique, contributes to this enhancement. Through normalization, the DataFrame data is scaled 

using scikit-learn's MinMaxScaler, resulting in a new DataFrame that accommodates scaled data within a 

standardized range from 0 to 1. This step assures data comparability, a fundamental aspect aiding model 

preparation. The normalization phase holds paramount importance in model development, exerting a substantial 

positive influence on performance. Its role is pivotal in aligning the model's outcomes with real-world scenarios. 

Figure 4 illustrates a sample of the data after preprocessing. By evaluating the model on data collected post-

training, normalization ensures that validation and test results reflect the model's efficacy in handling unseen 

chronological data, thereby bolstering its adaptability to real-world contexts. 
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Figure 3. Plot of the time according to time-of-day signal 
 

 

 
 

Figure 4. Dataset overview after preprocessing 
 

 

2.3.  Model evaluation 

To assess the effectiveness of machine learning algorithms, we utilized evaluation metrics available 

in the scikit-learn library, specifically employing MAE as a primary parameter (1) and Val_loss as a 

secondary metric (2). These metrics play a crucial role in quantifying the performance of the models, with 

MAE providing a measure of the average absolute errors between predicted and actual values, and Val_loss 

offering insights into the model's performance during the validation phase. Utilizing such established 

evaluation metrics allows for a comprehensive understanding of the algorithms' effectiveness in the context 

of the study [31]. 
 

MAE(𝑦, �̂� )  =  
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛−1
𝑖=0  (1) 

 

Val_loss =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛−1
𝑖=0  (2) 

 

Where: 

𝑛 : Number of samples 

𝑦 : Observed traffic flow 

�̂� : Predicted traffic flow 

�̅� : Mean 

 

 

3. RESULTS AND DISCUSSION 

Following multiple iterations aimed at refining our models using a dataset partitioned into 70% for 

training, 20% for testing, and 10% for validation, these adjustments, coupled with meticulous alterations of model 

parameters, yielded significant impacts during the training phase. These adaptations notably enhanced outcomes 

concerning two pivotal metrics, specifically MAE and val_loss, compared to our previous experimentation 

endeavors. This underscores the critical role of data preprocessing in augmenting result quality and precision. 

Figure 5 depicts the fluctuation in validation loss concerning the AverageSpeed variable between two models: one 
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subjected to initial preprocessing attempts and the other refined further for 8-hour predictions. To ascertain and 

validate our work, a comparative analysis is conducted between the proposed approach and alternate models. 

Table 1 illustrates a comparative analysis showcasing two key metrics, MAE, and val_loss. The 

outcomes from the deep learning algorithms notably exhibit effectiveness and reliability in predicting traffic 

patterns, demonstrating substantial proximity between them. Yet, the RD-LSTM model emerges as the top 

performer in this evaluation, showcasing exceptional performance characterized by minimal error rates. This 

underscores its superiority and positions it as the preferred choice for traffic forecasting and simulation purposes. 
 
 

 
 

Figure 5. Comparison of validation loss for averagespeed between preprocessed models: initial attempt vs. 

enhanced prediction for 8-hour intervals 
 

 

Table 1. Performance metrics comparison of deep learning models for traffic prediction 
Model MAE Val_loss Execution time (s) 

CNN 0.1856 0.0609 34 

LSTM 0.1696 0.0496 180 

GRU 0.1696 0.0496 300 
CONV-LSTM 0.1870 0.0602 120 

Residual-LSTM 0.1679 0.0498 240 

Bi-LSTM 0.1647 0.0481 360 
RD-LSTM 0.1635 0.0476 300 

 

 

The presented models, evaluated based on MAE, Val_loss, and execution time, showcase diverse 

performance characteristics. CNN offers moderate metrics with a shorter execution time, while LSTM and GRU 

exhibit competitive prediction accuracy with longer execution times. CONV-LSTM demonstrates slightly 

higher errors but shorter execution durations. Residual-LSTM and Bi-LSTM showcase improved prediction 

accuracy with longer processing times, especially Bi-LSTM requiring the lengthiest computation. Notably, the 

RD-LSTM model emerges as a standout performer, delivering superior prediction accuracy with the lowest 

MAE and Val_loss metrics among the listed models, maintaining a reasonable execution time. RD-LSTM's 

balance between accuracy and computational efficiency positions it favorably for scenarios where precise 

predictions are crucial within a manageable timeframe, highlighting its potential for various practical applications.  

Through an examination and comparison of the numerical and graphical results presented in Figure 6, 

which illustrates a comparative analysis of various model predictions in test and validation phases spanning  

30 hours-highlighting the Figure 6(a) CNN model, Figure 6(b) LSTM model, Figure 6(c) GRU model, Figure 6(d) 

Conv-LSTM model, Figure 6(e) residual-LSTM model, Figure 6(f) Bi-LSTM model, and Figure 6(g) RD-LSTM 

model, particularly focusing on metrics like MAE and val_loss-it is discernible that the RD-LSTM model emerges 

as the optimal choice for long-term predictions. This preference for the RD-LSTM model is rooted in a thorough 

evaluation of performance metrics, revealing that this model exhibits a more robust and precise capability in 

anticipating trends over extended periods. The results highlight the trade-off between computational resources 

and prediction accuracy. Bi-LSTM and RD-LSTM showcase superior accuracy but demand more 

computational time. LSTM, GRU, and Residual-LSTM offer a balance between accuracy and computational 

efficiency. The choice of model should consider the specific application's requirements, weighing the need 

for accuracy against computational resources available for deployment. 
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(a) 

 

(b) 
 

  
(c) 

 

(d) 
 

  
(e) 

 

(f) 
 

 
(g) 

 

Figure 6. Comparative analysis of various model predictions in test and validation phases over 30 hours: 

(a) CNN model, (b) LSTM model, (c) GRU model, (d) Conv-LSTM model, (e) residual-LSTM model,  

(f) Bi-LSTM model, and (g) RD-LSTM model 
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4. CONCLUSION 

This study delves into the formidable issue of urban traffic congestion by employing advanced deep 

learning methodologies. It emphasizes the critical analysis of sequential data to precisely forecast traffic 

patterns, addressing the imperative requirement for effective urban traffic control. Techniques like LSTM 

networks, CNNs, and their combinations demonstrate considerable promise in comprehending the complex 

dynamics of traffic flow. Nonetheless, their effectiveness significantly relies on the caliber of input data, 

highlighting the vital role of preprocessing methods such as normalization, transformation, outlier detection, 

and feature engineering. The examination of diverse models such as CNN, RNN, LSTM, Bi-LSTM,  

Conv-LSTM, and residual-LSTM showcases the adaptability of these techniques across diverse traffic 

scenarios, encapsulating intricate concepts through stratified models. The introduction of the innovative  

RD-LSTM method, a fusion of AutoEncoder and LSTM models, signifies a noteworthy advancement. This 

pioneering approach holds potential in surpassing traditional methodologies, fostering more efficient traffic 

control and congestion alleviation in urban settings. By systematically delineating the development of an 

intelligent urban traffic prediction system, this study underscores the pivotal role of time series analysis, 

highlighting LSTM's impressive aptitude in handling prolonged sequential data. This collective endeavor points 

towards a promising trajectory for improved urban environments, enriching city life by optimizing traffic 

management systems. 
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