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 Breast cancer is ranked as a significant cause of mortality among females 

globally. Its complex nature poses principal challenges for physicians and 

researchers for rapid diagnosis and prognosis. Hence, machine learning 

algorithms are employed to forecast and identify diseases. This study 

discusses the comparative analysis of seven machine learning models, e.g., 

logistic regression (LR), support vector machine (SVM), k-nearest neighbor 

classifier (KNN), decision tree classifier (DT), random forest classifier (RF), 

Naïve Bayes (NB), and artificial neural network (ANN) to predict breast 

cancer using Wisconsin breast cancer and breast cancer datasets. In the 

Wisconsin breast cancer dataset, KNN depicted 99% accuracy, followed by 

RF (98%), SVM (96%), NB (96%), LR (96%), ANN (93%), and DT (92%). 

On the contrary, in the breast cancer (BC) dataset, the highest accuracy was 

achieved by LR at 83%, and the lowest was achieved by DT (65%), which 

depicted that the numeric dataset WBC has better accuracy than the breast 

cancer dataset. 
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1. INTRODUCTION 

Breast cancer continues to be a significant global health issue and a leading cause of death among 

women globally. The cause of occurrence involves genetic and environmental factors [1]. 25% of hereditary 

cases are due to mutations affecting high penetrant genes, e.g., HER2, BRCA1, BRCA2, TP53, PTEN, 

CDH1, and STK11, and moderate penetrant genes, e.g., CHEK2, BRIP1, ATM, and PALB2 [2]. 

GLOBOCAN 2020 data depicts the estimated number of new cases in women as 2.3 million, with 6.9% 

mortality over the five years respectively [3]. According to the LLR (log-linear Regression) model, women 

above the age of 75 are more likely to get Breast Cancer, followed by women between the ages of  

55 and 64 [4]-[6].  

The complex phenomenon of a varied nature requires accurate and timely diagnostic and prognostic 

approaches. Thus, using machine learning (ML) approaches in the medical sector is essential to help forecast 

by analyzing and configuring data. Because of their strong classification results, many researchers utilize 

these algorithms to address complex problems [7]. Data mining using machine learning is being utilized in 

the clinical domains to arrange and comprehend extensive data more readily using a computer-assisted 

detection (CAD) system that employs machine learning techniques to give reliable Breast Cancer diagnosis [8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Luckily, most Breast Cancer data is open source and available on data repositories for the medical research 

community, e.g., the Wisconsin Breast Cancer Dataset on Kaggle and the Breast Cancer Dataset on the UCI 

Machine Learning Repository. So, researchers are using them for analysis and prediction by applying 

Machine Learning algorithms [9]. So, researchers and physicians are using machine learning algorithms to 

develop effective predictive breast cancer detection and prognosis models. The Wisconsin (diagnostic) 

dataset was used by Hossin et al. [10] to detect breast cancer using eight machine learning algorithms, 

namely "logistic regression, random forest, K-nearest neighbours, decision tree, ada boost, support vector 

machine, gradient boosting, and Gaussian Naive Bayes." Comparing the results of the inquiry to other similar 

studies in the literature, it was found that the LR approach attained a maximum accuracy of 99.12% among 

the eight algorithms. Looking at the latest research by Sakib et al. [11], the research compared various 

machine-learning models using the Breast Cancer Wisconsin (Diagnostic) dataset. The models checked were: 

support vector machine, decision tree, logistic regression, random forest, K-Nearest Neighbour, and deep 

learning. After some fine-tuning, the results showed that the random forest model performed the best.  

It exceeded all other models examined with an accuracy of 96.66% and an F1-score of 0.963. Comparing 

models using the Wisconsin dataset, Ak et al. also found an LR accuracy of 99.12% [12]. 

To improve, algorithms must be enhanced, and various datasets need more models for better 

diagnosis and prediction. There is still a lot of improvement needed even after so much progress.  

The effectiveness of various machine-learning classifiers, such as logistic regression, support vector machine, 

k-nearest neighbour, decision tree, random forest, Naïve Bayes, and artificial neural network, in the 

prediction and diagnosis of breast cancer is examined in this study through computational analysis. The aim 

is to meet the urgent requirement for accurate and timely assessments. The examined datasets, specifically 

the wisconsin breast cancer (WBC) and larger Breast Cancer datasets, cover different aspects of this 

widespread health issue. Given the inherent problems in these datasets, such as uneven class distributions and 

missing values, our study takes great care in pre-processing the data to guarantee that the model training is 

robust and unbiased. 

 

 

2. METHOD 

This section describes the approach to assessing ML algorithms' effectiveness through analyzing and 

preparing the data. The study was conducted using the following steps shown in Figure 1. We divided our 

research study into five sections “Data Collection, Data Pre-processing, Exploratory Data Analysis, Model 

Selection, and Model Evaluation”. These sections will be briefly explaining and discussed one by one. 

 

 

 
 

Figure 1. Proposed model by using WBC and breast cancer datasets 
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2.1. Data collection 

Breast cancer and WBC Dataset are used in this paper. You can obtain both datasets from the UCI 

machine learning repository. There are 699 entities and 11 features in the WBC dataset, 458 of which are 

benign cases and 241 of which are malignant cases. "Clump thickness, Uniformity of cell size, Uniformity of 

cell shape, and other similar metrics" are examined throughout the WBC dataset. Bond at the margin, entire 

cell size of an epithelial layer just the cores, Genomic DNA, regular nucleoli, class is our dependent or target 

variable, while mitoses are independent variables [13]-[15]. Hence, data pre-processing is essential for this 

dataset. Our second dataset, called the Breast Cancer dataset, comes from a digital image of a breast tumor 

that was removed using a fine needle suction. The prognosis (malignant or benign) is recorded in the target 

feature. A total of 286 entities and 10 nominal and linear features makes up the dataset. The features include 

things like "age, menopause, tumor-size, inv-nodes, node caps, deg malign, breast, breast quad, irradiate and 

class(output)", along with 201 no-recurrence events and 85 recurrence events.  

 

2.2. Data pre-processing 

First, the dataset was thoroughly examined to make sure there were no instances of missing data, 

and the results showed that there were no missing values. This demonstrated the dataset's dependability and 

integrity. WBC (Table 1) and breast cancer (Table 2) datasets were pre-processed to remove missing values 

and irrelevant information. The feature Bare Nuclei status value was missing in the WBC dataset for 16 

records. In the breast cancer dataset, eight absent values were recorded. In both datasets, missing values are 

indicated by "?". We handle missing data of WBC data by replacing the missing values "?" with 'nan', and 

then we input the missing values with the median. In pre-processing, we select the median rather than the 

mean or mode for missing values to lessen the effect of outliers. 

On the other hand, we choose data transformation for the breast cancer dataset over data cleaning 

since much of our data is labeled in the form of words. Therefore, we use the sklearn-preprocessing library 

label encoder to turn our input into numeric form so that it may be machine-readable. After the pre-

processing phase, we analyze both datasets. Table 1 summarizes the results of the features data explanatory 

analysis for the WBC dataset. Table 2 summarizes the results for the breast cancer dataset. They present a 

statistical overview of both datasets. 

 

 

Table 1. Statistical summary of the WBC dataset 
 Count Mean Std Min 25% 50% 75% Max 

Clump thickness 699.0 4.417740 2.815741 1.0 2.0 4.0 6.0 10.0 
Uniformity of cell size 699.0 3.134478 3.051459 1.0 1.0 1.0 5.0 10.0 

Uniformity of cell shape 699.0 3.207439 2.971913 1.0 1.0 1.0 5.0 10.0 

Marginal adhesion 699.0 2.806867 2.855379 1.0 1.0 1.0 4.0 10.0 
Single epithelial cell size 699.0 3.216023 2.214300 1.0 2.0 2.0 4.0 10.0 

Bare nuclei 699.0 3.486409 3.621929 1.0 1.0 1.0 5.0 10.0 

Bland chromatin 699.0 3.437768 2.438364 1.0 2.0 3.0 5.0 10.0 
Normal nucleoli 699.0 2.866953 3.053634 1.0 1.0 1.0 4.0 10.0 

Mitoses 699.0 1.589413 1.715078 1.0 1.0 1.0 1.0 10.0 

Class 699.0 2.689557 0.951273 2.0 2.0 2.0 4.0 4.0 

 

 

Table 2. Statistical summary of breast cancer dataset 
 Count Mean Std Min 25% 50% 75% Max 

Age 286.0 2.664336 1.011818 0.0 2.0 3.0 3.0 5.0 
Menopause 286.0 1.073427 0.986680 0.0 0.0 2.0 2.0 2.0 

Tumor-size 286.0 4.062937 2.151187 0.0 3.0 4.0 5.0 10.0 

Inv-nodes 286.0 1.073427 1.935321 0.0 0.0 0.0 1.0 6.0 
Node-caps 286.0 0.251748 0.495149 0.0 0.0 0.0 0.0 2.0 

Deg-malign 286.0 1.048951 0.738217 0.0 1.0 1.0 2.0 2.0 

Breast 286.0 0.468531 0.499883 0.0 0.0 0.0 1.0 1.0 
Breast-quad 286.0 1.793706 1.103151 0.0 1.0 1.0 2.0 5.0 

Irradiate 286.0 0.237762 0.426459 0.0 0.0 0.0 0.0 1.0 

Class 286.0 0.297203 0.457828 0.0 0.0 0.0 1.0 1.0 

 

 

2.3. Exploratory data analysis  

Exploratory data analysis helps to investigate the critical decision for further processing to build data 

modeling. We use Python libraries Plotly, seaborn, and Matplotlib to plot a scatter plot and heatmap of both 

datasets. Multi-variable scatter plots help display interactions between more than two variables in a single 

plot, whereas heatmaps, which synthesize data and present it graphically, give a practical visual overview of 
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information. In the scatter plot and heatmap (Figure 2 and Figure 3) of WBC dataset, we can see that the 

variables uniformity of cell size, uniformity of cell shape, and bare nuclei are highly correlated with the 

target variable "class." 

 

 

 
 

Figure 2. Scatter plot of WBC dataset 

 

 

 
 

Figure 3. Heatmap of WBC dataset 

 

 

We can observe that none of the independent variables in the Breast Cancer dataset have a 

significant relationship with the target variable, "class." The heatmap (Figure 4 and Figure 5) indicates that, 

among other variables, the variable "inv-nodes" has a strong positive correlation with the target variable 

"class." 
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Figure 4. Scatter plot of breast cancer dataset 

 

 

 
 

Figure 5. Heatmap of breast cancer dataset 

 

 

2.4. Model selection 

Seven ML algorithms, "logistic regression (LR), support vector machine (SVM), K-nearest 

neighbors’ classifier (KNN), decision tree classifier (DT), random forest classifier (RF), Naïve Bayes (NB), 

and artificial neural network (ANN)" were selected for WBC and breast cancer datasets. These machine-

learning algorithms were selected based on how well they handled intricate interactions between variables. 

Train test split is a model validation method that predicts a model's performance on new data. Train test split 

of our models: i) Using the WBC dataset, the training set contains 80% of the data, whereas the testing set 

contains 20%. ii) Using the breast cancer dataset, we put 70% of the data into the training set and 30% into 

the testing set. 

 

2.4.1. Logistic regression  

Logistic regression is a machine learning algorithm most frequently employed under supervised 

learning [16]. It's used to predict categorical dependent variables (0 or 1, yes or no, true or false) from a set of 

independent variables [17]. The prediction is made by converting the unobserved data to the built-in logit 

function. Predict 0 and 1 for the logistic regression modeling utilizing the standard logistic function and 

linear probability function (1). 

 

𝑝(𝑥) =  
𝑒𝑎𝑥+𝑏

1+𝑒𝑎𝑥+𝑏 =
1

1+𝑒−𝑎𝑥+𝑏 (1) 
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Logistic regression gives linear classifier results, predicting 𝑦 = 1 when 𝑝 ≥
1

2
 and 𝑦 = 0 when 

 <
1

2
. Logistic function in general (2). 

 

𝑓(𝑥) =
1

1+𝑒−𝑎𝑥+𝑏 (2) 

 

2.4.2. Support vector machine 

Support vector machines, one of the most well-known supervised learning algorithms, are used in 

various biological applications, including medical data classification [18]. SVMs identify the best hyperplane 

in a dataset to divide the multiple classes. 

 

𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑥𝑖 − 𝑏) (3) 

 

Where the sign is an operator, any input of positive values yields a result of 1, and any input of negative 

values yields a result of -1, known as a hard margin. 

 

If 𝑦 = 1, 𝑤𝑥𝑖 − 𝑏 ≥ 1 (4) 

 

If 𝑦 = −1,  𝑤𝑥𝑖 − 𝑏 ≤ −1 (5) 

 

2.4.3. K-nearest neighbors’ classifier 

It's a straightforward and popular supervised machine learning algorithm. By employing a distance 

metric such as Manhattan, Minkowski, or Euclidean distance, the classification of an observation can be 

predicted by considering the classes of its k nearest neighbors. In our study, we use Minkowski distance and 

set n-neighbors = 5. The Minkowski distance metric equations are as (6). 

 

𝑑𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖(𝑥𝑖 , 𝑥𝑗) = [∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑝𝑑
𝑘=1 ]

1/𝑝
 (6) 

 

These equations express the kth attributes of 𝑥𝑖 and 𝑥𝑗 in a d-dimensional space, respectively, by 𝑥𝑖𝑘 and 𝑥𝑗𝑘 . 

A data point's class is determined by taking the majority class among its k closest neighbors, which are found 

using these distance measures [19]-[21]. 

 

2.4.4. Decision tree classifier 

Decision tree is one of the most used classification methods. The classifier is tree-structured, where 

the internal nodes correspond to the dataset's properties, and each leaf node signifies the classification result. 

Decision trees classify depending on the values of the features. The information gain approach determines 

which aspect of the dataset provides the most information, designates that as the root nodes, and so on until 

they can classify each dataset entity. Using the (7), you can compute it. 

 

Information Gain = Entropy(S) − [(Weighted Avg) ∗ Entropy (Each feature)] (7) 

 

Entropy is a metric used to quantify the impurity in a particular characteristic. It describes data randomness. 

Calculating entropy is as (8). 

 

 Entropy(S)  =  −P(0)𝑙𝑜𝑔2 P(0) −  P(1) 𝑙𝑜𝑔2 P(1) (8) 

 

Where, 

− S is the total number of samples. 

− P(0) is probability of Benign. 

− P(1) is a probability of malignant. 

 

2.4.5. Random forest classifier 

The random forest algorithm, which was put out by Breiman [22], is an ensemble learning 

technique. Random forest uses predictions from several decision trees rather than just one, basing its forecast 

of the result on the majority votes of predictions. The random forest classifier uses an average of the 

predictions made by each decision tree on several subsets of the input dataset to improve the overall accuracy 

of the predictions. The algorithm determines which attribute at each node of the trees offers the most 

significant decrease in uncertainty by calculating the entropy of each attribute [23].  
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝) = −[∑ 𝑃𝑛𝑙𝑜𝑔2(𝑃𝑛)𝑁
𝑛=1 ] (9) 

 

The log to base 2 of the probability of a category (𝑃𝑛) represents the uncertainty or impurity. 

 

2.4.6. Naïve Bayes 

Naïve Bayes is one of the most efficient yet straightforward classifiers. It is based on the Bayes 

theorem, which describes how event probability is calculated using prior knowledge of circumstances that 

could be pertinent to the occurrence. 
 

𝑃(𝐴|𝐵) =
 𝑃(𝐵|𝐴)×𝑃(𝐴)

𝑃(𝐵)
  (10) 

 

A and B stand for separate occurrences in this equation. The likelihood that event A will occur, 

given that event B has occurred, is determined by this equation. The likelihood of identifying a specific 

collection of feature values in response to a class label can be determined using the Gaussian probability 

density function [24]. 

 

2.4.7. Artificial neural network 

A branch of AI inspired by biological principles and designed to mimic brain function is known as 

artificial neural networks (ANNs) (Figure 6). The brain's architecture is based on biological neural networks. 

On the other hand, a computer network based on biological neural networks is frequently called an artificial 

neural network. 

 
 

 
 

Figure 6. General structure of ANN 

 

 

2.5.8. ROC-AUC curve 

The receiver operating characteristic (ROC) curve illustrates the relationship between the true and 

false positive rates when the categorization thresholds change. The area under the curve (AUC) aggregates 

performance across all thresholds on a 0 to 1 scale, 1 being perfect classification. ROC-AUC provides a 

threshold-independent visual and numerical evaluation of classification model performance. Higher AUC 

signals better overall diagnostic ability. We employ a two-layer network with 5 and 2 neurons, an MLP 

classifier with the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) solver, L2 regularization 

(alpha), and a particular random state. Next, the model is trained using the fit technique on the training set of 

data [25]. 

 

 

3. MODEL EVALUATION  

The measurement of the model's performance can be analyzed based on a confusion matrix (Table 3). 

That helps us to find accuracy, precision, sensitivity or recall, specificity, FP rate, FN rate, F1-score, and 

ROC-AUC curve.  
 

 

Table 3. The confusion matrix 
 Predicted 

Actual Predicated positive Predicated negative 

Actual positive True positive (TP) False negative (FN) Type II Error 

Actual negative False positive (FP) Type I Error True Negative 
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3.1. Confusion matrix  
The confusion matrix or error matrix is a specific table used to measure the performance of our 

seven algorithms. In the confusion matrix, model predictions are categorized into four groups: True Positives 

(TP) are positive situations that are accepted correctly, while true negatives (TN) are negative cases that are 

rejected correctly. When positive occurrences are incorrectly labelled as negative, this is known as a false 

negative (FN), whereas negative occurrences are erroneously labelled as a false positive (FP). In order to 

accurately evaluate performance, this analysis provides a helpful comprehension of various classification 

errors and accomplishment categories. 

Cases that are appropriately labelled as true and true are known as true positives (TP). This indicates 

that the patient has cancer, as predicted by the model. In cases where the erroneous classification is correct, 

we say that it is a true negative (TN). This finding confirms the model's prediction that the patient does not 

have cancer. When something is incorrectly labelled as true when it is actually false, this is called a false 

positive (FP). It indicates that the patient's condition is not cancerous, while the model indicates otherwise. 

When true cases are mistakenly labelled as false, this is known as a false negative (FN). In other words, the 

patient actually has cancer, even though the model says otherwise.  

 

3.2.  Accuracy  

Total number of correct predictions. This gives the overall rate of accurate diagnoses for both 

positive and negative cases. 
 

 Accuracy =
TP+TN

TP+FP+TN+FN
  (11) 

 

3.3.  Precision 

The ratio of true positives (TP) to the total number of positive predictions made by the model. It 

measures the rate of correct positive predictions out of all cases where the model predicted the positive class. 
 

Precision =
TP

TP+FP
 (12) 

 

3.4.  Sensitivity  

Sensitivity measures the rate of correct positive predictions made out of all positive samples. It 

indicates the likelihood that the model correctly diagnoses an actual positive case. 
 

Sensitivity =
TP

TP+FN
 (13) 

 

3.5.  Specificity 

Specificity measures the rate of correct negative predictions made out of all negative samples. It 

indicates the likelihood that the model correctly rules out an actual negative case. 
 

 Specificity =
TN

TN+FP
 (14) 

 

3.6.  False positive rate 

The false positives (FP) ratio is the total number of actual negative cases. It indicates the likelihood 

that the model incorrectly classifies an actual negative case as positive. 
 

 FP rate =
FP

TN+FP
 (15) 

 

3.7.  False negative rate 

The false negatives (FN) ratio to the total number of positive cases. It indicates the likelihood that 

the model incorrectly rules out an actual positive case as negative. 
 

 FN rate =
FN

TP+FN
 (16) 

 

3.8.  F1-score  

The F1-score combines precision and sensitivity from the confusion matrix into a harmonic mean, 

balancing positive predictive value and true positive rate. It provides a singular metric of a model's overall 

accuracy, capturing false positives and negatives. This consolidated measure is especially useful for 

imbalanced classification cases where both precision and sensitivity matter. 
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 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
(2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙))

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (17) 

 

 

4. RESULTS AND DISCUSSION 

Breast cancer prediction can be enhanced using machine learning, which is vital for early diagnosis 

and improved prognosis. This study analyzes tabular datasets to demonstrate accurate classification 

performance by machine learning models for enhanced breast cancer diagnosis and prognosis without relying 

on complex neural networks. Seven algorithms, "logistic regression, support vector machine, K-NN, decision 

tree, random forest, Naïve Bayes, and neural networks," were evaluated on two distinct breast cancer datasets.  

 

4.1.  Results using the WBC dataset 

We apply seven machine learning algorithms on the WBC dataset to see how the models perform. 

We analyze models' performance based on accuracy, precision, and more (Table 4). We analyze and find that 

the K-nearest neighbor model outperforms with 99% accuracy in our predictive analysis. The random forest 

model is the second-best performer with 98% accuracy. Support vector machine, Naïve Bayes, and logistic 

regression all perform well, achieving 96% accuracy. The artificial neural network achieves 93% accuracy, 

and the Decision tree is the lowest performer with 92% accuracy. 

The area under the ROC curve or AUC-ROC measures a classification model's effectiveness and 

potential classification thresholds. The categorization threshold changes from 0 to 1, illustrating the trade-off 

between genuine and false positive rates. A perfect model has an AUC-ROC value of 1, whereas a mediocre 

model has an AUC-ROC value of 0.5 [26]. The ROC curves in Figures 7 and 8 demonstrate the relationship 

between the true positive rate and the false positive rate. In both the figures, since curves of K-nearest 

neighbor, support vector machine, Naïve Bayes, and logistic regression are closely following the left and the 

top border of ROC space, it can be said that these classifiers are comparatively more accurate than decision 

tree and artificial neural network for the data set under study for this research 

 

 

Table 4. Performance of algorithms using the WBC dataset 
ML Models Accuracy Specificity Precision Recall F1-score FP rate FN rate AUC 

KNN 0.99 0.98 0.99 0.99 0.99 0.02 0.01 0.98 

RF 0.98 0.98 0.98 0.98 0.98 0.02 0.02 0.97 

SVM 0.96 0.98 0.97 0.95 0.96 0.02 0.04 0.95 
NB 0.96 0.92 0.96 0.97 0.96 0.08 0.01 0.98 

LR 0.96 0.98 0.97 0.94 0.95 0.02 0.05 0.94 

ANN 0.93 0.95 0.94 0.90 0.92 0.05 0.07 0.90 
DT 0.92 0.90 0.92 0.90 0.91 0.09 0.07 0.90 

 
 

 
 

Figure 7. Classifiers as points on ROC curve 
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Figure 8. ROC-AUC for different classifiers 

 

 

4.2.  Results using the breast cancer dataset 

We apply seven machine learning algorithms on the Breast Cancer dataset to see how the models 

perform. We analyze models' performance based on accuracy, precision, and more (Table 5). The logistic 

regression model outperforms 83% accuracy in our predictive analysis. Artificial neural network is the 

second-best performer with 81% accuracy. Naïve Bayes is the third-best performer with 78% accuracy, while 

the Support vector machine is the fourth-best performer with 74% accuracy. Random forest is the fifth-best 

performer with 70% accuracy. K-nearest neighbor performs quite less, achieving 67% accuracy, and the 

Decision tree is the lowest performer overall with 65% accuracy. 

Plotting false positive rates on the x-axis compared to true positive rates are receiver operator 

characteristic (ROC) curves (as seen in Figures 9 and 10). Given that the curves of Naïve Bayes, support 

vector machine, artificial neural network, and logistic regression closely follow the top and left borders of 

ROC space in both figures, it can be concluded that these classifiers are relatively more accurate than 

Decision Tree and K-nearest neighbor for the data set being studied for this research. 

Pre-processing the Wisconsin dataset by imputing missing values with median enhanced data 

robustness. The nonparametric simplicity of k-NN achieved the highest accuracy of 99%, excelling in 

complex nonlinear relationships. Conversely, the decision tree attained minimum accuracy, likely due to 

overfitting tendencies. Meanwhile, label encoding enabled compatibility with ML algorithms for the 

categorical Breast Cancer dataset. However, overlooking intricate inter-category relationships can limit 

performance. Advanced encodings better retain feature correlations vital for cancer data. Logistic regression 

attained a maximum accuracy of 83% by effectively modeling binary tumor outcomes. Again, the decision 

tree underperformed.  

Overall, nonlinear models suit the Wisconsin data better. However, linear models fit the Breast 

Cancer data well for tumor classification tasks. Our findings suggest that tailored pre-processing and model 

selection customized to problem and dataset intricacy are key to optimizing accuracy for breast cancer 

diagnosis and prognosis using ML. 
 

 

Table 5. Performance of algorithms using breast cancer dataset 
ML Models Accuracy Specificity Precision Recall F1-score FP rate FN rate AUC 

LR 0.83 0.85 0.84 0.72 0.74 0.15 0.17 0.71 

ANN 0.81 0.83 0.82 0.70 0.72 0.17 0.19 0.69 
NB 0.78 0.61 0.73 0.72 0.73 0.40 0.16 0.72 

SVM 0.74 0.55 0.68 0.66 0.67 0.45 0.20 0.66 

RF 0.70 0.45 0.63 0.63 0.63 0.54 0.21 0.62 
KNN 0.67 0.33 0.53 0.52 0.51 0.66 0.27 0.52 

DT 0.65 0.40 0.60 0.61 0.60 0.60 0.21 0.60 
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Figure 9. Classifiers as points on ROC curve 

 

 
 

Figure 10. ROC-AUC for different classifiers 

 

 

5. CONCLUSION 

This research analyzed seven machine learning models, "logistic regression, support vector 

machines, K-Nearest Neighbor, decision trees, random forests, Naïve Bayes, and neural networks," to assess 

efficacy in breast cancer diagnosis and prognosis using two distinct datasets. Careful pre-processing, like 

balancing and imputation, enabled robust evaluation. The Wisconsin dataset saw top performance from KNN 

at 99% accuracy, leveraging adaptability to complex relationships. However, Logistic Regression better 

handled the categorical tumor predictions on the broader dataset. Varying results emphasize the influence of 

nuanced dataset differences on model effectiveness for this critical domain. Continued advancement of 

tailored machine learning techniques can substantially augment expert detection and decision-making 
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regarding interventions. Yet translating promising techniques into clinical practice requires addressing 

interpretability and context-awareness to produce equitable and accurate AI tools that earn practitioner trust. 

Overall, this analysis highlights that machine learning is maturing rapidly but deep learning algorithms can 

be applied for better predictions. 
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