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 All rectifier circuits are divided into single-phase and three-phase, according 
to the number of phases of the supply network, single-cycle and two-cycle. 

Voltage conversion, which can vary in both frequency and amplitude, is 

carried out by two series-connected converters-a rectifier (AC/DC converter) 

and an inverter (DC/AC converter). Using simulation techniques in the 
MATLAB-based Simulink environment, the blocks used were taken from 

the sim power system/Simscape library. Models of semiconductor converters 

with pulse-width modulation based on one power thyristor switch and a 

semiconductor converter with pulse-frequency modulation based on four 
power thyristor switches have been developed. Experiments prove the 

correctness of the models. The results of a study of the developed models of 

semiconductor converters with pulse-width and pulse-frequency modulation 

are presented. The static and dynamic characteristics of pulsed 
semiconductor converters are presented. Analysis of the static characteristics 

of pulse converter circuits showed that the rigidity of the output 

characteristics of converters with pulse-frequency modulation is higher than 

that of converters with pulse-width modulation. The results of assessing the 
efficiency of pulsed semiconductor converters based on the analysis of static 

output characteristics allow us to conclude that the efficiency of a 

semiconductor converter with pulse-frequency modulation is more than one 

percent higher than that of a semiconductor converter with pulse-width 
modulation. 
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1. INTRODUCTION 

A huge amount of electric motor control methods exist [1]-[3], but the mostly applied is the pulse-

width modulation (PWM) [4]-[6]. This method allows to create required shape, frequency and amplitude of 

motor voltage, to achieve high smoothness and large range of controlling angular velocity with changing load 

in wide range [7]-[9]. Frequency regulation, starting and braking are among the most economical methods of 

controlling squirrel-cage asynchronous motors. Currently, frequency control is considered appropriate when 

powering motors from static frequency converters (FCs), covered in [10], [11]. To regulate an asynchronous 
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electric motor (IM) of medium and low power, an inverter with PWM is used more often than others 

according to work [12]. Such inverters provide electric drives with: 

 Increased controllability. 

 Speed due to the ability to obtain almost any required ratio of frequency and amplitude of the supply 

voltage. 

Along with the advantages, PWM inverters have a number of disadvantages indicated in [12]: 

 The voltage at the output of an inverter with PWM differs significantly from the sinusoidal voltage 

obtained when the IM is powered from a conventional alternating current network with a frequency of 50 

Hz, and this circumstance requires taking into account the presence of higher harmonics in the voltage 

curve supplied from the inverter to the IM. 

 The consequences of non-sinusoidal power supply include fluctuations in the electromagnetic force of 

blood pressure, an increase in eddy currents and mechanical resonances in the kilohertz range, which lead 

to increased noise and vibration. 

 Torque fluctuations and acoustic noise can be reduced by increasing the valve switching frequency. 

Modules with IGBT transistors have the following advantages: 

 The turn-on time is hundreds of nanoseconds to a few microseconds. 

 Multiple current overloads lasting up to 10 μs are allowed, which allows for their reliable protection at the 

control input according to [13]. 

 The IGBT is controlled by special driver chips with their own power and protection sources according to 

works [14], [15]. 

 Unfortunately, the PWM method has a number of disadvantages: efficiency drop, high cost of power 

switches (transistors), high electromagnetic noise [10]-[16]. 

But there is one more method of pulse controlling, namely control through frequency-pulse 

modulation (FPM). This method is implemented by using DC pulse-frequency convertor (PFC), which 

potentially has advantages over the PWM method [3]: high efficiency, low cost of power switches 

(thyristors), low electromagnetic noise [17]-[19]. 
 

 

2. METHOD 

In recent decades, it is impossible to imagine the modern branch of electrical engineering and 

household electrical engineering without the use of rectifiers. According to Sigala et al. [7] and Dovudov [9], 

to the type of power circuit, the rectifier is divided into single-phase and three-phase, according to the 

number of phases of the supply network, single-cycle and two-cycle. The voltage conversion from the input 

of the synchronous generator, which can change both in frequency and amplitude, is carried out by two 

series-connected converters - a rectifier (AC/DC converter) and an inverter (DC/AC converter). 
 

2.1.  Modeling the circuit of the pulse-width converter 

The PWM is the main control unit of the pulse-width converter. A pulse-width converter converts a 

DC voltage [1] into a pulse-type voltage signal, the average value of which (i.e., its constant component 

separated by filters in the load) can be adjusted. The principle of the PWC-based output voltage control is 

based on the periodic switching on and off of gate switches–transistors or thyristors. Figure 1 shows the basic 

PWM circuit [14] Figure 1(a) and the load voltage curve Figure 1(b).  
 

 

  
(a) (b) 

 

Figure 1. Basic PWM circuit (a) pulse-width modulated semiconductor converter and (b) load voltage 

diagrams at r-load  
 

 

The circuit consists of a VT1 transistor (IGBT), which operates in switch mode, power source (PS) 

and load (RL). Such a circuit provides only unipolar modulation. When the VT1 transistor is turned on (in 

switch mode) a positive voltage pulse is generated at the load. When the VT1 transistor is turned off, a 

voltage pause is formed at the load. 
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The most important parameter that characterizes the PWM operation is the pulsing ratio γ, which 

can be calculated using (1): 
 

𝛾 =
𝑡𝑜𝑛

𝑇
=

𝑡𝑜𝑛

𝑡𝑜𝑛+𝑡𝑜𝑓𝑓
 (1) 

 

where 𝑡𝑜𝑛 – the duration of the positive or negative voltage pulse applied to the load; 𝑡𝑜𝑓𝑓 – the 

duration of the pause; T – the period of PWM operation. 

The 𝑈𝐿𝑜𝑎𝑑 – γ curve is called the adjustment characteristic of the PWC [1], which can be calculated 

using (2): 
 

𝑈𝐿𝑜𝑎𝑑 = 𝑈𝑠𝑜𝑢𝑟 ∙ 𝛾 (2) 
 

where ULoad – voltage of load, Usour. – power supply voltage, γ – duty cycle. 

The average value of the load voltage can be controlled by changing γ. The maximum load voltage 

is obtained when the pulsing ratio value γ =1. A single transistor PWC circuit Figure 1(a) is modeled in 

MATLAB environment, using blocks from the Simulink/SimPowerSystem library [15]-[21]. The method of 

modeling and the correct operation of the PWC model is proved by an experiment, which is described in 

detail in [14]. 

The PWC model, which is shown in Figure 2, contains: a voltage control unit (UС), which operates 

within the 0-10 V range; a PWM control system unit (CSU PWM) and a PWM power circuit unit, consisting 

of an IGBT transistor, an active load RL and a power (source) block, represented as a battery with a voltage 

rating of 100 V. The developed PWC model is unique in the way that it simultaneously displays the 

efficiency of the converter in addition to the load current and voltage. This allows to save time on calculating 

the power and efficiency characteristics of the PWM circuit. Figure 3 shows diagrams of currents and 

voltages under active load, as well as diagrams of current and voltage in the transistor VT1. These diagrams 

were obtained as a result of modeling for active load with duty cycles of 0.6. 
 

 

 
 

Figure 2. The model of the PWM converter 
 

 

 
 

Figure 3. Dynamic performance of PWC operation with the pulsing ratio γ=0,6: 1) load current (IL); 2) load 

voltage (UL); 3) current (IVT) of the transistor VT1; 4) voltage (UVT) of the transistor VT 
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2.2.  Modelling the circuit of the frequency-pulse converter 

PFC output voltage Figure 4. The diagram shown in Figure 4(a) is an example of a power PFC.  

In fact, this is a diagram of a single-phase inverter, the load RL is connected to the DC (pulsating) side. The 

PFC output voltage is controlled by changing the output PWC frequency with constant pulse time (width) of 

output voltage ton, in other words the pause time is changed Figure 4(b). 

 

 

  
(a) (b) 

 

Figure 4. PFC output voltage (a) power circuit frequency-pulse converter and (b) load voltage diagrams at  

R-load 

 

 

The diagram consists of: VS1-VS4 – power thyristors, connected in bridge diagram; C – switching 

capacitor; L – switching coil; RL – active load. The circuit operates as follows. Control pulses alternately 

open switch of thyristor pairs VS1-VS4 and VS2-VS3. The switching capacitor C recharges following the 

operation principles of RLC circuits with one of thyristor pairs (VS1-VS4 or VS2-VS3).  

Main operation mode of the circuit Figure 4(a) is the mode of intermittent current on the load. In 

this case there might be natural switching of thyristors, that is those of working pair are switched off, when 

capacitor C is charged and current drops to zero. It should be noted, that this switching method is reliable. 

Similarly, the dependence of UL on frequency duty cycle f is referred to as regulation 

curve/characteristics of pulse frequency converter (PFC) which is calculated as follows: 

 

𝑈𝐿𝑜𝑎𝑑 = 𝑈𝑚𝑎𝑥 ⋅ 𝑓𝑟𝑒𝑙. (3) 

 

where 𝑈𝑚𝑎𝑥 – maximum output voltage of PFC, 𝑓𝑟𝑒𝑙. – relative frequency. The maximum voltage 

corresponds to maximal output-pulse frequency 𝑓𝑟𝑒𝑙. =
𝑓

𝑓𝑚𝑎𝑥.
. By changing f, the average load voltage can be 

regulated. 

Fully-controlled Bridge PFC model Figure 4(a) is developed by means of MATLAB software using 

Simulink/Simscape libraries Figure 5. The adequacy of the PFC model operation is proved by means of the 

experimental study, which is described in detail in [20]. PFC model consists of: 

 Control (regulation) block Uc – control voltage, which is within the interval from 2 V to 24 V. The 

frequency f reacts to Ur regulation accordingly. 

 The pulse generator (PG) block includes elements of Simscape library, which is shown in Figure 7. 

Simscape is the software tool which enables to rapidly create models of physical systems within the 

Simulink environment. The basic library of Simscape includes such sublibraries as: foundation library, 

driveline, electrical, fluids, and multibody. Simscape allows to model systems such as electric motors, bridge 

rectifiers, hydraulic actuators, and refrigeration systems, by assembling fundamental components into  

a schematic. 

Connecting lines in Simscape, a physical connection model is obtained by means of which the signal 

is transmitted. Connecting blocks in Simulink model, lines have arrows [22]-[25]. This means that signals are 

transmitted in one direction only, i.e. the energy flow is unidirectional. Unlike Simulink, in Simscape model, 

the lines that connect the physical elements do not have arrows and the energy flow is bi-directional. 

The main elements that are used in Simscape model for measurement are shown in Figure 6. They 

include current sensor and voltage sensor blocks, which are ideal sensors. The current and voltage sensor 

converts the current and voltage measured in any electrical branch into a physical signal which is 

proportional to the current and voltage. 
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Figure 5. PFC model 
 

 

 
 

Figure 6. The main elements in Simscape 
 

 

In order to convert a physical signal to a Simulink output or a Simulink input to a physical signal, 

the PS-Simulink converter and the Simulink-PS converter are used. These blocks convert a physical signal to 

a Simulink output signal and vice versa. The parameters of the elements that were used in the PG model are 

shown in Table 1. Transistors V1, V2 are n-p-n bipolar ones. 
 

 

 
 

Figure 7. Square wave generator model 
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Table 1. Parameters of the PFM model elements 
Ucontrol. Usource R1, R4 R2, R3 C1, C2 P1 

V kOmh nF кОм 

3∙∙∙24 6 0,1 10 140 5 

 

 

Pulse distributor (PD) block over control channels. The developed model of the PD block over 

control channels is shown in Figure 8. The input signal is square wave pulses of pre-determined frequency 

from PG block. Using the SR latch and NAND logic gates, the PD forms output square wave pulses with a 

180 degree shift and a frequency that is half the frequency of the PG. 

 

 

 
 

Figure 8. The model of PD block over control channels 

 

 

The voltage UPD1 is supplied to the control electrodes of the thyristors VS1 and VS4. 

Consequently, through the inductance L, the load RL and the capacitor C, current flows. In this case, the 

capacitor C is charged. When voltage UPD2 is supplied to unlock thyristors VS3 and VS2, capacitor C turns 

off thyristors VS1 and VS4 and the current will flow through inductance L and load RL. Capacitor C starts 

charging again. Thus, the turning on thyristors occurs when pulses are supplied from the DG block. The 

thyristors are turned off due to the discharge of the capacitor C. Figure 9 shows the diagrams of the formed 

square wave pulses. 

 

 

 
 

Figure 9. Diagrams of the formed square waves pulses 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1442-1451 

1448 

PFC power circuit block, which is shown in Figure 10, consists of thyristors VS1-VS4; load RL; 

commutation inductor L, connected in series with the load; commutating capacitor C connected to the middle 

of the bridge circuit; and 100 V power supply. 

 

 

 
 

Figure 10. PFC power circuit block 

 

 

3. RESULTS AND DISCUSSION 

The developed PFC model as well as the PWC model, simultaneously calculates and shows the load 

current, load voltage and converter efficiency. Figure 11 shows the dynamic characteristics of the PFC 

operation at a frequency f = 145 Hz (γ = 0.6), obtained as a result of simulation. As can be seen from Figure 11, 

at low frequencies there is a pause between the pulses and at the frequency which corresponds to nominal 

operating condition of the converter, the pulses are superimposed on each other. It results in nonlinear static 

control characteristic of the PFC [20]. 

 

 

 
 

Figure 11. Dynamic characteristics of the PFC operation at a frequency of f = 145 Hz (γ = 0.6): the first 

graph- load current (IL); the second graph- load voltage (UR); the third graph- voltage (Uak) of the thyristor 

VS4; the fourth graph - voltage (Uac) of the thyristor VS3 
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3.1.  Comparison of PWC and PFC characteristics 

For the purpose of the PWC and PFC energy indicators comparison the studies were carried out on 

the developed models. The results are shown in Figures 12 and 13. 

 

 

  
  

Figure 12. Output characteristics of pulse 

converters at rated operating conditions 

Figure 13. Efficiency of pulse converters at 

nominal operating conditions 
 
 

Figure 12 shows the output characteristics of the PWC and PFC at nominal operation. As can be 

seen, the output characteristic of the PFC has more robustness than the output characteristic of the PWM. 

This is due to the fact that the transistor has a higher internal resistance than the thyristor. Figure 13 shows 

the characteristics of the pulse converters efficiency at nominal operating conditions. It is obvious that the 

efficiency of the PFC exceeds the one of the PWC by 1.33%. This is due to the fact that the output 

characteristic of the PFC has more robustness than the output characteristic of the PWM. 
 

 

4. CONCLUSION  

Models of converters with pulse width and pulse frequency modulation were studied using the 

MATLAB/Simulink software environment using blocks from the SimPowerSystem/Simscape libraries. The 

results obtained based on the developed research models are presented in the form of converters with 

dynamic and static characteristics. The analysis of the obtained characteristics showed that the use of the 

PFM control method increases the efficiency of the energy characteristics and thereby increases the 

efficiency of pulse converters in comparison with the PWM control method. The obtained models can be 

used for the purpose of study the control of DC electric drives. 
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