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Abstract 
In this work, the analysis of a filter consisting of the Brain Emotional Learning (BEL) algorithm is 

presented. The inner workings of the BEL filter are based on emotional learning model in mammalians 
brain. The BEL filter is implemented in simulation for the purpose of sensor fusion in a ground vehicle. In 
simulation, the signals from a Global Positioning System (GPS) and an Inertial Navigation System (INS) 
are integrated, in order to accurately track the trajectory of a ground vehicle around a track. The BEL filter 
is provided with some sensory signal and reward signal, subsequently the filter seeks to diminish noise 
from both sensing units, thus eliminating tracking error. A performance comparison between the BEL filter, 
and the more commonly utilized Kalman filter is presented. The BEL filter demonstrated robustness to 
uncertainties from the sensing units, it adapts quickly with dynamical change in the plant, and has small 
computational cost. The BEL filter demonstrated to be effective in sensor fusion. 
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1. Introduction 
The purpose of a navigation system in a vehicle is to determine its current location, 

velocity, and direction; in other words determine the state of the vehicle. This information is 
usually  obtained from multiple sensors on the vehicle. The sensors commonly used are a GPS, 
and an INS. 

A GPS is a sensor that provides positioning data relative to an earth-centered 
coordinate system. It uses at least 4 or more satellites with an unobstructed line of sight to 
calculate position, time, and velocity. GPS receivers can obtain signals from GPS satellites 
under any weather conditions, and anywhere on Earth. GPS are available for civilian and 
military applications. They are highly accurate in three-dimensional positioning. GPS position 
errors are bounded and are dependent on the availability of GPS satellites [1]. 

An INS sensor uses acceleration, and rotational sensors to continuously calculate 
position, orientation, and velocity. Although, its primary output is position relative to an earth-
centered coordinate system. In contrast to a GPS sensor, the INS position errors are not 
bounded, and grow with time. In addition, the errors are dependent on the quality of its inertial 
sensors [1]. 

The integration of GPS and INS are in efforts to combat each of the sensing unit’s 
weaknesses. For example, INS are initially given position and velocity information from another 
source, and subsequently it generates its own updated position and velocity by integrating 
information received from its inertial sensors. However, any small errors which arise in the 
measurement are integrated into gradually larger errors. By integrating the INS with a GPS, the 
GPS capability for online calibration and error estimation will help mitigate the INS integration 
drift. Conversely, in the event that there is an obstruction to the line of sight between vehicle and 
satellites, and the GPS is unable to perform. The INS can perform as the short-term backup 
when GPS signals are unavailable. Therefore, as GPS and INS have complementary 
characteristics, their implementation is considered in an integrated approach [2]. 

As a result, the navigation system utilizes the output signals from these sensors and 
integrates them to obtain more precise information about the vehicle’s state. This process of 
integration is commonly referred to as sensor fusion. There are numerous methods to fuse INS 
and GPS, such as, loosely coupled or tightly coupled integration. In the majority of these 
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designs GPS and INS integration filter is usually some form of a Kalman filter [1], [3-6]. In most 
cases, an extended Kalman filter is implemented with inertial errors as its state to obtain 
satisfactory performance. Kalman filter equations are optimal when sensor observations are 
unbiased with white noise. Also, there is a heavy computational cost in Kalman filter 
implementation, due to constant updating of Kalman gains.  

In this paper, we present a BEL filter integration approach to achieve lower 
computational effort but with competitive performance measures compared to the more 
commonly used Kalman filter. 

The paper is organized as follows. The sensor integration BEL filter is discussed in 
section 2. Implementation of the BEL filter and simulation setup is discussed in section 3. 
Simulations results are presented in section 3. Lastly, conclusions are made in the section 4. 

 
 

2. Proposed Method 
The proposed filter utilized for sensor fusion consists of the BEL model. BEL is a 

network model which simulates the brain emotional learning process of mammalian was 
developed by Balkenius & Moren [7, 8]. It is a computational model of the amygdala, 
Orbitofrontal Cortex (OFC), thalamus, and sensory input cortex, which are known to be 
responsible for emotional learning and processing.  

Researchers in control have taken interest in utilizing this BEL model as a feedback 
controller. This is motivated by the fact that research in psychology, AI, and cognitive science 
identify the reciprocal influences of emotion and cognition [8]. This is motivated by the fact that 
research in psychology, AI, and cognitive science identify the reciprocal influences of emotion, 
cognition and decision making [8]. Therefore, Lucas et al. [9], first introduced the Brain 
Emotional Learning Based Intelligent Controller (BELBIC) which consisted of the BEL model but 
utilized as direct adaptive feedback control. BELBIC has been implemented in many 
engineering systems applications, such as, power system [10], aerospace launch vehicle [11], 
queue management [12], flight simulation servo system [13], and other uncertain nonlinear 
systems [14]. In all applications the BEL model demonstrated robustness to uncertainties, on-
line adaptability, and small computational cost. However, there is not any research in 
implementing BEL as a filter for sensor fusion.     

The inner working of BEL is an action generation system founded on sensory input and 
reward signal [14]. The emotional learning occurs primarily in the amygdala. The learning of the 
amygdala is given in the following equation: 

 

 max 0,Rea iG S w A           (1)   

 
Where Ga is the amygdala gain,  is the amygdala learning rate, Si is the sensory input, Rew is 
the reward signal, and A is the amygdala output. The max term is for making the learning in the 
amygdala monotonic, implying that learning in amygdala should be permanent. 
 Similarly, the learning rule in OFC is shown in the following equation: 
 

 Reo iG S MO w            (2) 

 
Where Go is the OFC gain,  is the OFC learning rate, and MO is the model output, calculated 

as in Equation (3): 
 

MO A O            (3) 
 
In which, O is the output of the OFC. The model first receives the sensory input, Si , then the 
model calculates the internal signals of the amygdala and OFC, these signals are calculated as 
in Equation (4) and (5): 
 

a iA G S           (4) 

 

o iO G S           (5) 
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The amygdala learns to predict and react to give an emotional signal. While the OFC system 
detects the difference between the expected system’s prediction and the actual received 
emotional signal [15]. 
 Controllers based on the BEL model demonstrated robustness to uncertainties, while 
being simple and having low computational cost. To utilize this version of the BEL model as a 
filter, it is important to understand that BEL model in essence converts two sets of inputs (Si and 
Rew) into a decision signal as its output. Therefore, it is important to implement this BEL model 
in an appropriate manner so that input signals and output signals have the proper 
interpretations for the problem at hand. 
 
 
3. Research Method 

In this paper, a simulation of a ground vehicle around a track is utilized to draw 
performance comparison between Kalman Filter and the BEL filter. The performance of these 
two filter is based on their ability reduce noise from GPS as the vehicle trajectory is tracked. 
Two tracks are simulated, a circular and figure-8 track. The vehicle is modeled as traveling at a 
velocity of 5 m/s. The trajectory of the vehicle on the track is given by the following equation [1]: 

 

 
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δ      (6) 

 
Where S is the track scaling parameter, h is the crossover height,  is mean angular speed, 
and   is an arbitrary phase angle. This model is implemented in MATLAB, which also 

calculates vehicle velocity, acceleration attitude, and attitude rates. The trajectories simulated 
can be seen in Figure 1. Both simulated tracks have changes in elevation of 10 meters.  
 
 

  
 

Figure 1. Figure-8 Track (left) and Circular Track (right) 
 
 

 The vehicle dynamic model consist of a Type2 Tracking Model. This tracking model can 
estimate position, velocity in three dimensions, given the appropriate measurements. The 
tracker utilizes a host vehicle dynamic model with zero-mean white noise acceleration, 
unbounded steady-state mean squared velocity and unbounded steady-state mean squared 
position variations. The full tracking model is implemented, which include three position 
components and three velocity components. The necessary Kalman filter components for a 3-
dimension Type2 tracking filter are the following: 
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Where P0 is the estimation uncertainty covariance matrix, Φ  is the state-transition matrix, and 
Q is the covariance of dynamic disturbance noise. 

The Kalman filter utilized for the performance comparison is of the following form: 
 

   
T TK PH HPH R          (10) 

 
Where K is the Kalman gain, H is measurement sensitivity matrix, and R is the sensor noise 
covariance matrix.  

 
 1 1 1  x x K z Hx          (11) 

 
Where z is measurement vector, which is composed of the computed position, velocity and 
clock errors from the GPS. 

 
 P P KHP          (12)  

 
The implementation follows the above equations in chronological order. First, the 

Kalman gain is computed by Equation (10); Followed by the corrected state estimation in 
Equation (11); lastly, the corrected covariance matrix is computed by Equation (12). To finalize 
the Kalman filter implementation, the temporal updates are computed by the following 
equations: 
 
 1 1x Φx          (13) 

 
  TP ΦPΦ Q          (14) 
 

The implementation of BEL model as a filter is chosen to be in similar manner as the 
Kalman filter implementation. This done in efforts to draw an accurate performance comparison 
between BEL filter and Kalman filter. However, slight differences arise due to the fact that BEL 
model is originally designed for descriptive purpose with no enigeering application in mind. 
Therefore, it is upto the designer to appropriately select the sensory input signal and reward 
signal in accordance to engineering application. 

For the implementation of the BEL filter in this study, we selected the sensory input (Si) 
to be of the form (15): 

 

iS   1z x          (15) 

 
Where x1 is the vehicle states obtained from the vehicle trajectory model. GPS data can be 
obtain from a number of satellites, ranging from 4 to 29. In addition, GPS noise can be 
simulated to be of different noise distributions. 
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The reward function (Rew) is selected with objective of minimzing the difference 
between GPS and Measured. This function plays an important role in BEL filter. The filter 
attempts to increase the reward while minimizing the sensory input. The implemented reward 
function is given in Equation (16): 

 

1 2Re iw K S K           (16) 

 
Where K1 and K2 are gains. The reward function gains are positive real numbers. From 
Equation (16), it can be seen that BEL filter obtains maximum reward when the sensory input is 
zero. Closely noticing Equation (15), the sensory input is in essence, an error signal. The BEL 
filter tries to diminish the the error. 

To carry out the simulation a number of parameters had to be selected. First, the 
learning rates for the amygdala and OFC were selected to be 1 6e   , and 1 4e   , 

respectively. The OFC learning rate was chosen to be slightly larger to make the OFC learn the 
error in the amygdala quicker than the amygdala itself to eliminate the error. The other 
parameters were the gains in the Rew function, which were selected to be K1 = 0.001 and K2 = 
1.  These parameters and learning rates were selected through trial and error to improve BEL 
filter performance. 

All simulations are carried out in MATLab. The number of satellites for GPS is varied. In 
addition, GPS noise distributions are varied. Performance measures for both Kalman and BEL 
filter are average RMS error for postions, velocity, and average Central Processing Unit (CPU) 
time.   
 
 
4. Results and Analysis 

The first scenario simulated is with a circular track. The simulation time is selected to be 
0.2 hours. The first 100 seconds of the simulation data is not sampled to allow settling time. The 
simulation is executed 100 iterations. The number of satellites for this scenario is 29. 
Performance of Kalman and BEL filter are obtained, results are shown in Table 1. 
 
 

Table 1. Performance Comparison for Circular Track Simulation 

 
 
 

The above table demonstrates that BEL filter was superior in diminishing positional 
errors. This trend was maintained through all GPS noise distributions. In some cases, it even 
performed better than Kalman filter in reducing velocity errors. A significant result obtained is 
that BEL performed better in reducing the computational cost across all noise distribution cases. 
In the worst case, BEL CPU time was half of the Kalman filter best CPU time.  

The second scenario simulated is with a figure-8 track. This simulation was conducted 
in similar fashion as the first scenario. The figure-8 track simulated a more demanding tracking 
trajectory. Table 2 illustrates the results obtained from the second simulation scenario. 

Position N [m] Position E [m] Position D [m] Velocity N [m/s] Velocity E [m/s] Velocity D [m/s]

N(0,2) 1.145 10.316 7.779 5.373 3.206 3.333 0.101

U(‐1,1) 1.268 8.131 6.045 4.772 3.031 3.228 0.092

Exp(2) 1.165 10.819 8.305 8.245 3.192 3.335 0.157

Tri(‐1,0,1) 1.133 7.854 5.721 4.749 3.027 3.212 0.089

Wei(1,2) 1.174 8.258 5.951 5.750 3.026 3.219 0.105

Position N [m] Position E [m] Position D [m] Velocity N [m/s] Velocity E [m/s] Velocity D [m/s]

N(0,2) 0.586 4.915 5.017 4.934 4.908 4.998 4.919

U(‐1,1) 0.575 2.276 2.861 2.714 2.768 2.868 2.710

Exp(2) 0.593 4.925 4.885 4.894 4.927 4.935 4.911

Tri(‐1,0,1) 0.540 1.937 2.010 1.907 1.944 2.014 1.907

Wei(1,2) 0.598 4.264 4.018 4.169 4.353 4.250 4.235

GPS Noise 

Distribution

Avg. CPU 

Time [sec]

Avg. RMS Error

Kalman Filter

GPS Noise 

Distribution

Avg. CPU 

Time [sec]

Avg. RMS Error

BEL Filter
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Table 2. Performance Comparison for Figure-8 Track Simulation 

 
 
 

Results obtained from the Figure-8 track simulation are similar to the ones obtained in 
the previous scenario, but with slightly higher CPU time and positional errors for both Kalman 
filter and BEL filter implementations. The figure-8 track appears to be no more rigorous than the 
circular track. For further performance comparison between the two filter implementations, a 
more interesting scenario is analyzed. 
 To conclude, the effects of the number of satellittes available is analyzed. As previously 
discussed, the number of satellites is a determental factor for GPS to accurately calculate 
position and velocity of a vehicle. Therefore, for this last scenario the number of satellites is 
varied from 4 to 29. Their effects on the Kalman and BEL filter performance are obtained, 
shown in Table 3. 
 
 

Table 3. Effects of Number of Satellites on Kalman and BEL Filter Implementation 

 
 
 

In the majority of the cases the RMS error for position and velocity increased as the 
number of satellites decreased for both filter implementations. However, the increments in the 
BEL implementation were small in comparison to the Kalman filter. In the Kalman filter 
implementation, the RMS error for position and velocity appear to grow exponentially when the 
satellites decreased from 14 to 4. The results demonstrate that the BEL filter is less sensitive to 
the effects of the number of satellites available. In addition, the CPU time increased as the 
number of satellites increased for both filter implementations. Although, this effect was more 

Position N [m] Position E [m] Position D [m] Velocity N [m/s] Velocity E [m/s] Velocity D [m/s]

N(0,2) 1.195 11.259 8.241 5.481 1.421 1.233 0.100

U(‐1,1) 1.190 9.113 6.413 4.932 1.032 0.879 0.090

Exp(2) 1.198 11.429 8.451 8.470 1.458 1.211 0.152

Tri(‐1,0,1) 1.158 8.674 6.196 5.034 1.002 0.858 0.089

Wei(1,2) 1.202 8.829 6.201 5.837 0.998 0.864 0.109

Position N [m] Position E [m] Position D [m] Velocity N [m/s] Velocity E [m/s] Velocity D [m/s]

N(0,2) 0.588 4.936 5.035 4.929 4.915 5.006 4.932

U(‐1,1) 0.581 2.823 2.822 2.796 2.830 2.837 2.799

Exp(2) 0.591 4.939 4.928 4.905 4.957 4.943 4.854

Tri(‐1,0,1) 0.543 2.006 1.972 1.992 2.009 1.995 1.992

Wei(1,2) 0.594 4.264 4.092 4.180 4.375 4.158 4.267

GPS Noise 

Distribution

Avg. CPU 

Time [sec]

Avg. RMS Error

Kalman Filter

GPS Noise 

Distribution

Avg. CPU 

Time [sec]

Avg. RMS Error

BEL Filter

Position N [m] Position E [m] Position D [m] Velocity N [m/s] Velocity E [m/s] Velocity D [m/s]

4 0.466 414.316 2694.149 258.880 2.096 6.439 0.075

9 0.620 29.285 30.007 29.869 1.831 1.695 0.129

14 0.767 14.058 8.515 6.582 1.712 1.258 0.106

19 0.920 12.259 8.546 6.077 1.527 1.258 0.105

24 1.011 12.051 8.294 5.774 1.519 1.242 0.104

29 1.195 11.259 8.241 5.481 1.421 1.233 0.100

Position N [m] Position E [m] Position D [m] Velocity N [m/s] Velocity E [m/s] Velocity D [m/s]

4 0.341 5.054 4.950 4.955 5.090 4.960 4.909

9 0.380 4.977 4.947 4.934 4.952 4.981 4.941

14 0.437 4.929 4.897 4.916 4.937 4.941 4.914

19 0.476 4.932 4.921 4.915 4.923 4.929 4.924

24 0.539 4.935 4.998 4.924 4.920 5.125 4.930

29 0.588 4.936 5.035 4.929 4.915 5.006 4.932

Kalman Filter: Normal Noise Distribution

No. Sats
Avg. CPU 

Time [sec]

Avg. RMS Error

No. Sats
Avg. CPU 

Time [sec]

Avg. RMS Error

BEL Filter: Normal Noise Distribution
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noticeable for the Kalman filter implementation. Lastly, a similar trend was obtained in that the 
BEL filter was superior at diminishing positional errors, while the Kalman filter was superior at 
reducing the velocity errors. An important note about this scenario, the effects on the number of 
satellites was carried out with a Gaussian GPS noise distribution. 
 The results from this study demonstrated the BEL qualities as a filter. It successfully 
filtered the noise from GPS and was able to accurately follow the trajectory of a vehicle around 
a track. It demonstrated robustness to a variety of noise distributions, and all this with 
significantly less computational cost. 
 
 
5. Conclusion 

For navigation, one of the most important task is to be able to accurately obtain the 
vehicle’s state from an assortment of sensors. In this paper a new filter is developed, which is 
based on BEL model is investigated. In simulation, the BEL model is implemented as a filter in 
efforts to reduce GPS sensor noise and to accurately obtain vehicle’s states as it is traveling 
around a track. The results from this study demonstrate the BEL qualities as a filter. It 
performed better at reducing positional RMS error while having significantly less computational 
cost than the traditional Kalman filter implementation. In addition, results show that BEL filter is 
less sensitive to the effects of the number of satellites available to accurately obtain GPS data. 
However, the BEL filter performance is greatly affected by the selection of the sensory input and 
reward signal. Further research in the characterization of the sensory input and reward signal 
can further enhance the BEL filter performance. 

In conclusion, the BEL filter can be used in the real time application for filtering sensor 
noise on account of its robustness to noise uncertainty, and small computational cost.   
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