
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 2, May 2024, pp. 888~899

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i2.pp888-899  888

Journal homepage: http://ijeecs.iaescore.com

FPGA-base object tracking: integrating deep learning and

sensor fusion with Kalman filter

Abdoul Moumouni Harouna Maloum1, Nicasio Maguu Muchuka2, Cosmas Raymond Mutugi Kiruki3
1Department of Electrical Engineering, Pan African University Institute for basic Sciences Technology and Innovation, Nairobi, Kenya

2Department of Electrical and Control Engineering, Egerton University, Nakuru, Kenya
3Department of Electrical and Information Engineering, University of Nairobi, Nairobi, Kenya

Article Info ABSTRACT

Article history:

Received Jan 18, 2024

Revised Feb 22, 2024

Accepted Feb 23, 2024

 This research presents an integrated approach for object detection and

tracking in autonomous perception systems, combining deep learning

techniques for object detection with sensor fusion and field programmable

gate array (FPGA-based) hardware implementation of the Kalman filter.

This approach is suitable for applications like autonomous vehicles, robotics,

and augmented reality. The study explores the seamless integration of pre-

trained deep learning models, sensor data from a depth camera, real-sense

D435, and FPGA-based Kalman filtering to achieve robust and accurate 3D

position and 2D size estimation of tracked objects while maintaining low

latency. The object detection and feature extraction are implemented on a

central processing unit (CPU), and the Kalman filter sensor fusion with

universal asynchronous receiver transmitter (UART) communication is

implemented on a Basys 3 FPGA board that performs 8 times faster

compared to the software approach. The experimental result provides the

hardware resource utilization of about 29% of look-up tables, 6% of lookup

table RAMs (LUTRAM), 15% of Flip-flops, 32% of Block-RAM, 38% of

DSP blocks operating at 100 MHz, and 230400 baud rates for the UART.

The whole FPGA design executes at 2.1 milliseconds, the Kalman filter

executes at 240 microseconds, and the UART at 1.86 milliseconds.

Keywords:

Autonomous vehicle

FPGA

Kalman filter

Object tracking

Sensor fusion

This is an open access article under the CC BY-SA license.

Corresponding Author:

Abdoul Moumouni Harouna Maloum

Department of Electrical Engineering

Pan African University Institute for basic Sciences Technology and Innovation

Nairobi, Kenya

Email: moumouni.abdoul@students.jkuat.ac.ke

1. INTRODUCTION

Autonomous perception systems have a crucial role in various applications, including autonomous

vehicles, robotics, and augmented reality. These systems heavily rely on the timely and accurate estimation

of object states within their environment [1], [2]. These system face challenges in maintaining accuracy

amidst environmental variations, occlusions, and dynamic elements. Real-time processing demands prompt

decision-making under latency constraints, while semantic comprehension and context awareness necessitate

the interpretation of observed data [3], [4]. Perception systems necessity mandates the use of sensor fusion

techniques, enabling the integration of data from multiple sensors. Additionally, leveraging computer

accelerators facilitates quick estimation, enhancing the efficiency and responsiveness of these systems [5], [6].

Sensor’s fusion improves autonomous perception systems by combining data from multiple sensors,

enhancing the system’s understanding of the environment. By integrating information from cameras, light

detection and ranging (LiDAR), radar, and inertial measurement unit (IMU), sensor fusion compensates for

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-base object tracking: Integrating deep learning and sensor… (Abdoul Moumouni Harouna Maloum)

889

individual sensor limitations and uncertainties. This comprehensive data enables more robust object

perception, even in challenging conditions, and facilitates redundancy and cross-validation for improved

reliability. Ultimately, sensor fusion enhances the perception capabilities of autonomous systems, enabling

more informed decision-making and confident navigation in complex environments [7], [8].

The Kalman filter is a widely utilized algorithm for multi-sensor fusion, essential for integrating

data from various sensors to estimate system states accurately. Employing iterative prediction and correction

steps, it navigates the noise and uncertainty inherent in sensor data, offering reliable estimates. Its versatility

makes it invaluable in applications with diverse measurement errors or disturbances, notably in dynamic

systems like navigation and control. However, its computational intensity, stemming from matrix operations

and iterative computations, can be a challenge, particularly in scenarios with large and complex state spaces

or limited computational resources where real-time processing is critical [9], [10]. The common method used

in implementing sensor fusion algorithms on processing units such as central processing units (CPUs) or

microcontroller units (MCUs) faces the challenge of meeting real-time requirements in the dynamic and

complex environments of autonomous vehicles, robotics, and control systems. The computational demand

arises from the need to process data from diverse environmental sensors, in real-time. These systems must

perform complex calculations, such as Kalman filtering for sensor fusion, to accurately perceive, interpret,

and respond to the surrounding environment. However, the limitations in processing power and speed of

traditional CPUs and MCUs pose constraints on achieving the stringent real-time deadlines required for

ensuring the safety and efficiency of these intelligent systems [11], [12]. As a result, there is a growing

interest in exploring more advanced hardware solutions, such as field programmable gate array (FPGAs) or

dedicated accelerators, to address the evolving demands of real-time sensor fusion applications [13], [14].

FPGAs offer flexibility and adaptability for various applications, such as sensor fusion in autonomous

systems. Their parallel processing capabilities enable the execution of various sensor fusion algorithms and

manage high-speed data transport for real-time perception. Their ability to interpret complex signals and

extract features is crucial for accurate world perception [15].

Kumar et al. [16], proposed a point-to-pixel multi-sensor data fusion algorithm for autonomous

vehicle forward collision warning system. By combining LiDAR 2D and stereo camera image pixel data, the

system detects, classifies, and tracks the objects obstructions in real-time. Results from the proposed

algorithm reduces root mean square error (RMSE) to 93.8 mm and MAE to 83.45 mm, and reduces

uncertainty and variance. A multi-sensor platform was used in [17] to mitigate the LIDAR and camera

semantic fusion problems. A three-dimensional semantic voxelized map that considers the uncertainty of all

relevant processes was used. The method offered a probabilistic pipeline, motion compensation, and heuristic

label probabilities for semantic images. It also provides a perspective validation mechanism, generating

probabilistic projections from camera images to LIDAR point clouds. This approach addressed the challenges

of the probabilistic handling of complex issues in camera and LiDAR projection and fusion. A decentralized

target tracking method using an asynchronous camera network was studied in [18]. The cameras exchange

the line-of-sight vectors and time tags, local decentralized Kalman information and particle filtering for target

state estimation. The performance of the technique was measured using the average RMSE of 3D position

estimates. Farag [19], developed a real-time road object detection and tracking (LR ODT) technique for self-

driving cars by combining radar and lidar sensors data abroad an ego vehicle. They compared the

performance of the extended and unscented Kalman filtering processes. Simulation results showed that the

unscented Kalman filter outperforms the extended Kalman filter in terms of RMSE.

Jahromi et al. [20] proposed a hybrid multi-sensor fusion pipeline for autonomous vehicles,

combining conventional methods the extended Kalman filter and encoder-decoder-based fully convolutional

neural network. This approach enables environment perception, road segmentation, obstacle detection, and

tracking. The framework also includes radar, LiDAR, and camera sensors for object detection and

identification. The method achieves an average tracking RMSE of 0.065 and 0.061 for x and y axis.

Garcia-Huerta et al. [21] studied and compared two linear models for estimating the position and attitude of

precision aerial delivery systems (PADSs) using a 6-DOF model and a double integrator model. Simulation

of both models using a sensor fusion approach and a Kalman filter, showed performance in smooth flights

and modest acceleration changes. A discrete-time minimum variance unbiased estimator (MVUE) that is

resistant to unidentified factors and aids in unbiased state estimates is suggested in [22]. They suggested

unknown parameter estimation and a sequential state technique for railway track geometry inspection,

inspired by the MVUE. An investigation of the simulation highlights the significance of creating a decoupled

unknown parameter estimator, a state estimation framework, and a state-space realization for track geometry

inspection. Also, the MVUE’s estimation gain aids in unbiased state estimates. Qiu et al. [23], presented the

interacting multiple models and the adaptive Kalman filter (IMMCFAKF) for a target tracking algorithm in

underwater acoustic sensor networks (UASNs). The centralized fusion adaptive Kalman filter (CFAKF)

algorithm is first found by adding an adaptive forgetting factor to the best centralized fusion Kalman filter

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 2, May 2024: 888-899

890

method. Numerical simulation offered that IMMCFAKF provided better tracking accuracy as compared to

other single Kalman filter process.

Babu and Parthasarathy [24], the multi-dimensional Kalman filter (MDKF) technique for object

tracking and motion detection was proposed by the authors. In comparison to cutting-edge tracking

algorithms learned on benchmarks that are accepted by the industry, the numerical evaluation of the proposed

tracking method produces tracking results that are competitive. Additionally, the Xilinx ZynqTM-7000

System-on-a-Chip was used to implement MDKF. When it was implemented on a SoC, the performance is

two times faster than when software is used. The experimentation’s finding indicates that at 140 MHz and

780 mW of power usage, the resource utilization of around 61.43% of block RAMs, 90.09% of digital signal

processors (DSPs), 83.27% of look-up tables (LUT), and 82.35% of logic cells. Li and Li [25], developed an

FPGA system for industrial ultrasonic applications, consisting of an adaptive Kalman filter (AKF) module

and a feedback sensing circuit module. The system correlates temperature and pressure, generating the best

working frequency based on feedback voltage, current, and phase difference. Results indicated that the

system noise was effectively mitigated by the FPGA modules which leads to clear and smooth feedback

recognition. Castells-Rufas et al. [26], conducted a survey on computer vision in automotive applications,

focusing on FPGA-based works. They highlighted the ongoing efforts to improve safety and meet technical

and regulatory requirements for self-driving cars. They highlighted the need for complex algorithms, which

often require large computing platforms and processing speeds that fall short of real-time requirements.

They suggested that latency-critical algorithms are often implemented on FPGA devices.

Based on the reviewed available literature, there are problems of estimation accuracy in real time

perspective of autonomous perception systems and robustness against noise interference. This paper

investigates the approach that combining the advantage of deep learning object detection, Kalman filter

sensor fusion for accurate object state estimation and FPGA-based accelerator that reduce the latency.

The proposed FPGA-based sensor fusion aims to guarantee the system’s delivery of accurate, rapid, and

effective object state estimation. The remaining of the paper contains system modelling and experimentation in

section 2. Section 3 presents the results and discussion. Section 4 concludes the work.

2. SYSTEM MODELING AND EXPERIMENTATION

The implementation of the system involves modelling and experimentation procedures. The processes

of the Kalman Filter sensor fusion designing, sensor calibration, python designing, FPGA implementation and

experimentation are explained in detailed. Also, the model equations used in the study are fully provided.

2.1. Kalman filter sensor fusion design

The extended Kalman filter state equation [27] is presents in (1):

𝑋𝑘 = 𝑓(𝑥𝑘−1, 𝑈𝑘−1) + 𝑊𝑘−1 (1)

extended Kalman filter measurement information equation [27]:

𝑍𝑘 = ℎ(𝑥𝑘)+ 𝑉𝑘 (2)

in kinematic constant velocity model [28]:

{

𝑥𝑎,𝑘 = 𝑥𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1
�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1
�̈�𝑎,𝑘 = 0

 (3)

where �̈�𝑎,𝑘 is acceleration and ∆𝑇 is sampling period. Since an assumption of perfect constant velocity is

unrealistic for real world applications; the realistic process model is given as (4):

{
𝑥𝑎,𝑘 = 𝑥𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +

∆𝑇2

2
𝑤𝑥,𝑘−1

�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑥,𝑘−1
�̈�𝑎,𝑘 = 0

 (4)

where �̈�𝑎,𝑘 = 𝑤𝑥,𝑘−1 piecewise constant white acceleration, can be describe as by a zero-mean Gaussian

white noise as (5).

𝑤𝑥,𝑘−1 = �̈�𝑎,𝑘−1~𝑁(0, 𝜎𝑥,𝑘−1
2) (5)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-base object tracking: Integrating deep learning and sensor… (Abdoul Moumouni Harouna Maloum)

891

With this assumption of constant velocity, the model state equations of object being tracked are as

follows: the estimation state are: 3D position (x, y, x), implicit 3D velocity (�̇�, �̇�, �̇�) and 2D size (heigh and width):

{

 𝑥𝑎,𝑘 = 𝑥𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +

∆𝑇2

2
𝑤𝑥,𝑘−1

𝑦𝑎,𝑘 = 𝑦𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +
∆𝑇2

2
𝑤𝑦,𝑘−1

𝑧𝑎,𝑘 = 𝑧𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +
∆𝑇2

2
𝑤𝑧,𝑘−1

�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑥,𝑘−1
�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑦,𝑘−1
�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑧,𝑘−1
ℎ𝑎,𝑘 = ℎ𝑎,𝑘−1 + 𝑤ℎ,𝑘−1

𝑤ℎ𝑎,𝑘 = 𝑤𝑎,𝑘−1 +𝑤𝑤ℎ,𝑘−1

 (6)

where
∆𝑇2

2
𝑤𝑥,𝑘−1,

∆𝑇2

2
𝑤𝑦,𝑘−1, and

∆𝑇2

2
𝑤𝑧,𝑘−1 are process noise for x, y and z position coordinate, ∆𝑇𝑤𝑥,𝑘−1,

∆𝑇𝑤𝑦,𝑘−1, and ∆𝑇𝑤𝑧,𝑘−1 are process noise for x, y, and z indirect velocity coordinate, and 𝑤ℎ,𝑘−1, and

𝑤𝑤𝑑𝑡,𝑘−1 are process noise for height, and width size coordinate.

After equations linearization and matrix formatting, and there is no external control input 𝑈𝑘−1 = 0.
the extended Kalman filter sensor fusion state as (7):

𝑋𝑘 = 𝑓(𝑥𝑘−1) + 𝑊𝑘−1 (7)

[

𝑥𝑎,𝑘
𝑦𝑎,𝑘
𝑧𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
ℎ𝑎,𝑘
𝑤ℎ𝑎,𝑘]

 =

[

1 0 0 ∆𝑇 0 0 0 0
0 1 0 0 ∆𝑇 0 0 0
0 0 1 0 0 ∆𝑇 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

[

𝑥𝑎,𝑘−1
𝑦𝑎,𝑘−1
𝑧𝑎,𝑘−1
�̇�𝑎,𝑘−1
�̇�𝑎,𝑘−1
�̇�𝑎,𝑘−1
ℎ𝑎,𝑘−1
𝑤ℎ𝑎,𝑘−1]

+

[

 (∆𝑇

2
2⁄)𝑤𝑥,𝑘−1

(∆𝑇
2
2⁄)𝑤𝑦,𝑘−1

 (∆𝑇
2
2⁄)𝑤𝑧,𝑘−1

∆𝑇𝑤𝑥,𝑘−1
∆𝑇𝑤𝑦,𝑘−1
∆𝑇𝑤𝑧,𝑘−1
 𝑤ℎ,𝑘−1
𝑤𝑤ℎ,𝑘−1]

 (8)

𝑋𝑘 = 𝐹𝑘−1 𝑋𝑘−1 + 𝑊𝑘−1 (9)

process noise covariance 𝑄𝑘−1:

𝑄𝑘−1 = 𝐶𝑜𝑛𝑣(𝑊𝑘−1) = 𝐸[𝑊𝑘−1𝑊𝑘−1
𝑇] (10)

where 𝐸[𝑊𝑘−1𝑊𝑘−1
𝑇] is the expected vale or mean of 𝑊𝑘−1𝑊𝑘−1

𝑇 and 𝑊𝑘−1
𝑇 is the transpose of 𝑊𝑘−1:

𝑄𝑘−1 = 𝐶𝑜𝑛𝑣(𝑊𝑘−1) = 𝐸[𝑊𝑘−1𝑊𝑘−1
𝑇] (11)

=

[

(∆𝑇4 4⁄)𝜎𝑤𝑥

2 0 0 (∆𝑇3 2⁄)𝜎𝑤𝑥
2 0 0 0 0

0 (∆𝑇4 4⁄)𝜎𝑤𝑦
2 0 0 (∆𝑇3 2⁄)𝜎𝑤𝑦

2 0 0 0

0 0 (∆𝑇4/4)𝜎𝑤𝑧
2 0 0 (∆𝑇3 2⁄)𝜎𝑤𝑧

2 0 0

(∆𝑇3 2⁄)𝜎𝑤𝑥
2 0 0 ∆𝑇2𝜎𝑤𝑥

2 0 0 0 0

0 (∆𝑇3 2⁄)𝜎𝑤𝑦
2 0 0 ∆𝑇2𝜎𝑤𝑦

2 0 0 0

0 0 (∆𝑇3 2⁄)𝜎𝑧
2 0 0 ∆𝑇2𝜎𝑤𝑧

2 0 0

0 0 0 0 0 0 𝜎ℎ
2 0

0 0 0 0 0 0 0 𝜎𝑤𝑤ℎ
2

]

 (12)

where from the derivation of 𝑄𝑘−1:

 𝐸[𝑊𝑥,𝑘−1,𝑊𝑥,𝑘−1] = 𝜎𝑤𝑥
2 , 𝐸[𝑊𝑦,𝑘−1,𝑊𝑦,𝑘−1] = 𝜎𝑤𝑦

2 , 𝐸[𝑊𝑧,𝑘−1,𝑊𝑧,𝑘−1] = 𝜎𝑤𝑧
2 , 𝐸[𝑊ℎ,𝑘−1,𝑊ℎ,𝑘−1] =

 𝜎𝑤ℎ
2 , and 𝐸[𝑊𝑤ℎ,𝑘−1,𝑊𝑤ℎ,𝑘−1] = 𝜎𝑤𝑤ℎ

2 ;

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 2, May 2024: 888-899

892

where 𝜎𝑤𝑥
2 is the variance (𝜎𝑤𝑥 = √𝜎𝑤𝑥

2 the standard deviation).

 𝐸[𝑊𝑥,𝑘−1,𝑊𝑦,𝑘−1] = 𝐸[𝑊𝑥,𝑘−1,𝑊𝑦,𝑘−1] = 𝐸[𝑊𝑥,𝑘−1,𝑊𝑧,𝑘−1] = 0, because they are uncorrelated,

similar to 𝐸[𝑊ℎ,𝑘−1,𝑊𝑤ℎ,𝑘−1] = 0;

The derivation of 𝐻𝑘 and 𝑅𝑘, 𝐻𝑘, and 𝑅𝑘 is derived using the approach used for 𝐹𝑘−1 and 𝑄𝑘−1 derivation.

The observation at time k is described in (13):

{

𝑍𝑥,𝑘 = 𝑥𝑎,𝑘 + 𝑣𝑥,𝑘
𝑍𝑦,𝑘 = 𝑦𝑎,𝑘 + 𝑣𝑦,𝑘
𝑍𝑧,𝑘 = 𝑧𝑎,𝑘 + 𝑣𝑧,𝑘

𝑍ℎ,𝑘 = ℎ𝑎,𝑘 + 𝑣ℎ,𝑘
𝑍𝑤ℎ,𝑘 = 𝑤ℎ𝑎,𝑘 + 𝑣𝑤ℎ,𝑘

 (13)

where 𝑍𝑥,𝑘, 𝑍𝑦,𝑘, and 𝑍𝑧,𝑘 are position measurement from centroid of an object detection box projected on

depth image at time k, and 𝑍ℎ,𝑘, and 𝑍𝑤ℎ,𝑘 are detected object size (height and width) measurement from

detection box in color image (RGB) coordinate at time k, 𝑣𝑥,𝑘 , 𝑣𝑦,𝑘, 𝑣𝑧,𝑘, 𝑣ℎ,𝑘, and 𝑣𝑤ℎ,𝑘are observation

noise to 𝑍𝑥,𝑘, 𝑍𝑦,𝑘, 𝑍𝑧,𝑘, and 𝑍ℎ,𝑘, and 𝑍𝑤ℎ,𝑘 respectively which are basically zero-mean Gaussian white noise

for instance 𝑣𝑥,𝑘~𝑁(0, 𝜎𝑧𝑥,𝑘
2), the state space model in the previous equations are represented using the

following state space model.

[

𝑍𝑥,𝑘
𝑍𝑦,𝑘
𝑍𝑧,𝑘
𝑍ℎ,𝑘
𝑍𝑤ℎ,𝑘]

=

[

1 0 0 0 0 0 0 0
0
0
0

1
0
0

0
1
0

0
0
0

0 0 0 0
0 0 0 0
0 0 1 0

0 0 0 0 0 0 0 1]

[

𝑥𝑎,𝑘
𝑦𝑎,𝑘
𝑧𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
ℎ𝑎,𝑘
𝑤ℎ𝑎,𝑘]

+

[

𝑣𝑥,𝑘
𝑣𝑦,𝑘
𝑣𝑧,𝑘
𝑣ℎ,𝑘
𝑣𝑤ℎ,𝑘]

 (14)

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑉𝑘 (15)

The 𝐻𝑘 is arranged in such a way that it maps the state space into the observation space 𝑍𝑘 can be expressed

as: 𝑍𝑘 =𝐻𝑘.𝑋𝑘 + 𝑣𝑘.

The expression of 𝑅𝑘 can be obtained by taking the covariance of 𝑉𝑘 as in (16) and (17):

𝑅𝑘 = 𝑐𝑜𝑣(𝑉𝑘) = 𝐸[𝑉𝑘 , 𝑉𝑘
𝑇] (16)

𝑅𝑘 =

[

𝜎𝑣𝑥
2 0 0 0 0

0 𝜎𝑣𝑦
2 0 0 0

0
0
0

0
0
0

𝜎𝑣𝑧
2

0
0

0
𝜎𝑣ℎ
2

0

0
0

𝜎𝑣𝑤ℎ
2
]

 (17)

where 𝐸[𝑉𝑥,𝑘 , 𝑉𝑦,𝑘] = 0 , 𝐸[𝑉𝑥,𝑘 , 𝑉𝑦,𝑘] = 0, 𝐸[𝑉𝑥,𝑘, 𝑉𝑧,𝑘] = 0, 𝐸[𝑉ℎ,𝑘, 𝑉𝑤ℎ,𝑘] = 0 and so on because they are

uncorrelated.

Figure 1 shows function block diagram of Kalman filter sensor fusion used in this design, which

combines noisy measurements from RGB and depth sensors after measurement extraction with a predictive

model to estimate an optimal and more accurate state of a system. It dynamically adjusts the weight given to

each sensor’s data, considering uncertainties, and blends this information to enhance overall estimation

precision. This iterative process continuously refines the system’s state estimate based on the latest sensor

inputs and predicted values, making it a powerful tool for object state estimation. The Figure 1 is an extended

Kalman filter sensor fusion functional block diagram.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-base object tracking: Integrating deep learning and sensor… (Abdoul Moumouni Harouna Maloum)

893

Figure 1. Extended Kalman filter sensor fusion functional block

2.2. Sensor’s calibration

In this project, two types of calibration techniques were used to convert 2D sizes to real-world units

and determine 3D object positions: camera reference object calibration and calibration using a checkerboard

pattern as shown in Figure 2. Camera calibration involves determining the intrinsic and extrinsic parameters

of a camera to enhance image measurement accuracy. The first calibration method involves using a reference

object to compute the pixel metric ratio. The second method entails capturing images of known geometric

patterns, such as a checkerboard, from various angles. Mathematical models are then applied to minimize the

disparity between observed and expected image points, refining both the camera’s internal and external

parameters.

Figure 2. Reference and checkboard sensors calibration

2.3. Python implementation

In this research, the pretrained Pytorch Mobile-Net V3 SSD-Lite object detection model was utilized

for color image object detection. This lightweight model combines the MobileNetV3 architecture for feature

extraction with the single shot multi-box detector framework for object detection. It balances accuracy and

computational efficiency, predicting bounding boxes and class scores at multiple scales. This model is ideal

for on-device applications and scenarios with limited computational resources, maintaining competitive

detection performance on standard benchmarks like COCO [29]. The Python part consists of RGB and depth

image preprocessing. It starts by receiving images from the sensors, synchronizing them, and configuring the

resolution, passing the RGB image for object detection, projecting the detected object on the depth image,

extracting the object’s 3D position and 2D size with the sensor calibration parameters, packaging the object

measurement to be sent to the FPGA through the UART communication protocol, and then receive the

estimated object state for the display as shown in Figure 3.

Figure 3. Python part flow diagram

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 2, May 2024: 888-899

894

2.4. FPGA implementation

The FPGA part consisted of the UART communication interface and the extended Kalman filter

sensor fusion. The design and implementation of the Kalman filter were first developed in Python with the

preprocessing part for the sensor noise covariance matrix parameters fine-tuned with the real-sense D435.

Finally, extended Kalman filters for sensor fusion with the same parameters as those of Python model were

developed and optimized in Vivado HLS C++ for conversion to the RTL level (Verilog). In order to validate

the Vivado design, data was recorded from the Python that combined preprocessing Kalman filters sensor

fusion and used it in the Vivado HLS C++ testbench. The universal asynchronous receiver transmitter

(UART) is a communication protocol used between the FPGA and CPU. Data is received in big-endian byte

order from the CPU. The Xilinx AXI UARTLITE Slave IP Core 2.0 is used with custom master verilog code

that controls and initiates communication between the extended Kalman filter sensor fusion slave IP and

UARTLITE slave IP AXI-lite interface to receive, construct, process (estimation), package, and transmit data

to the PC as shown in Figure 4. Following simulation validation, implementation on the Basys 3 Xilinx

FPGA board was executed. The Basys 3 FPGA board’s UART and Kalman filter sensor fusion

implementation underwent rigorous testing to ensure functionality and reliability. Figure 5 illustrates a

hardware-in-loop test with a CPU (Python) that validated the UART and Kalman filter implementation’s

efficacy and robustness, confirming its ability to interface with external components and execute

communication tasks accurately.

Figure 4. FPGA part flow diagram

Figure 5. FPGA-PC hardware-in-loop communication interface implementation test

2.5. Experimentation

Figure 6 illustrates the experimentation setup comprising a real-sense D435 RGB-D camera, an HP

EliteBook with an Intel Core i7 processor, 512 GB storage, and 8GB RAM, and a Basys 3 Xilinx Digelent

FPGA board. The experiment involved utilizing the proposed RGB and depth preprocessing methods

developed in the Python environment, along with an FPGA-implemented extended Kalman filter sensor

fusion with the UART communication protocol. Performance evaluation was conducted using a known

object with a predefined position, size, and class.

Figure 6. Experimentation setup

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-base object tracking: Integrating deep learning and sensor… (Abdoul Moumouni Harouna Maloum)

895

3. RESULTS AND DISCUSSIONS

This section presents the results and discussions of the designed and experimentation system.

The discussion of the results begins by the system performance evaluation, Vivado implementation results

and finally the experimentation setup results. This is achieved from the Integration of the python design and

FPGA implementation of Kalman filter sensor fusion.

3.1. System performance evaluation

The graphs in Figures 7-10 are for the overall system performance evaluation, where the blue curve

is the noisy input from the sensors, the orange curve is the Python model output, the green curve is for the

C++ HLS model, and the red curve for the Verilog model output for estimation and RMSE. Each state of the

object has two graphs, the first graph is for all platform (Python, HLS C++, and Verilog) input/output against

time and the second graph is for all platform RMSE against time. Figures 7 and 8 are for object height and

width states for the three platforms where in the estimation graph the curves start near to the origin (0,0)

because of the initialization parameters. Figure 9 is for object distance measurement from sensors and

estimation graph from all platform, and Figure 10 is for distance estimation RMSE graph. The performance

of the proposed method was evaluated across three different platforms: Python IDE, Vivado HLS C++, and

Vivado Verilog. The results analysis revealed that the maximum root means square error (RMSE) for object

position ranged from 0 mm to 10 mm across all the platforms as shown in Figure 10, with the Vivado Verilog

model achieving an average RMSE close to 5 mm. Similarly, for object width, the maximum RMSE varied

from 0 mm to 50 mm, with the Vivado Verilog implementation demonstrating an RMSE approaching 0.0

mm as shown in Figure 8 width RMSE graph. Additionally, the maximum RMSE for object height ranged

from 0 mm to 35 mm, again with Vivado Verilog exhibiting an RMSE close to 0.0 mm as shown in Figure 7.

These results indicates that the Vivado Verilog implementation consistently achieved superior accuracy

compared to the Python IDE and Vivado HLS C++.

Figure 7. Graphs of object height measurement and

estimation vs time and RMSE vs time

Figure 8. Graphs of object width measurement and

estimation vs time and RMSE vs time

Figure 9. Graph of object distance measurement, and

estimation vs time

Figure 10. Graph of object distance RMSE vs time

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 2, May 2024: 888-899

896

3.2. Vivado implementation result

Figure 11 illustrates the Vivado design and implementation simulation process. The ‘clk’ represents

the clock frequency set at 100 MHz, ‘rst’ indicates reset, ‘rx’ and ‘tx’ are designated for UART

communication, facilitating data transmission and reception. ‘cons_x’ to ‘cons_w’ pertain to data

construction post-reception, while ‘wkf_start’, ‘kf_idle’, ‘kf_done’, and ‘kf_ready’ control the extended

Kalman filter IP core. The system begins by receiving data through UART input ‘rx’. Upon data reception,

the master custom constructs the received data and triggers the Kalman filter with ‘wkf_start’ to initiate

estimation. When the ‘kf_done’ signal is asserted, processing concludes. The data is then packaged into big-

endian format and transmitted through UART output ‘tx’. Successful simulation demonstrates a latency of

2.1 ms. This encompasses 930 µs for data reception, 240 µs for processing, and an additional 930 µs for

transmission. The developed and optimized Vivado HLS C++ equivalent of the Python model underwent

validation using recorded data from Python experiments to confirm the design’s accuracy. Following

C-synthesis and co-simulation, the Kalman filter was exported to Vivado for simulation, synthesis, and

implementation. Successful implementation of the UART communication protocol and Kalman filter sensor

fusion on a Basys 3 FPGA as presented in Figure 12 utilized efficiently specific hardware resources of 29%

of LUT, 6% of LUTRAM, 15% of Flip-flops, 34% BRAM, 38% of DSP, 4% of I/O, and 3% of BUFG while

maintaining a clock frequency of 100 MHz the resource allocation demonstrates effective optimization

considering the available FPGA resources and operating frequency on FPGA board with total-on-chip power

consumption of 1.074 w where 0.074 w is device static power as shown in Figure 13.

The comparison presented in Table 1 demonstrates that the proposed implementation exhibits

favourable performance in terms of latency, hardware utilization with consideration of available hardware

resource in each used FPGA device, and power consumption. The hardware resource utilization was provided

by the Vivado software after synthesis and implementation during the bitstream generation. The estimation

latency was measured from the Vivado post synthesis and post implementation simulation, and the power

consumption using was measured using the combination of Vivado and Xilinx power estimator (XPE).

Figure 11. Vivado testbench FPGA design simulation

Figure 12. System resource utilisation

Figure 13. Power consumption summary

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-base object tracking: Integrating deep learning and sensor… (Abdoul Moumouni Harouna Maloum)

897

Table 1. Results comparison of the suggested method with the other existing works
Literature Method Device

family
Part

number
LUT
(%)

DSP
(%)

Flip-
flops

(%)

BRAM
(%)

Max working
Frequency

(MHz)

estimation
latency

(ms)

Power
consumpti

on (mw)

Jerrah et al.

[30]

EKF Artix-7 XC7A100T 30 12.0

8

23.55 _ 12.89 _ 4100

Iqbal et al.

[31]

Mean-shift +

KF

UltraScale+

MPSoC

ZCU102 8.79 16.1

5

_ 32.89 _ 26.31 _

Babu and
Parthasarathy

[24]

MDKF Artix-7 XC7Z020 83.2
7

90.9 76.017 61.43 140
10.989

780

Proposed
method

EKFSF Artix-7 XC7A35T
CPG236

29 38 15 34 100 2.1 1074

3.3. Result of integration experiment

The results of object detection and feature extraction provide measurements by offering information

about the 2D size (height, width) and 3D position measurement, as well as classification of detected objects.

Figure 14 depicts images captured during the experimentation where the propose method integration

underwent testing and validation. The ‘Real_distance’ represents the ground truth distance, amd ‘Real_size’

(height and width) denotes the measured ground truth size of the objects during experimentation. The outputs

from the Kalman filter sensor fusion FPGA implementation include ‘Est_size,’ ‘Est_position,’ and

‘Est_distance’. The experimentation of the proposed method showed average distance RMSE 0.0036,

average height RMSE of 0.01 and average width RMSE of 0.01 for estimation accuracy and robustness

during the performance evaluation, while maintaining low execution time in FPGA implementation.

Figure 14. Integration of object detection and FPGA-based tracking

4. CONCLUSION

The proposed integration of deep learning object detection and FPGA-based Kalman filter sensor

fusion demonstrates the applicability of the Kalman filter on FPGA for autonomous systems. The Kalman

filter demonstrates exceptional robustness against noise, as evidenced by its performance in our evaluation.

The RMSE for distance estimation is 0.0036, while for height and width, it is 0.01. These low RMSE values

indicate that the Kalman filter effectively filters out noise and provides accurate estimates of the object’s

position and dimensions. The FPGA accelerated the operation speed eight times faster than the software-

based design while maintaining acceptable accuracy. Using the same datatype of a single precision floating

point 32 bit, the accuracy remained the same for both FPGA and software-based implementations. Kalman

sensor fusion implemented on the Basys 3 FPGA board executes at 240 microseconds and the

communication interface at 1.86 milliseconds with a baud rate of 230400, all using efficient hardware

resources and running at 100 MHz. In comparison to the study by Babu on FPGA-based object tracking,

our proposed study not only confirms similar outcomes but also extends the research by focusing by

hardware resource utilization, achieving faster execution time, and enhancing the accuracy of object state

estimation. Additionally, to further enhance the flexibility and adaptability of the system, dynamic

reconfiguration capabilities of FPGAs can be explored, resulting in specific hardware modules being loaded

or unloaded based on the number of objects being detected.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 2, May 2024: 888-899

898

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to African Union Commission (AUC) for funding

this research.

REFERENCES
[1] Z. Zheng, Y. Cheng, Z. Xin, Z. Yu, and B. Zheng, “Robust perception under adverse conditions for autonomous driving based on

data augmentation,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 13916–13929, 2023,

doi: 10.1109/TITS.2023.3297318.

[2] X. Zhao, P. Sun, Z. Xu, H. Min, and H. Yu, “Fusion of 3D LIDAR and camera data for object detection in autonomous vehicle
applications,” IEEE Sensors Journal, vol. 20, no. 9, pp. 4901–4913, 2020, doi: 10.1109/JSEN.2020.2966034.

[3] F. Rovira-Mas, V. Saiz-Rubio, and A. Cuenca-Cuenca, “Augmented perception for agricultural robots navigation,” IEEE Sensors

Journal, vol. 21, no. 10, pp. 11712–11727, 2021, doi: 10.1109/JSEN.2020.3016081.
[4] P. Ghorai, A. Eskandarian, Y. K. Kim, and G. Mehr, “State estimation and motion prediction of vehicles and vulnerable road

users for cooperative autonomous driving: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10,

pp. 16983–17002, 2022, doi: 10.1109/TITS.2022.3160932.
[5] K. Wang, Y. Wang, B. Liu, and J. Chen, “Quantification of uncertainty and its applications to complex domain for autonomous

vehicles perception system,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–17, 2023,

doi: 10.1109/TIM.2023.3256459.
[6] Y. Zhao, C. Lei, Y. Shen, Y. Du, and Q. Chen, “Improving autonomous vehicle visual perception by fusing human gaze and

machine vision,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp. 12716–12725, 2023,

doi: 10.1109/TITS.2023.3290016.
[7] Z. Cai, J. Liu, W. Chi, and B. Zhang, “A low-cost and robust multi-sensor data fusion scheme for heterogeneous multi-robot

cooperative positioning in indoor environments,” Remote Sensing, vol. 15, no. 23, 2023, doi: 10.3390/rs15235584.

[8] F. Chen et al., “Sensor fusion-based anthropomorphic control of a robotic arm,” Bioengineering, vol. 10, no. 11, 2023,
doi: 10.3390/bioengineering10111243.

[9] Y. Yin, J. Zhang, M. Guo, X. Ning, Y. Wang, and J. Lu, “Sensor fusion of GNSS and IMU data for robust localization via

smoothed error state Kalman filter,” Sensors, vol. 23, no. 7, 2023, doi: 10.3390/s23073676.
[10] A. Wondosen, Y. Debele, S. K. Kim, H. Y. Shi, B. Endale, and B. S. Kang, “Bayesian optimization for fine-tuning EKF

parameters in UAV attitude and heading reference system estimation,” Aerospace, vol. 10, no. 12, 2023,

doi: 10.3390/aerospace10121023.
[11] J. Ma, L. Li, and C. Xu, “AutoRS: Environment-dependent real-time scheduling for end-to-end autonomous driving,” IEEE

Transactions on Parallel and Distributed Systems, vol. 34, no. 12, pp. 3238–3252, 2023, doi: 10.1109/TPDS.2023.3323975.

[12] K. Shu, N. D. Dao, W. Shi, and A. Khajepour, “Group frenet frame CAV path planning on highways,” IEEE Internet of Things
Journal, vol. 11, no. 4, pp. 6776–6787, 2024, doi: 10.1109/JIOT.2023.3314373.

[13] J. Bai, Z. Zeng, T. Wang, S. Zhang, N. N. Xiong, and A. Liu, “TANTO: an effective trust-based unmanned aerial vehicle

computing system for the internet of things,” IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5644–5661, 2023,
doi: 10.1109/JIOT.2022.3150765.

[14] M. K. Somesula, S. K. Mothku, and S. C. Annadanam, “Cooperative service placement and request routing in mobile edge

networks for latency-sensitive applications,” IEEE Systems Journal, vol. 17, no. 3, pp. 4050–4061, 2023,
doi: 10.1109/JSYST.2023.3260028.

[15] Y. Li, S. E. Li, X. Jia, S. Zeng, and Y. Wang, “FPGA accelerated model predictive control for autonomous driving,” Journal of

Intelligent and Connected Vehicles, vol. 5, no. 2, pp. 63–71, 2022, doi: 10.1108/JICV-03-2021-0002.
[16] A. D. Kumar, R. Karthika, and K. P. Soman, “Stereo camera and LIDAR sensor fusion-based collision warning system for

autonomous vehicles,” Advances in computational intelligence techniques, pp. 239–252, 2020,

doi: 10.1007/978-981-15-2620-6_17.
[17] J. S. Berrio, M. Shan, S. Worrall, and E. Nebot, “Camera-LIDAR integration: probabilistic sensor fusion for semantic mapping,”

IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7637–7652, 2022, doi: 10.1109/TITS.2021.3071647.
[18] T. M. Di Gennaro and J. Waldmann, “Sensor fusion with asynchronous decentralized processing for 3D target tracking with a

wireless camera network,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031194.

[19] W. Farag, “Kalman-filter-based sensor fusion applied to road-objects detection and tracking for autonomous vehicles,”
Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 235, no. 7, pp.

1125–1138, 2021, doi: 10.1177/0959651820975523.

[20] B. S. Jahromi, T. Tulabandhula, and S. Cetin, “Real-time hybrid multi-sensor fusion framework for perception in autonomous
vehicles,” Sensors (Switzerland), vol. 19, no. 20, p. 4357, 2019, doi: 10.3390/s19204357.

[21] R. A. Garcia-Huerta, L. E. González-Jiménez, and I. E. Villalon-Turrubiates, “Sensor fusion algorithm using a model-based

Kalman filter for the position and attitude estimation of precision aerial delivery systems,” Sensors (Switzerland), vol. 20, no. 18,
pp. 1–20, 2020, doi: 10.3390/s20185227.

[22] P. V. Patil, L. Vachhani, S. Ravitharan, and S. Chauhan, “Sequential state and unknown parameter estimation strategy and its

application to a sensor fusion problem,” IEEE Sensors Journal, vol. 22, no. 21, pp. 20665–20675, 2022,
doi: 10.1109/JSEN.2022.3199214.

[23] J. Qiu et al., “Centralized fusion based on interacting multiple model and adaptive kalman filter for target tracking in underwater

acoustic sensor networks,” IEEE Access, vol. 7, pp. 25948–25958, 2019, doi: 10.1109/ACCESS.2019.2899012.
[24] P. Babu and E. Parthasarathy, “FPGA implementation of multi-dimensional Kalman filter for object tracking and motion

detection,” Engineering Science and Technology, an International Journal, vol. 33, p. 101084, 2022,

doi: 10.1016/j.jestch.2021.101084.
[25] S. A. Li and C. Li, “FPGA implementation of adaptive Kalman filter for industrial ultrasonic applications,” Microsystem

Technologies, vol. 27, no. 4, pp. 1611–1618, 2021, doi: 10.1007/s00542-019-04456-6.

[26] D. Castells-Rufas et al., “A survey of FPGA-based vision systems for autonomous cars,” IEEE Access, vol. 10,
pp. 132525–132563, 2022, doi: 10.1109/ACCESS.2022.3230282.

[27] F. Govaers, Introduction and implementations of the Kalman filter. IntechOpen, 2019.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

FPGA-base object tracking: Integrating deep learning and sensor… (Abdoul Moumouni Harouna Maloum)

899

[28] T. Li et al., “An adaptive control method and learning strategy for ultrasound-guided puncture robot,” Electronics (Switzerland),
vol. 13, no. 3, 2024, doi: 10.3390/electronics13030580.

[29] A. Howard et al., “Searching for mobileNetV3,” in Proceedings of the IEEE International Conference on Computer Vision, 2019,

vol. 2019-October, pp. 1314–1324, doi: 10.1109/ICCV.2019.00140.
[30] A. Jarrah, A. K. Al-Tamimi, and T. Albashir, “Optimized parallel implementation of extended Kalman filter using FPGA,”

Journal of Circuits, Systems and Computers, vol. 27, no. 1, p. 1850009, 2018, doi: 10.1142/S0218126618500093.

[31] O. Iqbal et al., “Design and FPGA implementation of an adaptive video subsampling algorithm for energy-efficient single object
tracking,” in Proceedings - International Conference on Image Processing, ICIP, 2020, vol. 2020-Octob, pp. 3065–3069,

doi: 10.1109/ICIP40778.2020.9191146.

BIOGRAPHIES OF AUTHORS

Abdoul Moumouni Harouna Maloum is a research student who is currently

pursuing a Master’s degree at the Pan African University, Institute for basic Sciences,

Technology and Innovation, Kenya. He obtained the B.Sc. degree in Electrical Engineering

(Automation and Industrial computing) from the University Institute of Technology of Dan

Dicko Dankoulodo of Maradi, Niger. His research interest includes autonomous vehicle,

computer accelerator, computer vision, and VLSI. He can be contacted at email:

moumouni.abdoul@students.jkuat.ac.ke.

Nicasio Maguu Muchuka is a lecturer in the department of electrical and control

engineering at Egerton University Kenya. He obtained his Ph.D. in Electronic Engineering

from Stellenbosch University, Stellenbosch South Africa, an M.Sc. in Electronics from the

University of Mysore, Mysore India, and a B.Sc. in Physics, Maths, and Electronics from

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India. His current research

interest is in VLSI design, embedded systems design and applied artificial intelligence. He can

be contacted at email: nmuchuka@egerton.ac.ke.

Cosmas Raymond Mutugi Kiruki is a Lecturer at the department of Electrical

and Information Engineering at the University of Nairobi. He holds a B.Sc. and M.Sc. in

Electrical and Electronics Engineering from the University of Nairobi, having graduated in

2014 and 2017, respectively. He graduated with a Ph.D. in Electrical and Space Systems

Engineering from Kyushu Institute of Technology, Japan in 2021. His main research interests

include embedded and digital systems, nanosatellites and space systems, electronics, power

systems, and renewable energies. He can be contacted at email: rkiruki@uonbi.ac.ke.

https://orcid.org/0009-0009-1897-0199
https://orcid.org/0000-0002-2823-6280
https://scholar.google.com/citations?hl=en&user=7IPZatkAAAAJ
https://orcid.org/0009-0002-7083-7263

