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 This research presents an integrated approach for object detection and 

tracking in autonomous perception systems, combining deep learning 

techniques for object detection with sensor fusion and field programmable 

gate array (FPGA-based) hardware implementation of the Kalman filter. 

This approach is suitable for applications like autonomous vehicles, robotics, 

and augmented reality. The study explores the seamless integration of pre-

trained deep learning models, sensor data from a depth camera, real-sense 

D435, and FPGA-based Kalman filtering to achieve robust and accurate 3D 

position and 2D size estimation of tracked objects while maintaining low 

latency. The object detection and feature extraction are implemented on a 

central processing unit (CPU), and the Kalman filter sensor fusion with 

universal asynchronous receiver transmitter (UART) communication is 

implemented on a Basys 3 FPGA board that performs 8 times faster 

compared to the software approach. The experimental result provides the 

hardware resource utilization of about 29% of look-up tables, 6% of lookup 

table RAMs (LUTRAM), 15% of Flip-flops, 32% of Block-RAM, 38% of 

DSP blocks operating at 100 MHz, and 230400 baud rates for the UART. 

The whole FPGA design executes at 2.1 milliseconds, the Kalman filter 

executes at 240 microseconds, and the UART at 1.86 milliseconds. 
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1. INTRODUCTION 

Autonomous perception systems have a crucial role in various applications, including autonomous 

vehicles, robotics, and augmented reality. These systems heavily rely on the timely and accurate estimation 

of object states within their environment [1], [2]. These system face challenges in maintaining accuracy 

amidst environmental variations, occlusions, and dynamic elements. Real-time processing demands prompt 

decision-making under latency constraints, while semantic comprehension and context awareness necessitate 

the interpretation of observed data [3], [4]. Perception systems necessity mandates the use of sensor fusion 

techniques, enabling the integration of data from multiple sensors. Additionally, leveraging computer 

accelerators facilitates quick estimation, enhancing the efficiency and responsiveness of these systems [5], [6]. 

Sensor’s fusion improves autonomous perception systems by combining data from multiple sensors, 

enhancing the system’s understanding of the environment. By integrating information from cameras, light 

detection and ranging (LiDAR), radar, and inertial measurement unit (IMU), sensor fusion compensates for 

https://creativecommons.org/licenses/by-sa/4.0/
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individual sensor limitations and uncertainties. This comprehensive data enables more robust object 

perception, even in challenging conditions, and facilitates redundancy and cross-validation for improved 

reliability. Ultimately, sensor fusion enhances the perception capabilities of autonomous systems, enabling 

more informed decision-making and confident navigation in complex environments [7], [8]. 

The Kalman filter is a widely utilized algorithm for multi-sensor fusion, essential for integrating 

data from various sensors to estimate system states accurately. Employing iterative prediction and correction 

steps, it navigates the noise and uncertainty inherent in sensor data, offering reliable estimates. Its versatility 

makes it invaluable in applications with diverse measurement errors or disturbances, notably in dynamic 

systems like navigation and control. However, its computational intensity, stemming from matrix operations 

and iterative computations, can be a challenge, particularly in scenarios with large and complex state spaces 

or limited computational resources where real-time processing is critical [9], [10]. The common method used 

in implementing sensor fusion algorithms on processing units such as central processing units (CPUs) or 

microcontroller units (MCUs) faces the challenge of meeting real-time requirements in the dynamic and 

complex environments of autonomous vehicles, robotics, and control systems. The computational demand 

arises from the need to process data from diverse environmental sensors, in real-time. These systems must 

perform complex calculations, such as Kalman filtering for sensor fusion, to accurately perceive, interpret, 

and respond to the surrounding environment. However, the limitations in processing power and speed of 

traditional CPUs and MCUs pose constraints on achieving the stringent real-time deadlines required for 

ensuring the safety and efficiency of these intelligent systems [11], [12]. As a result, there is a growing 

interest in exploring more advanced hardware solutions, such as field programmable gate array (FPGAs) or 

dedicated accelerators, to address the evolving demands of real-time sensor fusion applications [13], [14]. 

FPGAs offer flexibility and adaptability for various applications, such as sensor fusion in autonomous 

systems. Their parallel processing capabilities enable the execution of various sensor fusion algorithms and 

manage high-speed data transport for real-time perception. Their ability to interpret complex signals and 

extract features is crucial for accurate world perception [15]. 

Kumar et al. [16], proposed a point-to-pixel multi-sensor data fusion algorithm for autonomous 

vehicle forward collision warning system. By combining LiDAR 2D and stereo camera image pixel data, the 

system detects, classifies, and tracks the objects obstructions in real-time. Results from the proposed 

algorithm reduces root mean square error (RMSE) to 93.8 mm and MAE to 83.45 mm, and reduces 

uncertainty and variance. A multi-sensor platform was used in [17] to mitigate the LIDAR and camera 

semantic fusion problems. A three-dimensional semantic voxelized map that considers the uncertainty of all 

relevant processes was used. The method offered a probabilistic pipeline, motion compensation, and heuristic 

label probabilities for semantic images. It also provides a perspective validation mechanism, generating 

probabilistic projections from camera images to LIDAR point clouds. This approach addressed the challenges 

of the probabilistic handling of complex issues in camera and LiDAR projection and fusion. A decentralized 

target tracking method using an asynchronous camera network was studied in [18]. The cameras exchange 

the line-of-sight vectors and time tags, local decentralized Kalman information and particle filtering for target 

state estimation. The performance of the technique was measured using the average RMSE of 3D position 

estimates. Farag [19], developed a real-time road object detection and tracking (LR ODT) technique for self-

driving cars by combining radar and lidar sensors data abroad an ego vehicle. They compared the 

performance of the extended and unscented Kalman filtering processes. Simulation results showed that the 

unscented Kalman filter outperforms the extended Kalman filter in terms of RMSE. 

Jahromi et al. [20] proposed a hybrid multi-sensor fusion pipeline for autonomous vehicles, 

combining conventional methods the extended Kalman filter and encoder-decoder-based fully convolutional 

neural network. This approach enables environment perception, road segmentation, obstacle detection, and 

tracking. The framework also includes radar, LiDAR, and camera sensors for object detection and 

identification. The method achieves an average tracking RMSE of 0.065 and 0.061 for x and y axis.  

Garcia-Huerta et al. [21] studied and compared two linear models for estimating the position and attitude of 

precision aerial delivery systems (PADSs) using a 6-DOF model and a double integrator model. Simulation 

of both models using a sensor fusion approach and a Kalman filter, showed performance in smooth flights 

and modest acceleration changes. A discrete-time minimum variance unbiased estimator (MVUE) that is 

resistant to unidentified factors and aids in unbiased state estimates is suggested in [22]. They suggested 

unknown parameter estimation and a sequential state technique for railway track geometry inspection, 

inspired by the MVUE. An investigation of the simulation highlights the significance of creating a decoupled 

unknown parameter estimator, a state estimation framework, and a state-space realization for track geometry 

inspection. Also, the MVUE’s estimation gain aids in unbiased state estimates. Qiu et al. [23], presented the 

interacting multiple models and the adaptive Kalman filter (IMMCFAKF) for a target tracking algorithm in 

underwater acoustic sensor networks (UASNs). The centralized fusion adaptive Kalman filter (CFAKF) 

algorithm is first found by adding an adaptive forgetting factor to the best centralized fusion Kalman filter 
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method. Numerical simulation offered that IMMCFAKF provided better tracking accuracy as compared to 

other single Kalman filter process. 

Babu and Parthasarathy [24], the multi-dimensional Kalman filter (MDKF) technique for object 

tracking and motion detection was proposed by the authors. In comparison to cutting-edge tracking 

algorithms learned on benchmarks that are accepted by the industry, the numerical evaluation of the proposed 

tracking method produces tracking results that are competitive. Additionally, the Xilinx ZynqTM-7000 

System-on-a-Chip was used to implement MDKF. When it was implemented on a SoC, the performance is 

two times faster than when software is used. The experimentation’s finding indicates that at 140 MHz and 

780 mW of power usage, the resource utilization of around 61.43% of block RAMs, 90.09% of digital signal 

processors (DSPs), 83.27% of look-up tables (LUT), and 82.35% of logic cells. Li and Li [25], developed an 

FPGA system for industrial ultrasonic applications, consisting of an adaptive Kalman filter (AKF) module 

and a feedback sensing circuit module. The system correlates temperature and pressure, generating the best 

working frequency based on feedback voltage, current, and phase difference. Results indicated that the 

system noise was effectively mitigated by the FPGA modules which leads to clear and smooth feedback 

recognition. Castells-Rufas et al. [26], conducted a survey on computer vision in automotive applications, 

focusing on FPGA-based works. They highlighted the ongoing efforts to improve safety and meet technical 

and regulatory requirements for self-driving cars. They highlighted the need for complex algorithms, which 

often require large computing platforms and processing speeds that fall short of real-time requirements.  

They suggested that latency-critical algorithms are often implemented on FPGA devices. 

Based on the reviewed available literature, there are problems of estimation accuracy in real time 

perspective of autonomous perception systems and robustness against noise interference. This paper 

investigates the approach that combining the advantage of deep learning object detection, Kalman filter 

sensor fusion for accurate object state estimation and FPGA-based accelerator that reduce the latency.  

The proposed FPGA-based sensor fusion aims to guarantee the system’s delivery of accurate, rapid, and 

effective object state estimation. The remaining of the paper contains system modelling and experimentation in 

section 2. Section 3 presents the results and discussion. Section 4 concludes the work. 
 

 

2. SYSTEM MODELING AND EXPERIMENTATION 

The implementation of the system involves modelling and experimentation procedures. The processes 

of the Kalman Filter sensor fusion designing, sensor calibration, python designing, FPGA implementation and 

experimentation are explained in detailed. Also, the model equations used in the study are fully provided. 
 

2.1.  Kalman filter sensor fusion design 

The extended Kalman filter state equation [27] is presents in (1): 
 

𝑋𝑘 = 𝑓(𝑥𝑘−1, 𝑈𝑘−1)  + 𝑊𝑘−1 (1) 
 

extended Kalman filter measurement information equation [27]: 
 

𝑍𝑘 = ℎ(𝑥𝑘)+ 𝑉𝑘  (2) 
 

in kinematic constant velocity model [28]: 
 

{

𝑥𝑎,𝑘  =  𝑥𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1
�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1
�̈�𝑎,𝑘  =  0

  (3) 

 

where �̈�𝑎,𝑘 is acceleration and ∆𝑇 is sampling period. Since an assumption of perfect constant velocity is 

unrealistic for real world applications; the realistic process model is given as (4): 

 

{
𝑥𝑎,𝑘 = 𝑥𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +

∆𝑇2

2
𝑤𝑥,𝑘−1

�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑥,𝑘−1
�̈�𝑎,𝑘 =  0

 (4) 

 

where �̈�𝑎,𝑘 = 𝑤𝑥,𝑘−1 piecewise constant white acceleration, can be describe as by a zero-mean Gaussian 

white noise as (5). 

 

𝑤𝑥,𝑘−1 = �̈�𝑎,𝑘−1~𝑁(0, 𝜎𝑥,𝑘−1
2 ) (5) 
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With this assumption of constant velocity, the model state equations of object being tracked are as 

follows: the estimation state are: 3D position (x, y, x), implicit 3D velocity (�̇�, �̇�, �̇�) and 2D size (heigh and width): 

 

{
 
 
 
 
 

 
 
 
 
 𝑥𝑎,𝑘  =  𝑥𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +

∆𝑇2

2
𝑤𝑥,𝑘−1

𝑦𝑎,𝑘 = 𝑦𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +
∆𝑇2

2
𝑤𝑦,𝑘−1

𝑧𝑎,𝑘  = 𝑧𝑎,𝑘−1 + ∆𝑇�̇�𝑎,𝑘−1 +
∆𝑇2

2
𝑤𝑧,𝑘−1

�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑥,𝑘−1
�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑦,𝑘−1
�̇�𝑎,𝑘 = �̇�𝑎,𝑘−1 + ∆𝑇𝑤𝑧,𝑘−1
ℎ𝑎,𝑘 = ℎ𝑎,𝑘−1 + 𝑤ℎ,𝑘−1

𝑤ℎ𝑎,𝑘 = 𝑤𝑎,𝑘−1 +𝑤𝑤ℎ,𝑘−1

 (6) 

 

where 
∆𝑇2

2
𝑤𝑥,𝑘−1, 

∆𝑇2

2
𝑤𝑦,𝑘−1, and 

∆𝑇2

2
𝑤𝑧,𝑘−1 are process noise for x, y and z position coordinate, ∆𝑇𝑤𝑥,𝑘−1, 

∆𝑇𝑤𝑦,𝑘−1, and ∆𝑇𝑤𝑧,𝑘−1 are process noise for x, y, and z indirect velocity coordinate, and 𝑤ℎ,𝑘−1, and 

𝑤𝑤𝑑𝑡,𝑘−1 are process noise for height, and width size coordinate. 

After equations linearization and matrix formatting, and there is no external control input 𝑈𝑘−1 = 0. 
the extended Kalman filter sensor fusion state as (7): 

 

𝑋𝑘 = 𝑓(𝑥𝑘−1)  +  𝑊𝑘−1 (7) 

 

[
 
 
 
 
 
 
 
 
𝑥𝑎,𝑘
𝑦𝑎,𝑘
𝑧𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
ℎ𝑎,𝑘
𝑤ℎ𝑎,𝑘]

 
 
 
 
 
 
 
 

 =  

[
 
 
 
 
 
 
 
1 0 0 ∆𝑇 0 0 0 0
0 1 0 0 ∆𝑇 0 0 0
0 0 1 0 0 ∆𝑇 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
𝑥𝑎,𝑘−1
𝑦𝑎,𝑘−1
𝑧𝑎,𝑘−1
�̇�𝑎,𝑘−1
�̇�𝑎,𝑘−1
�̇�𝑎,𝑘−1
ℎ𝑎,𝑘−1
𝑤ℎ𝑎,𝑘−1]

 
 
 
 
 
 
 
 
 
 

+ 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 (∆𝑇

2
2⁄ )𝑤𝑥,𝑘−1

( ∆𝑇
2
2⁄ )𝑤𝑦,𝑘−1

 (∆𝑇
2
2⁄ )𝑤𝑧,𝑘−1

∆𝑇𝑤𝑥,𝑘−1
∆𝑇𝑤𝑦,𝑘−1
∆𝑇𝑤𝑧,𝑘−1
 𝑤ℎ,𝑘−1
𝑤𝑤ℎ,𝑘−1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

 

𝑋𝑘 = 𝐹𝑘−1   𝑋𝑘−1    +  𝑊𝑘−1          (9) 

 

process noise covariance 𝑄𝑘−1: 

 

𝑄𝑘−1 = 𝐶𝑜𝑛𝑣(𝑊𝑘−1) = 𝐸[𝑊𝑘−1𝑊𝑘−1
𝑇 ] (10) 

 

where 𝐸[𝑊𝑘−1𝑊𝑘−1
𝑇 ] is the expected vale or mean of 𝑊𝑘−1𝑊𝑘−1

𝑇  and 𝑊𝑘−1
𝑇  is the transpose of 𝑊𝑘−1: 

 

𝑄𝑘−1 = 𝐶𝑜𝑛𝑣(𝑊𝑘−1) = 𝐸[𝑊𝑘−1𝑊𝑘−1
𝑇 ] (11) 

 

=

[
 
 
 
 
 
 
 
 
 
 
(∆𝑇4 4⁄ )𝜎𝑤𝑥

2 0 0 (∆𝑇3 2⁄ )𝜎𝑤𝑥
2 0 0 0 0

0 ( ∆𝑇4 4⁄ )𝜎𝑤𝑦
2 0 0 (∆𝑇3 2⁄ )𝜎𝑤𝑦

2 0 0 0

0 0 (∆𝑇4/4)𝜎𝑤𝑧
2 0 0 (∆𝑇3 2⁄ )𝜎𝑤𝑧

2 0 0

(∆𝑇3 2⁄ )𝜎𝑤𝑥
2 0 0 ∆𝑇2𝜎𝑤𝑥

2 0 0 0 0

0 (∆𝑇3 2⁄ )𝜎𝑤𝑦
2 0 0 ∆𝑇2𝜎𝑤𝑦

2 0 0 0

0 0 (∆𝑇3 2⁄ )𝜎𝑧
2 0 0 ∆𝑇2𝜎𝑤𝑧

2 0 0

0 0 0 0 0 0 𝜎ℎ
2 0

0 0 0 0 0 0 0 𝜎𝑤𝑤ℎ
2

]
 
 
 
 
 
 
 
 
 
 

 (12) 

 

where from the derivation of 𝑄𝑘−1: 

 

 𝐸[𝑊𝑥,𝑘−1,𝑊𝑥,𝑘−1] =  𝜎𝑤𝑥
2 , 𝐸[𝑊𝑦,𝑘−1,𝑊𝑦,𝑘−1] =  𝜎𝑤𝑦

2 , 𝐸[𝑊𝑧,𝑘−1,𝑊𝑧,𝑘−1] = 𝜎𝑤𝑧
2 , 𝐸[𝑊ℎ,𝑘−1,𝑊ℎ,𝑘−1] =

 𝜎𝑤ℎ
2 , and  𝐸[𝑊𝑤ℎ,𝑘−1,𝑊𝑤ℎ,𝑘−1] =  𝜎𝑤𝑤ℎ

2 ; 
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where 𝜎𝑤𝑥
2  is the variance (𝜎𝑤𝑥 = √𝜎𝑤𝑥

2  the standard deviation). 

 

 𝐸[𝑊𝑥,𝑘−1,𝑊𝑦,𝑘−1] =  𝐸[𝑊𝑥,𝑘−1,𝑊𝑦,𝑘−1] =  𝐸[𝑊𝑥,𝑘−1,𝑊𝑧,𝑘−1] = 0, because they are uncorrelated, 

similar to 𝐸[𝑊ℎ,𝑘−1,𝑊𝑤ℎ,𝑘−1] = 0; 

 

The derivation of 𝐻𝑘 and 𝑅𝑘, 𝐻𝑘, and 𝑅𝑘 is derived using the approach used for 𝐹𝑘−1 and 𝑄𝑘−1 derivation. 

The observation at time k is described in (13): 

 

{
 
 

 
 

𝑍𝑥,𝑘 = 𝑥𝑎,𝑘 + 𝑣𝑥,𝑘
𝑍𝑦,𝑘 = 𝑦𝑎,𝑘 + 𝑣𝑦,𝑘
𝑍𝑧,𝑘 = 𝑧𝑎,𝑘 + 𝑣𝑧,𝑘 

𝑍ℎ,𝑘 = ℎ𝑎,𝑘 + 𝑣ℎ,𝑘
𝑍𝑤ℎ,𝑘 = 𝑤ℎ𝑎,𝑘 + 𝑣𝑤ℎ,𝑘 

 (13) 

 

where 𝑍𝑥,𝑘, 𝑍𝑦,𝑘, and 𝑍𝑧,𝑘 are position measurement from centroid of an object detection box projected on 

depth image at time k, and 𝑍ℎ,𝑘, and 𝑍𝑤ℎ,𝑘 are detected object size (height and width) measurement from 

detection box in color image (RGB) coordinate at time k, 𝑣𝑥,𝑘  , 𝑣𝑦,𝑘, 𝑣𝑧,𝑘, 𝑣ℎ,𝑘, and 𝑣𝑤ℎ,𝑘are observation 

noise to 𝑍𝑥,𝑘, 𝑍𝑦,𝑘, 𝑍𝑧,𝑘, and 𝑍ℎ,𝑘, and 𝑍𝑤ℎ,𝑘 respectively which are basically zero-mean Gaussian white noise 

for instance 𝑣𝑥,𝑘~𝑁(0, 𝜎𝑧𝑥,𝑘
2 ), the state space model in the previous equations are represented using the 

following state space model. 

 

[
 
 
 
 
 
𝑍𝑥,𝑘
𝑍𝑦,𝑘
𝑍𝑧,𝑘
𝑍ℎ,𝑘
𝑍𝑤ℎ,𝑘]

 
 
 
 
 

=

[
 
 
 
 
1 0 0 0 0 0 0 0
0
0
0

1
0
0

0
1
0

0
0
0

0 0 0 0
0 0 0 0
0 0 1 0

0 0 0 0 0 0 0 1]
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑥𝑎,𝑘
𝑦𝑎,𝑘
𝑧𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
�̇�𝑎,𝑘
ℎ𝑎,𝑘
𝑤ℎ𝑎,𝑘]

 
 
 
 
 
 
 
 

+ 

[
 
 
 
 
𝑣𝑥,𝑘
𝑣𝑦,𝑘
𝑣𝑧,𝑘
𝑣ℎ,𝑘
𝑣𝑤ℎ,𝑘]

 
 
 
 

 (14) 

 

𝑍𝑘 = 𝐻𝑘𝑋𝑘  +  𝑉𝑘 (15) 

 

The 𝐻𝑘 is arranged in such a way that it maps the state space into the observation space 𝑍𝑘 can be expressed 

as: 𝑍𝑘 =𝐻𝑘.𝑋𝑘 + 𝑣𝑘. 

The expression of 𝑅𝑘 can be obtained by taking the covariance of 𝑉𝑘 as in (16) and (17): 

 

𝑅𝑘 = 𝑐𝑜𝑣(𝑉𝑘) = 𝐸[𝑉𝑘 , 𝑉𝑘
𝑇] (16) 

 

𝑅𝑘 =

[
 
 
 
 
 
𝜎𝑣𝑥
2 0 0 0 0

0 𝜎𝑣𝑦
2 0 0 0

0
0
0

0
0
0

𝜎𝑣𝑧
2

0
0

0
𝜎𝑣ℎ
2

0

0
0

𝜎𝑣𝑤ℎ
2
]
 
 
 
 
 

  (17) 

 

where 𝐸[𝑉𝑥,𝑘 , 𝑉𝑦,𝑘] = 0 , 𝐸[𝑉𝑥,𝑘 , 𝑉𝑦,𝑘] =  0, 𝐸[𝑉𝑥,𝑘, 𝑉𝑧,𝑘] = 0, 𝐸[𝑉ℎ,𝑘, 𝑉𝑤ℎ,𝑘] =  0 and so on because they are 

uncorrelated. 

Figure 1 shows function block diagram of Kalman filter sensor fusion used in this design, which 

combines noisy measurements from RGB and depth sensors after measurement extraction with a predictive 

model to estimate an optimal and more accurate state of a system. It dynamically adjusts the weight given to 

each sensor’s data, considering uncertainties, and blends this information to enhance overall estimation 

precision. This iterative process continuously refines the system’s state estimate based on the latest sensor 

inputs and predicted values, making it a powerful tool for object state estimation. The Figure 1 is an extended 

Kalman filter sensor fusion functional block diagram. 
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Figure 1. Extended Kalman filter sensor fusion functional block 

 

 

2.2.  Sensor’s calibration 

In this project, two types of calibration techniques were used to convert 2D sizes to real-world units 

and determine 3D object positions: camera reference object calibration and calibration using a checkerboard 

pattern as shown in Figure 2. Camera calibration involves determining the intrinsic and extrinsic parameters 

of a camera to enhance image measurement accuracy. The first calibration method involves using a reference 

object to compute the pixel metric ratio. The second method entails capturing images of known geometric 

patterns, such as a checkerboard, from various angles. Mathematical models are then applied to minimize the 

disparity between observed and expected image points, refining both the camera’s internal and external 

parameters. 

 

 

  
 

Figure 2. Reference and checkboard sensors calibration 

 

 

2.3.  Python implementation 

In this research, the pretrained Pytorch Mobile-Net V3 SSD-Lite object detection model was utilized 

for color image object detection. This lightweight model combines the MobileNetV3 architecture for feature 

extraction with the single shot multi-box detector framework for object detection. It balances accuracy and 

computational efficiency, predicting bounding boxes and class scores at multiple scales. This model is ideal 

for on-device applications and scenarios with limited computational resources, maintaining competitive 

detection performance on standard benchmarks like COCO [29]. The Python part consists of RGB and depth 

image preprocessing. It starts by receiving images from the sensors, synchronizing them, and configuring the 

resolution, passing the RGB image for object detection, projecting the detected object on the depth image, 

extracting the object’s 3D position and 2D size with the sensor calibration parameters, packaging the object 

measurement to be sent to the FPGA through the UART communication protocol, and then receive the 

estimated object state for the display as shown in Figure 3. 

 

 

 
 

Figure 3. Python part flow diagram 
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2.4.  FPGA implementation 

The FPGA part consisted of the UART communication interface and the extended Kalman filter 

sensor fusion. The design and implementation of the Kalman filter were first developed in Python with the 

preprocessing part for the sensor noise covariance matrix parameters fine-tuned with the real-sense D435. 

Finally, extended Kalman filters for sensor fusion with the same parameters as those of Python model were 

developed and optimized in Vivado HLS C++ for conversion to the RTL level (Verilog). In order to validate 

the Vivado design, data was recorded from the Python that combined preprocessing Kalman filters sensor 

fusion and used it in the Vivado HLS C++ testbench. The universal asynchronous receiver transmitter 

(UART) is a communication protocol used between the FPGA and CPU. Data is received in big-endian byte 

order from the CPU. The Xilinx AXI UARTLITE Slave IP Core 2.0 is used with custom master verilog code 

that controls and initiates communication between the extended Kalman filter sensor fusion slave IP and 

UARTLITE slave IP AXI-lite interface to receive, construct, process (estimation), package, and transmit data 

to the PC as shown in Figure 4. Following simulation validation, implementation on the Basys 3 Xilinx 

FPGA board was executed. The Basys 3 FPGA board’s UART and Kalman filter sensor fusion 

implementation underwent rigorous testing to ensure functionality and reliability. Figure 5 illustrates a 

hardware-in-loop test with a CPU (Python) that validated the UART and Kalman filter implementation’s 

efficacy and robustness, confirming its ability to interface with external components and execute 

communication tasks accurately. 

 

 

 
 

Figure 4. FPGA part flow diagram 

 

 

  
 

Figure 5. FPGA-PC hardware-in-loop communication interface implementation test 

 

 

2.5.  Experimentation 

Figure 6 illustrates the experimentation setup comprising a real-sense D435 RGB-D camera, an HP 

EliteBook with an Intel Core i7 processor, 512 GB storage, and 8GB RAM, and a Basys 3 Xilinx Digelent 

FPGA board. The experiment involved utilizing the proposed RGB and depth preprocessing methods 

developed in the Python environment, along with an FPGA-implemented extended Kalman filter sensor 

fusion with the UART communication protocol. Performance evaluation was conducted using a known 

object with a predefined position, size, and class. 

 

 

 
 

Figure 6. Experimentation setup 
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3. RESULTS AND DISCUSSIONS 

This section presents the results and discussions of the designed and experimentation system.  

The discussion of the results begins by the system performance evaluation, Vivado implementation results 

and finally the experimentation setup results. This is achieved from the Integration of the python design and 

FPGA implementation of Kalman filter sensor fusion. 

 

3.1.  System performance evaluation 

The graphs in Figures 7-10 are for the overall system performance evaluation, where the blue curve 

is the noisy input from the sensors, the orange curve is the Python model output, the green curve is for the 

C++ HLS model, and the red curve for the Verilog model output for estimation and RMSE. Each state of the 

object has two graphs, the first graph is for all platform (Python, HLS C++, and Verilog) input/output against 

time and the second graph is for all platform RMSE against time. Figures 7 and 8 are for object height and 

width states for the three platforms where in the estimation graph the curves start near to the origin (0,0) 

because of the initialization parameters. Figure 9 is for object distance measurement from sensors and 

estimation graph from all platform, and Figure 10 is for distance estimation RMSE graph. The performance 

of the proposed method was evaluated across three different platforms: Python IDE, Vivado HLS C++, and 

Vivado Verilog. The results analysis revealed that the maximum root means square error (RMSE) for object 

position ranged from 0 mm to 10 mm across all the platforms as shown in Figure 10, with the Vivado Verilog 

model achieving an average RMSE close to 5 mm. Similarly, for object width, the maximum RMSE varied 

from 0 mm to 50 mm, with the Vivado Verilog implementation demonstrating an RMSE approaching 0.0 

mm as shown in Figure 8 width RMSE graph. Additionally, the maximum RMSE for object height ranged 

from 0 mm to 35 mm, again with Vivado Verilog exhibiting an RMSE close to 0.0 mm as shown in Figure 7. 

These results indicates that the Vivado Verilog implementation consistently achieved superior accuracy 

compared to the Python IDE and Vivado HLS C++. 

 

 

  

  
Figure 7. Graphs of object height measurement and 

estimation vs time and RMSE vs time 

Figure 8. Graphs of object width measurement and 

estimation vs time and RMSE vs time 

 

 

  
 

Figure 9. Graph of object distance measurement, and 

estimation vs time 

 

Figure 10. Graph of object distance RMSE vs time 
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3.2.  Vivado implementation result 

Figure 11 illustrates the Vivado design and implementation simulation process. The ‘clk’ represents 

the clock frequency set at 100 MHz, ‘rst’ indicates reset, ‘rx’ and ‘tx’ are designated for UART 

communication, facilitating data transmission and reception. ‘cons_x’ to ‘cons_w’ pertain to data 

construction post-reception, while ‘wkf_start’, ‘kf_idle’, ‘kf_done’, and ‘kf_ready’ control the extended 

Kalman filter IP core. The system begins by receiving data through UART input ‘rx’. Upon data reception, 

the master custom constructs the received data and triggers the Kalman filter with ‘wkf_start’ to initiate 

estimation. When the ‘kf_done’ signal is asserted, processing concludes. The data is then packaged into big-

endian format and transmitted through UART output ‘tx’. Successful simulation demonstrates a latency of 

2.1 ms. This encompasses 930 µs for data reception, 240 µs for processing, and an additional 930 µs for 

transmission. The developed and optimized Vivado HLS C++ equivalent of the Python model underwent 

validation using recorded data from Python experiments to confirm the design’s accuracy. Following  

C-synthesis and co-simulation, the Kalman filter was exported to Vivado for simulation, synthesis, and 

implementation. Successful implementation of the UART communication protocol and Kalman filter sensor 

fusion on a Basys 3 FPGA as presented in Figure 12 utilized efficiently specific hardware resources of 29% 

of LUT, 6% of LUTRAM, 15% of Flip-flops, 34% BRAM, 38% of DSP, 4% of I/O, and 3% of BUFG while 

maintaining a clock frequency of 100 MHz the resource allocation demonstrates effective optimization 

considering the available FPGA resources and operating frequency on FPGA board with total-on-chip power 

consumption of 1.074 w where 0.074 w is device static power as shown in Figure 13. 

The comparison presented in Table 1 demonstrates that the proposed implementation exhibits 

favourable performance in terms of latency, hardware utilization with consideration of available hardware 

resource in each used FPGA device, and power consumption. The hardware resource utilization was provided 

by the Vivado software after synthesis and implementation during the bitstream generation. The estimation 

latency was measured from the Vivado post synthesis and post implementation simulation, and the power 

consumption using was measured using the combination of Vivado and Xilinx power estimator (XPE). 

 

 

 
 

Figure 11. Vivado testbench FPGA design simulation 

 

 

  
 

Figure 12. System resource utilisation 

 

Figure 13. Power consumption summary 
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Table 1. Results comparison of the suggested method with the other existing works 
Literature Method Device 

family 
Part 

number 
LUT 
(%) 

DSP 
(%) 

Flip-
flops 

(%) 

BRAM 
(%) 

Max working 
Frequency 

(MHz) 

estimation 
latency 

(ms) 

Power 
consumpti

on (mw) 

Jerrah et al. 

[30] 

EKF Artix-7 XC7A100T 30 12.0

8 

23.55 _ 12.89 _ 4100 

Iqbal et al. 

[31] 

Mean-shift + 

KF 

UltraScale+

MPSoC 

ZCU102 8.79 16.1

5 

_ 32.89 _ 26.31 _ 

Babu and 
Parthasarathy 

[24] 

MDKF Artix-7 XC7Z020 83.2
7 

90.9 76.017 61.43 140  
10.989 

780 

Proposed 
method  

EKFSF Artix-7 XC7A35T
CPG236 

29 38 15 34 100 2.1 1074 

 

 

3.3.  Result of integration experiment 

The results of object detection and feature extraction provide measurements by offering information 

about the 2D size (height, width) and 3D position measurement, as well as classification of detected objects. 

Figure 14 depicts images captured during the experimentation where the propose method integration 

underwent testing and validation. The ‘Real_distance’ represents the ground truth distance, amd ‘Real_size’ 

(height and width) denotes the measured ground truth size of the objects during experimentation. The outputs 

from the Kalman filter sensor fusion FPGA implementation include ‘Est_size,’ ‘Est_position,’ and 

‘Est_distance’. The experimentation of the proposed method showed average distance RMSE 0.0036, 

average height RMSE of 0.01 and average width RMSE of 0.01 for estimation accuracy and robustness 

during the performance evaluation, while maintaining low execution time in FPGA implementation. 

 

 

  
 

Figure 14. Integration of object detection and FPGA-based tracking 

 

 

4. CONCLUSION 

The proposed integration of deep learning object detection and FPGA-based Kalman filter sensor 

fusion demonstrates the applicability of the Kalman filter on FPGA for autonomous systems. The Kalman 

filter demonstrates exceptional robustness against noise, as evidenced by its performance in our evaluation. 

The RMSE for distance estimation is 0.0036, while for height and width, it is 0.01. These low RMSE values 

indicate that the Kalman filter effectively filters out noise and provides accurate estimates of the object’s 

position and dimensions. The FPGA accelerated the operation speed eight times faster than the software-

based design while maintaining acceptable accuracy. Using the same datatype of a single precision floating 

point 32 bit, the accuracy remained the same for both FPGA and software-based implementations. Kalman 

sensor fusion implemented on the Basys 3 FPGA board executes at 240 microseconds and the 

communication interface at 1.86 milliseconds with a baud rate of 230400, all using efficient hardware 

resources and running at 100 MHz. In comparison to the study by Babu on FPGA-based object tracking,  

our proposed study not only confirms similar outcomes but also extends the research by focusing by 

hardware resource utilization, achieving faster execution time, and enhancing the accuracy of object state 

estimation. Additionally, to further enhance the flexibility and adaptability of the system, dynamic 

reconfiguration capabilities of FPGAs can be explored, resulting in specific hardware modules being loaded 

or unloaded based on the number of objects being detected. 
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