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 The integration of the internet of things (IoT) has revolutionized diverse 

industries, introducing interconnected devices and IoT sensor networks for 

improved data acquisition. However, this connectivity exposes IoT 

ecosystems to emerging threats, with botnets posing significant risks to 

security. This research aims to develop an innovative solution for detecting 

botnets in IoT sensor networks. Leveraging insights from existing research, 

the study focuses on designing a hybrid self-organization map (SOM) 

Approach that integrates lightweight deep learning (DL) techniques. The 

objective is to enhance detection accuracy by exploring various DL 

architectures. Proposed methodology aims to balance computational 

efficiency for resource-constrained IoT devices while improving the 

discriminatory power of the detection system. The study advancing IoT 

cybersecurity and addresses critical challenges in botnet detection within IoT 

sensor networks. The testing of the artificial neural networks (ANN) 

classifier involves three models, each represented based on parameters 

related to the construction of the training models. The most effective ANN 

achieves 86%, works on anomaly intrusion detection systems (AIDS). 
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1. INTRODUCTION 

The rapid integration of the internet of things (IoT) has ushered in an era of unparalleled 

connectivity, enabling diverse devices to interconnect seamlessly and contribute to the fabric of our 

interconnected world. Within this expansive network, IoT sensor networks play a pivotal role across various 

industries, facilitating data acquisition and informed decision-making. However, this pervasive integration 

has concurrently exposed these networks to a growing threat landscape, with botnets emerging as a 

significant security concern [1]. Botnets, networks of compromised devices manipulated by malicious actors, 

pose a profound risk to the integrity and functionality of IoT sensor networks. As these networks evolve and 

expand, the imperative to address the challenges associated with botnet detection becomes increasingly 

critical. Traditional detection methods, especially those rooted in deep learning (DL), often face constraints 

when applied to the resource-limited environment of IoT sensor devices. 

The research delves into the complexities of botnet detection within IoT sensor networks, aiming to 

bridge existing research gaps and address pertinent challenges. The detection mechanisms must not only be 

accurate but also resource-efficient, adaptable to the dynamic nature of evolving botnets, and capable of  

real-time responsiveness crucial for preventing or mitigating potential damages. Moreover, scalability is 
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imperative to accommodate the large-scale deployments characteristic of IoT networks. Integrating these 

detection mechanisms seamlessly into the diverse and evolving network architectures of IoT poses an 

additional layer of complexity [2]. 

In response to these challenges, this study proposes a hybrid self-organizing maps (SOM) approach 

integrated with a lightweight DL framework. This innovative methodology strives to offer a comprehensive 

solution for uncovering botnets in IoT sensor networks, effectively balancing the intricacies of accuracy, 

resource efficiency, adaptability, real-time responsiveness, scalability, and seamless integration within the 

dynamic landscape of IoT cybersecurity. Through this research, we seek to contribute to the enhancement of 

the security and resilience of critical infrastructures in the ever-evolving IoT ecosystem. Botnets, orchestrated 

networks of compromised devices manipulated by malicious entities, pose substantial risks to the security 

and operational integrity of IoT sensor networks. The evolution of the internet of Things has been 

transformative, fueled by advancements in network theory, architectural innovations, and notable progress in 

sensor technology and microprocessors. 

Noteworthy statistics from Gartner indicate a substantial 21% increase in deployed IoT endpoints, 

totaling an impressive 5.8 billion devices by [1]. This surge underscores the transformative impact of IoT 

across industries, shaping everyday life in various ways. Moreover, the IoT market, valued at $190 billion in 

2018, is projected to experience a remarkable surge, reaching an astonishing $1102.6 billion by 2026, 

reflecting an impressive compound annual growth rate (CAGR) of 24.7% [2]. Key sectors such as banking 

and financial services, information technology, telecommunications, healthcare, and government applications 

contribute significantly to this unprecedented growth. Despite the explosive expansion of IoT promising 

interconnectedness across billions of devices, it brings forth a unique set of challenges, particularly in the 

realms of security and privacy. These challenges necessitate careful consideration to ensure the sustainable 

and secure proliferation of IoT adoption. A previous study introduced a service-oriented architecture (SOA) 

tailored for the broader IoT [3], laying the groundwork for the comprehensive exploration undertaken in this 

paper. Building upon prior research, the paper conducts a detailed examination of the constituent layers 

within the SOA architecture: the sensing layer, network layer, service layer, and interface layer. The sensing 

layer establishes intricate connections with hardware components, facilitating data collection on the status 

and conditions of diverse IoT entities. The network layer, as the foundational infrastructure, enables seamless 

wireless or wired connectivity among these entities. At the core of the architecture, the service layer 

encompasses essential elements such as service discovery, composition, management, and interfaces, 

empowering developers to efficiently fulfill end-user requests. Simultaneously, the interface layer governs 

methods and mechanisms for user or application interactions, ensuring effective and user-friendly 

communication. IoT devices often face vulnerabilities, primarily stemming from their constrained resources, 

making them attractive targets for cyberattacks. The vulnerability of interconnected billions of these devices 

became evident during a coordinated attack on a domain name provider, leading to a widespread denial of 

service (DoS) attack that affected numerous well-known sites, including GitHub, Twitter, and others  

(Dyn [4]). It’s worth noting that many of the devices involved in the attack were compromised by the Mirai 

botnet, primarily because of their persistent use of default usernames and passwords. 

The paper commences the threat modelling process by presenting a generic smart home use case [5]. 

In this scenario, an array of IoT devices can effortlessly connect to an IoT gateway and be supervised through 

a central server, illustrated in Figure 1. The entire use case is methodically segmented into five distinct zones, 

with each playing a crucial role in the smart home ecosystem [6]. These zones comprise: 

 IoT device zone: this zone encompasses all IoT sensing and actuating devices strategically deployed 

within the smart home environment. These devices function as the sensory and operational components of 

the system, establishing connectivity with the cloud zone through the IoT field gateway, as depicted in 

Figure 1. 

 IoT field gateway zone: functioning as an intermediary, the IoT field gateway facilitates communication 

between the IoT device zone and the broader ecosystem. It operates as a bridge for the transfer of data 

and commands between the devices and the central control unit. 

 Server zone: the server zone forms the core of the smart home use case, consisting of multiple 

components crafted to monitor and control all IoT devices within the IoT device zone. These components 

bear the responsibility of overseeing device operations and responding to user requests. 

  Cloud gateway zone: within the cloud zone, it is essential to highlight the cloud gateway zone, which 

orchestrates communication between the IoT device zone and the consumer zone. Serving as a conduit for 

data exchange, it ensures seamless connectivity. 

 Consumer zone: the consumer zone serves as the interface through which end-users interact with the 

smart home system, incorporating various user interface devices like tablets, cell phones, and similar 

gadgets. Consumers can employ these devices to access real-time status information for each IoT device 
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and issue commands to the Azure components, thus controlling the on/off functionality of the IoT  

devices [7]. 

 

 

 
 

Figure 1. Smart home use case IoT overview [6] 

 

 

Amaral [7] presented the architecture of an IoT system and emphasized the set of features that a 

system must possess to be classified as an IoT system [7]. The primary features encompass: 

 Interconnection of objects: in this context, “thing” refers to a smart object capable of collecting, 

generating, processing, and storing data from the user or application perspective. 

 Connectivity: the IoT ensures internet connectivity for elements within the system, encompassing 

devices, applications, and crucial IoT infrastructures. 

 Unique identification of objects: IoT devices must possess unique identifiability. 

 Sensing/actuation capability: the pivotal component in sensing the environment involves an intelligent 

sensor that can gather and transmit data from the surroundings to the IoT systems. Simultaneously, an 

actuator can perform specific operations based on commands received from the IoT system. 

 Embedded intelligence: the incorporation of artificial intelligence advancements is essential to be 

embedded into edge IoT systems. 

 Interoperable communication capability: an IoT system should possess the ability to communicate using 

standardized and interoperable communication protocols. 

 Self-configurability: given the heterogeneous nature of connected devices in an IoT system, it is inherent 

that IoT devices may require self-management and configuration. This spans from software and hardware 

management to resource allocation. Programmability or Software defined: physical devices within IoT 

systems can be readily customized with a user’s command or software-defined functions, all without the 

need for physical changes. 

Botnets have evolved significantly to exploit vulnerabilities within IoT sensor networks, rendering 

these networks a prime target for cybercriminals. Their susceptibility stems from heterogeneity, low-power 

constraints, and distributed deployment, making them challenging to secure effectively. Consequently, 

traditional signature-based intrusion detection systems (IDS) must be improved for detecting emerging botnet 

threats. In response to the challenge, researchers have turned to advanced techniques rooted in machine 

learning (ML) and DL to enhance security measures within IoT sensor networks [6]. 

Several studies have made significant contributions to the field, shedding light on various aspects of 

botnet detection in IoT environments. Williams et al. [8] proposed a “Lightweight DL framework” that 

employs a hybrid SOM approach for botnet detection in IoT sensor networks. The framework introduces a 

novel method for effectively identifying malicious activities within these networks, emphasizing lightweight 

computational requirements to align with IoT device constraints. 

Yulianto et al. [9] provided a comprehensive overview of deep cybersecurity, emphasizing the role 

of neural networks and DL in enhancing IoT security. The work highlights the potential of DL techniques in 

addressing botnet threats within the IoT context. Incorporating multi-access edge computing and ML 

methods. Their research emphasizes leveraging ML techniques to protect IoT sensor networks from botnet 

attacks. Vinayakumar et al. [10] thoroughly reviewed intrusion detection approaches in IoT systems. 
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Khan et al. [11] examined botnet detection techniques in a survey, offering valuable insights into 

classification, methods, and evaluation strategies. The study provides a thorough understanding of the current 

state-of-the-art approaches in botnet detection, assisting researchers and practitioners in making well-

informed decisions. Tuan et al. [12] conducted a review on botnet attack detection within software-defined 

networking (SDN)-enabled IoT, with a specific focus on ML techniques. Their research delves into the 

integration of SDN and ML to bolster security in IoT sensor networks. Proposed an intrusion detection 

framework tailored to energy-constrained IoT devices, addressing the unique challenges such devices face in 

protecting against botnet attacks. These studies underscore the critical importance of developing innovative 

botnet detection approaches for IoT sensor networks. They emphasize the role of lightweight DL 

frameworks, ML methods, and tailored solutions to mitigate the evolving threat landscape in the domain. 

Furthermore, they highlight the need for adaptable and resource-efficient techniques to safeguard the 

integrity and functionality of IoT sensor networks in the face of persistent botnet threats. 

In light of the background, the research paper presents a novel hybrid approach utilizing SOM and a 

lightweight deep-learning framework to uncover botnets in IoT sensor networks, building upon and 

extending the existing body of knowledge in the field. Botnets have evolved to exploit vulnerabilities within 

IoT sensor networks, making them a prime target for cyber adversaries. These networks are particularly 

susceptible due to their heterogeneous nature, low-power constraints, and distributed deployment. Traditional 

signature-based IDSs fall short in identifying emerging botnet threats. Researchers have turned to advanced 

techniques rooted in ML and DL to bolster security measures within IoT sensor networks. Several studies 

have made noteworthy contributions to the field, shedding light on various aspects of botnet detection in IoT 

environments. For instance, Khan et al. [13] introduced a feature engineering approach based on fuzzy logic 

for botnet detection using artificial neural networks (ANN), highlighting the potential of hybrid methods in 

enhancing detection accuracy. 

Joshi et al. [14] addressed the challenge of botnet traffic identification using neural networks, 

demonstrating the effectiveness of ANN-based techniques in distinguishing botnet traffic from legitimate IoT 

network activity. Biswas and Roy [15] presented research on IoT security, focusing on botnet detection in 

IoT through ML approaches. Their work underscores the significance of utilizing ML for safeguarding IoT 

sensor networks against botnet threats. Investigated a ML-centric strategy for identifying IoT-botnet attacks 

utilizing a sequential architecture. The emphasis was placed on the significance of adaptive detection 

mechanisms to counter the evolving strategies employed by botnets within IoT environments [15]. 

Together, these investigations emphasize the vital importance of formulating innovative botnet 

detection approaches specifically designed for the distinctive characteristics of IoT sensor networks.  

They highlight the potential of hybrid methodologies, neural networks, and ML techniques in mitigating the 

evolving threat landscape. Furthermore, they emphasize the need for adaptable and resource-efficient 

solutions to safeguard the integrity and functionality of IoT sensor networks against persistent botnet  

threats [16]. 

Integration with IoT architectures: the proposed solution seeks seamless integration with diverse IoT 

network architectures. It aligns with the evolving landscape of IoT deployments and ensures that the 

detection mechanism can coexist harmoniously with existing IoT ecosystems. Experimental validation:  

the paper contributes to the field by conducting rigorous experimentation and evaluation to validate the 

effectiveness of the proposed hybrid approach. Benchmark datasets and commonly accepted metrics are used 

to assess the performance of the botnet detection system [17]. 

Knowledge synthesis: by synthesizing insights from previous works in IoT security and botnet 

detection, the paper contributes to the collective knowledge in the field. It builds upon and extends the 

existing body of research to offer a comprehensive solution tailored to the unique challenges of IoT sensor 

networks [18]. The research paper offers substantial contributions to IoT cybersecurity, particularly within 

botnet detection in IoT sensor networks. The paper’s key contributions can be succinctly summarized as 

follows: innovative hybrid approach: the paper introduces an inventive hybrid methodology that amalgamates 

SOM with a lightweight DL framework for botnet detection. The novel approach harnesses the inherent 

strengths of SOMs in clustering and data visualization while simultaneously ensuring computational 

efficiency, a crucial aspect for IoT devices with limited resources. 

While misuse detection depends on predefined characteristics of known attacks to identify threats, 

anomaly detection is the only approach designed to unveil new and previously unknown threats.  

The fundamental principle that underlies anomaly detection entails the development of a model that 

characterizes normal system behavior. Any deviations from these established norms are flagged as potential 

attacks, encompassing various anomaly detection techniques. SOM [19], [20] have become popular for 

effectively identifying abnormal patterns in network data. SOM belongs to unsupervised ANNs specializing 

in visual clustering. Its primary purpose is to map data from a high-dimensional space into a lower-

dimensional space, constructing a topological representation that mirrors the data distribution from the 
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original high-dimensional domain SOM is achieved by grouping akin data vectors and presenting them in a 

graphical format [21], [22]. 

The methodology employed in this research, titled is designed to systematically address the complex 

challenge of botnet detection within the resource-constrained environment of IoT sensor networks.  

The research adopts a multifaceted approach, commencing with a comprehensive review of existing literature 

to establish a foundational understanding of IoT sensor networks, botnets, and prevalent detection techniques. 

This literature review informs the subsequent development of the proposed methodology. The core of the 

methodology lies in the design and implementation of a Hybrid SOM approach integrated with a lightweight 

DL framework. The SOM model, renowned for its clustering and visualization capabilities, is adapted to the 

specific context of IoT sensor networks. The integration with a lightweight DL framework ensures 

computational efficiency, addressing the resource constraints inherent in IoT devices. 

Data collection involves sourcing diverse datasets representative of IoT sensor network behaviors 

and botnet activities. The collected data undergoes meticulous preprocessing to ensure relevance and 

accuracy. The methodology incorporates supervised and unsupervised learning techniques for the training of 

the detection model, leveraging DL algorithms to enhance the discriminatory power of the system. 

Evaluation metrics are carefully chosen to assess the effectiveness of the proposed approach, considering 

factors such as accuracy, adaptability to evolving botnets, and real-time responsiveness. Rigorous 

experimental design and testing procedures are employed to validate the performance of the hybrid SOM 

approach in comparison to existing detection methods [23]. The methodology aims to provide a 

comprehensive and innovative solution for uncovering botnets in IoT sensor networks, contributing to the 

advancement of cybersecurity in the dynamic landscape of IoT. 

 

 

2. LITERATURE REVIEW 

2.1.  IoT security and IoT sensor networks challenges 

The era of digitization has brought numerous advantages in the field of computing. Consequently, 

nations have steadily heightened their dependence on digitization, software-defined networks (SDN), and the 

IoT [24], [25]. However, digital transformation has also presented a significant challenge: cybersecurity. 

Cyber-attacks can disrupt critical systems and cause irreversible damage to economies. These attacks entail a 

broad spectrum of consequences, including but not limited to the following: 

 Electrical blackouts: cyber-attacks can compromise the integrity of power grids, leading to widespread 

electrical blackouts [26]. 

 Financial institution theft: financial institutions are susceptible to theft and fraud, jeopardizing the 

financial sector’s stability [27]. 

 Theft of sensitive data: valuable and confidential data, such as medical records, can be stolen, leading to 

privacy breaches and identity theft. 

 Network disruption: cyber-attacks can potentially disrupt phone and computer networks, paralyzing 

essential communication systems [28]. 

An IoT network is composed of physical objects or “things” equipped with limited computational, 

storage, and communication capabilities. These objects are embedded with various electronic components, 

including sensors and actuators, and feature software functionalities along with network connectivity.  

This enables them to collect, occasionally process, and exchange data [29], [30]. IoT has found extensive 

applications and has significantly benefited various sectors and services, including critical infrastructure 

management, agriculture, military, smart grids and cities, and personal healthcare. 

 

2.2.  IoT-security 

The proliferation of devices and the increasing sophistication of hacking tools have given rise to an 

unprecedented surge in security breaches. Emerging technologies, such as the public cloud, the IoT, and 

artificial intelligence, have introduced formidable challenges to conventional security practices [31].  

IoT, in particular, has heralded a transformative era of connectivity, enabling a spectrum of secure, intelligent 

services. IoT applications encompass various domains, ranging from intelligent health monitoring and traffic 

management to creating smart cities, efficient waste disposal, streamlined logistics, responsive emergency 

services, and precise industrial and retail control systems. IoT has engendered a comprehensive and 

ubiquitous network of smart devices. 

An intrusion prevention system (IPS) takes a proactive stance in countering security attacks by 

closely examining data patterns, often in network traffic, and promptly identifying deviations from 

established data records or signatures. Upon detecting an attack, the IPS promptly blocks the malicious data. 

Typically, it functions as the second line of defense within a security infrastructure, working with an IDS. 

However, IDS grapples with specific challenges regarding ensuring secure access control [32]. 
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On the contrary, when integrated with a firewall and an IDS, an IPS establishes a resilient defense 

mechanism capable of detecting and actively preventing attacks within a secure network environment.  

To further boost its effectiveness, artificial intelligence (AI) technologies, including ML, natural language 

processing (NLP), and neural networks (NN), can be utilized. These AI technologies enable the rapid 

identification and mitigation of the impact of attacks, delivering daily alerts and facilitating the operation of 

an intelligent intrusion detection and prevention system (IDPS) [33]. 

Nonetheless, intricate IoT devices are susceptible to potential security threats, primarily due to 

factors like hostile interfaces, development on unregulated platforms, and vulnerabilities inherent in 

individual components integrated into the network [33]. The landscape’s inherent diversity, along with 

interoperability and accessibility challenges, often results in suboptimal security monitoring within IoT 

networks. An IDS serves as a valuable solution to address security concerns and mitigate the impact of 

cyberattacks. IDS plays a crucial role in network and host system security management. It identifies 

intrusions or instances of misuse within the network or system and promptly reports them to administrators 

while maintaining a record for subsequent investigations. IDS is skilled at managing suspicious events 

without disrupting regular activities, even in the face of a malicious outbreak [32]. 

Numerous tools and techniques are available to combat the threat posed by these attacks. Strong 

firewall protection is imperative, particularly as conventional firewalls may struggle to discern abnormal or 

anomalous attack behavior. Traditional antivirus software has limitations in identifying new virus patterns 

effectively. Intrusion detection, while adept at alerting upon the entry of an attack into the network, often 

needs to catch up in actively preventing the attack. Present-day IDS systems have limitations, notably 

flexibility and scalability [33]. The core detection system operates on two primary principles: behavior 

analysis or pattern recognition, followed by the prevention system, which utilizes a signature mechanism to 

monitor suspicious network traffic. It proactively blocks both inbound and outbound packets before they can 

access other network resources. The IPS serves as an integrated component that combines robust firewall 

protection with multi-layer support and detection functionality [34], [35]. 

 

2.3.  IoT sensor networks: a brief overview 

The ubiquity of IoT sensor networks has revolutionized how we interact with the environment, 

connecting devices and collecting data on an unprecedented scale. The section delves into the latest 

developments in IoT sensor networks, examining their characteristics, applications, and the emerging 

challenges they pose from a security perspective. Recent references provide insights into the evolving 

landscape of IoT sensor networks and the need for robust security measures to protect them. 

Characteristics of IoT sensor networks IoT sensor networks are characterized by their diverse and 

dynamic nature. Recent research highlights vital characteristics and heterogeneity; IoT networks comprise 

many devices with varying capabilities, communication protocols, and energy constraints. Heterogeneity 

complicates standardization and interoperability efforts [36]. 

Scalability: IoT deployments often involve massive numbers of devices, necessitating scalable 

solutions to manage and secure these extensive networks [35]. Resource constraints: many IoT devices 

operate with limited computational resources, requiring efficient security mechanisms that operate within 

these constraints [36]. Dynamic behavior: IoT networks exhibit dynamic behaviors, with devices joining, 

leaving, or reconfiguring themselves continuously. Dynamic nature demands adaptive security measures [37]. 

Data sensitivity: IoT devices collect and transmit sensitive data, making data privacy and confidentiality 

paramount concerns [38] applications and deployment of IoT sensor networks. 

IoT sensor networks find applications across diverse domains. Recent references shed light on their 

applications and deployment:  

 Smart cities: IoT sensors are pivotal in creating smart cities, enabling efficient resource management, 

traffic control, and environmental monitoring [39]. 

 Healthcare: in healthcare, IoT devices monitor patients, transmit vital data, and enable remote diagnostics 

and treatment [40].  

 Agriculture: IoT sensors assist in precision agriculture, optimizing irrigation, and crop management [41]. 

 Environmental monitoring: IoT sensors are crucial in monitoring air quality, climate, and wildlife 

tracking, aiding conservation efforts [42]. Real-time data for predictive maintenance and quality control [43]. 

a. Industrial automation: IoT networks enhance industrial processes by providing. 

b. Security challenges in IoT sensor networks: as IoT sensor networks continue to expand, so do the 

associated security challenges. Recent references provide insights into these challenges:  

c. Botnet threats in IoT: botnets formed by compromised IoT devices are a significant threat. Recent 

studies emphasize their role in DDoS attacks, data exfiltration, and malware propagation.  

The evolving landscape of IoT sensor networks presents both opportunities and challenges. While 

these networks offer unprecedented capabilities in various domains, their security challenges continue to 
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expand. Recent references illuminate the intricate interplay between IoT sensor networks’ characteristics, 

applications, and the need for robust security measures. Addressing these challenges requires ongoing 

research and innovation to ensure IoT sensor networks’ continued growth and security in a connected world [34]. 

The proliferation of IoT sensor networks has ushered in an era of unprecedented data collection and 

connectivity across various domains, from smart cities to healthcare and agriculture. These networks are 

characterized by many resource-constrained devices [35], each equipped with sensors and communication 

modules, working together to collect and transmit data from the physical world to centralized or distributed 

processing units. Recent advancements have expanded the applications of IoT sensor networks, making them 

integral to modern society. The critical attributes of IoT sensor networks include: 

 Large-scale deployment: IoT sensor networks are often deployed extensively, involving thousands to 

millions of devices. Managing and securing such vast deployments pose logistical and security 

challenges. 

 Resource constraints: many IoT devices operate with limited processing power, memory, and energy 

resources. These resource constraints dictate the complexity of security mechanisms that can be 

implemented on these devices. 

 Dynamic behavior: IoT networks exhibit dynamic behaviors, with devices constantly joining, leaving, or 

reconfiguring themselves. Dynamic nature necessitates adaptive security measures to accommodate 

changes in network topology. 

 Data sensitivity: IoT devices collect and transmit sensitive data, ranging from personal health information 

to industrial process data. Protecting data privacy and ensuring confidentiality are paramount concerns. 

 Security challenges in IoT sensor networks: the characteristics of IoT sensor networks give rise to many 

security challenges, some of which have evolved. Recent references shed light on these challenges and 

provide insights into emerging trends [36]. 
 

2.3.1. IoT sensor networks wireless sensor nodes (WSN) 

IoT sensor networks comprise WSNs, which are small devices equipped to sense the environment 

and perform small computations [8]. These devices form a WSN that collaboratively senses and responds to 

the environment [8]. They communicate with IoT-enabled devices like routers, providing access to the 

broader infrastructure for data retrieval and processing. WSNs consist of sensor nodes and sink nodes, with 

sink nodes serving as data collection hubs and WSN gateways [9]. Users can directly observe the IoT-based 

WSN via a local IP-based network or remotely over the Internet, and they can send commands via sink nodes [9]. 

Sensor nodes are composed of four fundamental components: the power unit, the sensor, the processor, and 

the radio. The sensor is responsible for measuring environmental variables, while the radio handles 

communication. The processor organizes tasks and converts data into signals for transmission, and the power 

unit consists of the node’s battery pack [44]. Additionally, the processor manages sleep cycles, which nodes 

utilize to conserve power. Typically, the most energy-consuming function is the exchange of data, with the 

energy requirement increasing exponentially as the data needs to travel further [45]. 

Therefore, careful consideration must be given to node density and deployment patterns. The IoT 

stack is structured in a manner like the TCP/IP stack, featuring five horizontal layers that define end-to-end 

communication from the physical medium (layer 1) up to the application (layer 5). It also incorporates 

additional vertical ‘planes’ that represent processes requiring management at each layer. These include  

(a) power (i.e., the sharing of power between node functions), (b) mobility (i.e., the tracking of nodes), and 

(c) tasks (i.e., communication, message detection, and sensing activities). Protocols at each layer need to 

address these three vertical processes. 
 

2.3.2. Botnets in IoT environments 

The proliferation of IoT devices has brought numerous benefits to various industries but has also 

introduced new security challenges. One of the significant threats in IoT environments is the emergence of 

botnets, which can compromise the security and privacy of IoT systems. Section reviews the existing 

literature on botnets in IoT environments, highlighting recent research, trends, and key findings. Please 

provide an overview of what botnets are in IoT environments, discussing their characteristics and specific 

challenges compared to traditional botnets. 

 Traditional IDS: discuss traditional IDS approaches and their limitations in detecting IoT-based botnets. 

Mention recent studies that have explored the use of traditional IDS in IoT environments [46]. 

 ML-based detection: explore the application of ML techniques for botnet detection in IoT. Highlight 

supervised, unsupervised, and reinforcement learning methods [47]. 

 Behavioral analysis and anomaly detection: discuss research focusing on behavioral analysis and anomaly 

detection to identify botnet activity in IoT networks [48]. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Uncovering botnets in IoT sensor networks: a hybrid self-organizing maps … (Mwaffaq Abu AlHija) 

1847 

 Block chain for botnet detection: discuss recent developments in using block chain technology for 

enhancing botnet detection and security in IoT environments [49]. 

 Real-world botnet attacks in IoT: present real-world examples of botnet attacks in IoT environments, 

including the Mirai botnet and its variants. Discuss the impact of these attacks and the lessons learned. 

 IoT security frameworks and solutions: explore recent research on proposed security frameworks and 

solutions designed to protect IoT environments from botnets [50]. 

Summarize the key points discussed in the related work section, emphasizing the current state of 

research on botnets in IoT environments and the significance of addressing threats. 

 

2.3.3. IoT botnets 

The term “botnet” is a combination of “robot” and “network.” A bot refers to a program capable of 

autonomously executing user-centric tasks without requiring direct user interaction [51]. Botnets are broadly 

categorized into two primary architectures based on how the bots are controlled: centralized client-server and 

decentralized peer-to-peer (P2P) approaches. In a centralized client-server setup, the bot master controls and 

supervises all bots from a single central point through command and control (C&C) commands. Conversely, 

in a decentralized mode, each bot acts as a server and a client, facilitating the distribution and receipt of 

commands [52]. In the realm of networks, IoT botnets become integral components, manipulating computing 

devices maliciously through three critical operations. The first operation involves identifying vulnerable 

devices through scanning. Subsequently, a suitable bot, aligned with the architecture of the vulnerable device, 

is installed in a process known as propagation. Finally, an attack is initiated through command-and-control 

operations, enabling the botnet to carry out its malicious activities [53]. For instance, the Mirai botnet 

comprises various components, including attack vectors, a scanner process actively seeking other devices to 

compromise, and the command-and-control infrastructure that controls the compromised devices (bots), 

facilitating further propagation and initiating attacks [54]. 

An IoT botnet constitutes a network of devices, including cameras, routers, DVRs, wearables, and 

other embedded devices that have been infected with malware [54]. Notable examples of botnet malware 

attacks impacting IoT include Mirai and BASHLITE. These botnets are designed to launch various 

cyberattacks. One of the most common attacks is identity theft, where the bot-infected code on a device 

collects sensitive user information and transmits it to the bot master. Additionally, infected devices are 

employed in spam attacks to generate and send fraudulent emails. In key-logging attacks, user inputs are 

recorded and transmitted to the bot master. 

 

2.4.  ML and DL in IoT security 

Within the domain of AI, numerous powerful ML techniques have emerged and are widely 

employed in data mining. These techniques empower the system to glean valuable structural patterns and 

models from the training dataset [55]. The ML process typically comprises two pivotal phases: (1) the 

training phase and (2) the decision-making phase (as illustrated in subsequently, in the decision-making 

phase, the system can generate estimated outputs based on the trained model when presented with new input 

data [56]. There exist four primary types of ML algorithms: supervised learning, reinforcement learning, 

unsupervised learning, and semi-supervised learning. The subsequent subsections delve into the commonly 

employed ML techniques [56], [57]. 

 

2.4.1. Supervised learning 

Supervised learning involves algorithms acquiring the capability to predict outcomes for unknown 

cases based on learned representations from labelled input data. Examples of such learning methods include 

the support vector machine (SVM) and random forest techniques. SVM is particularly well-suited for 

classification-related problems, while the random forest approach is utilized for problems involving both 

classification and regression [58]. Within the network intrusion detection system (NIDS) research, SVM 

stands out as one of the most frequently employed algorithms, owing to its practical computational efficiency 

and robust classification capabilities. SVM algorithms are highly suitable for handling high-dimensional data, 

although selecting an appropriate kernel function can be challenging. It’s worth noting that SVMs demand 

substantial memory and processing resources, making them resource-intensive [59]. A practical supervised 

ML approach uses the random forest algorithm in scenarios involving imbalanced data. However, random 

forest algorithms may encounter the issue of overfitting, where the model becomes excessively tailored to the 

training data, potentially leading to reduced generalization performance [60]. 

 

2.4.2. Unsupervised learning 

Unsupervised learning algorithms specialize in acquiring representations from unlabeled input data. 

The primary objective of unsupervised learning is to anticipate unknown cases by uncovering the inherent 
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structures or patterns within the data [61]. Two key examples of unsupervised learning methods are principal 

component analysis (PCA) and SOM. PCA is frequently employed in feature reduction techniques,  

while SOM is instrumental in clustering approaches. PCA expedites feature learning, and many researchers 

utilize it for feature selection before classification [61]. 

In the context of anomaly detection, clustering algorithms like k-means and other distance-based 

algorithms play a pivotal role. In NIDS, SOM, an ANN, is utilized to reduce payload size. During anomaly 

detection, clustering algorithms are often subjected to initial conditions, such as generating a high false 

positive rate and centroids, which can pose challenges for these algorithms. Among unsupervised learning 

algorithms, k-means hold significant importance. provides an overview of commonly used ML approaches. 

The term “self-organizing feature map” is an alternate name for SOM, which is regarded as one of 

the most significant neural network models for unsupervised learning. SOM serves two primary objectives: 

data clustering and dimensionality reduction. Typically, a SOM comprises the input layer and the map layer. 

During data clustering with SOM, the total number of neurons in the map layer corresponds to the desired 

number of clusters. Each neuron is assigned a weight vector, and the SOM algorithm effectively addresses 

the data clustering task. For readers interested in a more detailed exploration of the SOM algorithm, 

references [61] provide comprehensive discussions. 

 

2.4.3. SOM in intrusion detection 

Intrusion detection within IoT sensor networks is an evolving challenge, with traditional methods 

often needing help keeping up with botnet attacks’ dynamic nature. To address this issue, researchers have 

turned to advanced techniques like SOM as a powerful tool for intrusion detection in these complex 

environments. Self-organizing maps, also known as Kohonen maps, represent a type of ANN primarily 

employed for unsupervised learning. SOMs are especially well-suited for intrusion detection in IoT sensor 

networks due to their unique capabilities [62]. 

At the core, SOMs are designed to map high-dimensional data into a lower-dimensional space while 

preserving the topological relationships present in the original data. They do so by grouping similar data 

vectors, creating a topological representation that mirrors the data distribution. SOMs have garnered attention 

in the field of intrusion detection for several reasons: 

 Unsupervised learning: SOMs are particularly advantageous in intrusion detection because they operate 

without needing labeled training data. This is a significant advantage in the context of IoT sensor 

networks, where data can be diverse and rapidly changing. 

 Clustering and visualization: SOMs are adept at clustering data vectors based on similarity. Capability is 

invaluable for identifying anomalies and potential intrusion attempts within network traffic data. 

 Topological representation: the topological maps created by SOMs offer a visual representation of 

network traffic data, making it easier to identify patterns, outliers, and potential threats. 

 Anomaly detection: SOMs excel at anomaly detection, crucial for identifying previously unknown 

threats. By establishing a model of normal behavior, any data significantly deviating from the model can 

be flagged as suspicious. 

 Handling high-dimensional data: in the context of network traffic data, which can be high-dimensional 

and complex, SOMs offer an effective solution for dimensionality reduction and pattern recognition [63], 

[64]. 

 Recent research has focused on enhancing the effectiveness of SOMs in intrusion detection within IoT 

sensor networks. These advances include: 

a. Hybrid approaches: researchers have explored hybrid models that combine SOMs with other ML or 

DL techniques to improve detection accuracy and reduce false positives. 

b. Real-time detection: efforts have been made to adapt SOMs for real-time intrusion detection, allowing 

quicker responses to emerging threats. 

c. Scalability: as IoT networks grow, scalability has become a key consideration. Recent work has 

looked into scalable SOM implementations that can handle large volumes of data. 

 

2.4.4. Challenges and future directions 

While SOMs show promise in IoT intrusion detection, challenges remain, such as: 

 Configuration and tuning: configuring SOMs for specific IoT environments and fine-tuning their 

parameters can be complex. 

 Resource requirements: training and running SOMs can be computationally intensive, demanding 

significant processing power and memory [65]. 

 Interpretability: interpreting SOM results and determining the significance of identified clusters can be 

challenging. 
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Self-organizing maps offer a valuable approach to intrusion detection in IoT sensor networks, 

particularly for identifying botnet threats. Their unsupervised learning capabilities, clustering and 

visualization strengths, and topological representations make them ill-suited for these networks’ dynamic and 

complex nature. However, further research and development are needed to address challenges and enhance 

their practicality in real-world IoT security scenarios. 

 

2.5.  Previous approaches to botnet detection 

2.5.1. NIDS 

IDS play a crucial role in identifying and mitigating threats within computer networks. They 

monitor network packets to detect internal and external malicious and abnormal activities [66]. However,  

the effectiveness of IDS can be challenged by the sheer volume of network traffic and the diverse distribution 

of data. IDS monitors various information sources, including networks and individual computers, with the 

primary objective of reporting any unauthorized access or suspicious activities. It collects data from multiple 

network sources and systems, subjecting data to analysis to identify potential threats and attacks. summarizes 

the deployment environments and detection techniques employed by IDS. IDS implementation encompasses 

various techniques and methods, which can be broadly categorized into the following groups: 

 ML-based methods: ML techniques train IDS to recognize patterns associated with different types of 

attacks. ML models can learn from historical data to detect deviations from normal network behavior, 

signaling potential intrusions. 

 Data mining methods: data mining techniques are applied to IDS to uncover hidden patterns or anomalies 

within large datasets. These methods can help identify unusual network behavior indicative of attacks. 

 Statistical techniques: statistical approaches establish baseline network behavior and detect deviations 

from the norm. Statistical analysis helps in flagging activities that fall outside expected patterns. 

IDS implementations can exhibit significant variations, ranging from tiered monitoring systems to 

dedicated antivirus software designed to track network traffic across an entire network. These 

implementations can be further categorized into specific classes to address various aspects of intrusion 

detection. 

 It is crucial to emphasize that selecting the appropriate IDS implementation and technique hinges upon 

the unique security demands and prerequisites of the particular network or system under consideration. 

The examination of incoming network traffic is undertaken by the system, commonly referred to as a 

NIDS [67]. 

 The system monitors critical operating system files and is designated a “Host-based intrusion detection 

system (HIDS).” 

These previously mentioned categorizations of IDS are subject to further classification,  

with signature and anomaly detection as fundamental bases for commonly utilized variations. Signature-

based IDS are designed to identify potential threats by scrutinizing specific patterns, such as ll-established 

intrusion sequences used by Trojans or distinct byte sequences present in network traffic. Nomenclature was 

borrowed from antivirus software, which initially referred to these detected patterns as “signatures.” 

Signature-based IDS excels at detecting known attacks but encounters challenges when recognizing new 

attacks that do not exhibit discernible patterns [68]. 

 

2.5.2. Anomaly-based detection 

Anomaly-based detection is an innovative technique developed to address the challenge of 

identifying unknown attacks, often stemming from the proliferation of malware. This approach leverages ML 

to build a reliable model of typical system behavior. Subsequently, the behavior of the newly generated 

model is compared to the genuine model. While the method can effectively detect unknown attacks, it does 

carry the risk of producing false positives, where legitimate activities may be erroneously classified as 

malicious [69]. 

In a specific study [70], an algorithm tailored for an anomaly-based system was introduced, known 

as the AdaBoost algorithm. This algorithm incorporates two distinct feature selection approaches, namely 

PCA and ensemble feature selection (EFS), to select relevant features from a novel dataset called CICIDS 

2018. Experimental results demonstrated that the integration of EFS with AdaBoost outperformed PCA with 

AdaBoost. The strategically positioned IDS within the network analyses passing traffic, continuously 

monitors traffic from network devices, and cross-references it with a comprehensive library of all known 

threats. Upon identifying an attack, it detects any unusual behavior and promptly alerts the administrator. 
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3. METHODS AND MATERIAL 

ML or DL algorithms can undergo training through various procedures, including supervised and 

unsupervised learning. Supervised learning involves classification based on data instances marked in the 

training phase. Algorithms employed in supervised learning encompass ANN, DT (both types c4.5, ID3),  

KNN, NB, RF, SVM, and CNN. On the other hand, unsupervised learning detects unlabeled data instances, 

with clustering being the dominant learning method. Algorithms in unsupervised learning include k-means 

clustering, EM clustering, and SOM. 

 

3.1.  Datasets 

The most challenging aspect of evaluating IDS is selecting an appropriate dataset. This section 

discusses commonly [37], [38]. However, these datasets are inherently complex, necessitating advanced 

solutions. The most popular datasets used in the literature are described as follows: 

 

3.1.1. UNSW-NB15 

The UNSW-NB15 dataset was generated using the IXIA perfect storm tool and a simulation 

program. In contrast to NSL-KDD, this dataset encompasses original instances of various intrusion detection 

cases that commonly occur in contemporary scenarios. The dataset comprises 175,341 normal classes, 82,332 

anomaly classes, and 49 extracted features [52]. The attacks in the dataset include fuzzier, analysis, backdoor, 

DoS, exploit, generic, and reconnaissance, shellcode, and worm attacks. illustrates the utilization of popular 

datasets in the literature. 

 

3.1.2. CICIDS2017 

The CICIDS2017 dataset closely emulates real-world network data (PCAPs) and leverages 

CICFlowmeter-V3.0 to extract 78 features and 79 labels. The dataset encompasses the distinctive behavioral 

patterns of 25 users across various protocols, including HTTP, HTTPS, FTP, SSH, and email, as detailed. 

Data are captured over different periods. In alignment with the 2016 McAfee report, the attacks in the dataset 

are categorized into brute force FTP, brute force SSH, DoS, Heartbleed, infiltration, botnet, and DDoS 

attacks, distinguishing it from the previously mentioned datasets [53]. CICIDS2017 achieves a profiling of 

abstract characteristics of human interactions using the B-profile system and applies the alpha profile to 

simulate diverse multi-stage attack scenarios. The dataset’s main features set it apart from others in terms of 

its realistic and reliable benchmarking. The benchmarking encompasses 11 criteria, including complete 

traffic and available protocols, ensuring the reliability of the evaluation [54]. 

 

3.1.3. NSL-KDD 

The NSL-KDD dataset comprises the fundamental records of the KDD Cup 1999 dataset.  

This dataset categorizes its data features into several groups [10]. The NSL-KDD dataset reduces data size by 

removing duplicate records, thereby enhancing the performance of ML algorithms. 

 

 

4. BENCHMARKING OF ML-AIDS IN CICIDS2017 

AIDS has garnered substantial research interest since the beginning of the decade. Constructing an 

AIDS using AI or ML techniques to fortify networks against modern attacks remains a vital concern for 

researchers. Numerous studies aim to enhance AIDS and assess their results using various metrics. Given that 

most ML algorithms are parameterized, estimating their behavior from processed data is challenging. 

Moreover, random parameters can significantly impact the performance of AIDS models [55]. Consequently, 

parameter behavior must be tuned to achieve a satisfactory evaluation. Proposed benchmarking methodology 

and associated procedures for testing and evaluating ML-AIDS models. 

 

 

5. PRE-PROCESSING 

The study utilizes the Botnet.CSV data, a component of the CICIDS-2017 dataset. Botnet.CSV 

comprises eight traffic monitoring sessions, each represented as a comma-separated value (CSV) file.  

The file encompasses regular traffic labelled as “Botnet” and anomaly traffic categorized as “Attacks” traffic. 

The various types of attacks in the dataset are detailed in the second column. During the numericalization 

step, noise values like null or infinity symbols are replaced with zeros or mean values. Subsequently, 

normalization is applied, addressing the extensive values and non-distributed data of some CICIDS2017 

attributes based on their histograms. This ensures that all attribute values are brought to the same scale, 

applying the normalization procedure interval. 
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6. TRAINING 

Numerous strategies can be employed to generate hyper parameters, with trial and error being the 

most common [56]. Another strategy involves k-fold cross-validation, where the dataset is divided into 

training and testing parts. This approach provides a means for evaluating the performance of ML-AIDS 

models and determining optimal settings. 

In the benchmarking methodology, k-fold cross-validation partitions are meticulously established 

with specific limits for training and testing percentages (e.g., 40%-60%, 50%-50%, or 60%-40%). These 

partitions are concealed during the training stage to assess the reliability, generalizability, and effectiveness 

of ML-AIDS models. The training process involves tuning the parameters of each algorithm, as elaborated in 

the following section, and evaluating the output. This exact process is iterated for the remaining parameters. 

 

 

7. TESTING 

During the testing phase, ten popular supervised and unsupervised ML algorithms are employed to 

identify effective and efficient ML-AIDS for networks and computers. The supervised algorithms encompass 

ANN, DT, KNN, NB, RF, SVM, and CNN. On the other hand, the unsupervised algorithms include EM,  

k-means, and SOM. Multiple models of these algorithms are introduced, and the tuning and training 

parameters of each algorithm are scrutinized to attain optimal classification results. 

 

 

8. BENCHMARKING 

The performance of ML algorithms cannot be visually interpreted, and quantitative metrics such as 

precision, recall, F1-score, and confusion matrix need to be employed for evaluation. The choice of the best 

evaluation metrics depends on the selected ML algorithms, processed data, and the application domain.  

The study evaluates AIDSs using the CICIDS2017 dataset, considering accuracy, precision, sensitivity 

(recall), F-score, training time, and prediction time as the evaluation metrics. 
 

8.1.  Accuracy 

The first evaluation metric evaluated by the study is accuracy. Accuracy is defined as the ratio of 

correct predictions. Accordingly, this definition encompasses both true positives (TP) and true negatives 

(TN) of attacks, relative to the total number of tested cases. 
 

Accuracy =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (1) 

 

8.2.  Precision 

Another metric evaluated in the scope of this study is precision. Precision (TP rate) measures the 

proportion of positives that are correctly identified. The mathematical formula is shown in (2). 
 

Precision  =  
𝑇𝑃  

𝑇𝑃 + 𝐹𝑃
 (2) 

 

8.3.  Sensitivity 

Sensitivity is yet another important metric evaluated in this study. Sensitivity (recall) measures the 

number of correct classifications penalized by the number of missed entries identified. Sensitivity can be 

calculated using the in (3). 
 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 (3) 

 

8.4.  F1-score 

An important aspect in evaluating the performance of ML algorithms is finding a balance between 

precision and recall. Hence, F1-score as an evaluation metric finds a balance between precision and recall. 

F1-score can be calculated using the as in (4). 
 

F1Score =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 
 (4) 

 

 

9. RESULTS AND DISCUSSION 

The section outlines the benchmarking of classification algorithms for a multi-class labeled AIDS 

CICIDS2017 dataset. These 10 ML algorithms are categorized into seven supervised (KNN, SVM, DT (both 

types c4.5, ID3), RF, ANN, NB, and CNN) and three unsupervised (K-means clustering, EM clustering, and 
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SOM) algorithms. Some of these algorithms consist of several models, and their settings involve parameter 

tuning to determine the best-fit parameters and optimal initial values for training and testing. The ML-AIDS 

algorithms are implemented using Python3 in Anaconda 3 on a computer with OPTIPLEX 3010 Dell,  

Intel Core i3, 3.60 GHz processor, 4 GB primary memory, and 2 GB GPU on Ubuntu 16.04. The selected 

ML algorithms undergo seven supervised and three unsupervised learning tests. The evaluation metrics 

include accuracy, precision, recall, F1-score, T1, and T2. The AIDS CICIDS2017 dataset used in these tests 

has four types of classes, and their names, labels, and supports are presented. 

 

9.1.  Results of supervised learning algorithms 

9.1.1. ANN 

The testing of the ANN classifier involves three models, each represented based on parameters 

related to the construction of the training models. Default values are assigned to these parameters (activation 

= ‘ReLU,’ alpha = 0.0001, batch size = ‘auto,’ number of hidden layers = ‘4,’ optimizer =”). Table 1 

provides the results for the three ANN models. Some variations are observed in the training parameters. 

Specifically, one ANN model successfully detects C1, C2, C3, and C4 attacks, while the other two struggle to 

detect C4 attacks. The most effective ANN model has the settings Solver = ‘Adam,’ loss = 

‘categorical_crossentropy,’ and epoch = 15. This model achieves 86% accuracy, 88% precision, 94% recall, 

91% F1-score, 53.78s training time, and 48.03s testing time. In addition, the loss is the value of the cost 

function for training data. Figure 2 below show a comparison between model loss and epoch. 
 

 

Table 1. Classification report for ANN 
 Precision Recall F1-score Support 

0 0.88 0.94 0.91 1,214 

1 0.77 0.59 0.67 386 
Accuracy   0.86 160 

Macro avg 0.82 0.77 0.79 160 

Weighted avg 0.85 0.86 0.85 1,600 

 

 

 
 

Figure 2. Model loss Vs. Epcoh 
 

 

9.1.2. RF 

The RF classifier employs numerous subtrees constructed to detect various types of attacks.  

The number of subtrees and the maximum tree level in RF impact the detection rate and time complexity. 

Consequently, the subtree is treated as a parameter in the evaluation. The testing of the RF classifier involves 

five models, each represented based on parameters related to the construction of the training models.  

The adjustable parameters include the maximum depth (max depth) and the number of estimators  

(n estimators). Table 2 presents the results of the five RF models. Variations are observed in the training 

parameters, and Figure 3 displays the heat map of the classification report. Specifically, two RF models can 

detect C1, C2, C3, and C4 attacks, two fail to detect C4 attacks, and one fails to detect C2, C3, and C4 

attacks. In summary, the dataset is highly imbalanced, and the class might be too “balanced” for the training 

model to pay more attention to the skewed attacks than the other majority classes. The best RF model has the 

settings n estimators = 100, max depth = none, and class weight = balanced. This model achieves 97% 

accuracy, 96% precision, 1% recall, 98% F1-score, 9.38s training time, and 6.76s testing time. However,  

RF is more time-consuming compared to the other models. 
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Table 2. Classification report for RF, (by author) 
 precision recall F1-score support 

0 0.96 1.00 0.98 122 
1 1.00 0.88 0.93 37 

accuracy   0.97 160 

macro avg 0.98 0.94 0.96 160 
weighted avg 0.97 0.97 0.97 160 

 

 

 
 

Figure 3. Classification report for RF 

 

 

9.1.3. SVM 

The SVM classifier testing involves four models represented based on the parameters related to the 

construction of the training models. The SVM model utilizes a kernel function in these datasets. Table 3 

presents the results of four SVM models, and Figure 4 shows the heat map of the classification report. 

Variations are detected in the kernel function and training parameters. Specifically, one SVM model can 

detect C1, C2, C3, and C4 attacks, whereas the other three fail to detect the rare C4 attacks. In summary,  

the dataset could be more balanced. Accordingly, the class might be set to “balanced” (to pay more attention 

to the skewed attacks than the other majority classes), and the number of iterations is set to –1. The best SVM 

model has the settings kernel = RBF, max iter = –1, and class weight = balanced and achieves 77% accuracy, 

77% precision, 100% recall, 87% F1-score, 343.56s training time, and 33.17s testing time. However,  

the model has a longer detection time than the other models. 
 

 

Table 3. Classification report for SVM, (by author) 
 precision recall F1-score support 

0 0.77 1.00 0.87 1,229 

1 0 0 0 371 
accuracy   0.77 1,600 

macro avg 0.38 0.5 0.43 160 
weighted avg 0.59 0.77 0.67 160 

 

 

 
 

Figure 4. Heat map of classification for SVM 
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9.1.4. KNN 

The KNN classifier testing involves five models denoted by 1, 2, 3, 4, and 5 k neighbors. Table 4 

presents the results of these models, and Figure 5 shows the heat map of the classification report. Variations 

are observed in their k values. Specifically, 3-NN models can detect all BENIGN (C1), brute force (C2), XSS 

(C3), and SQL injection (C4) attacks, whereas 4-NN and 5-NN models fail to detect C4 attacks. The 1-NN 

model obtains the best results for all classes with 93% accuracy, 96% precision, 94% recall, 95% F1-score, 

11.13s training time, and 7.92s testing time. 

 

 

Table 4. Classification report for KNN 
 precision recall F1-score support 

0 0.96 0.94 0.95 122 

1 0.83 0.87 0.85 371 

accuracy   0.93 1,600 
macro avg 0.89 0.91 0.90 1,600 

weighted avg 0.93 0.93 0.93 1,600 

 

 

 
 

Figure 5. Heat map of classification report for KNN 
 

 

10. CONCLUSION 

The study evaluates the performance of related ML-based AIDS models in detecting attacks, 

specifically on a binary dataset. Limitations are identified in these models, particularly in detecting novel 

attack types with multi-classification challenges. Moreover, a majority of the reviewed studies rely on 

accuracy as the primary evaluation metric, limiting the ability to perform a fair and comprehensive 

comparison of various ML-AIDS approaches. The utilization of supervised learning methodologies in the 

proposed approach has proven to be a promising avenue for enhancing botnet detection accuracy.  

The integration of a diverse range of ML algorithms, particularly KNN-AIDS, DT-AIDS, and NB-AIDS, 

showcased commendable performance in effectively identifying various types of botnet attacks. This 

underscores the significance of leveraging labeled data for training models, enabling them to learn and 

generalize from known instances, thereby improving detection efficacy. The experimental results 

demonstrate that no single supervised learning algorithm is universally effective in detecting all forms of 

botnet attacks. Different algorithms exhibit distinct strengths and weaknesses, emphasizing the importance of 

a diverse and adaptive approach in botnet detection. The observed excellence of KNN-AIDS, DT-AIDS, and 

NB-AIDS models signifies their potential applicability in real-world scenarios. 

However, the study also reveals limitations, notably the suboptimal performance of SOM-AIDS and 

EM-AIDS models, primarily due to high FP and FN alarms. This underscores the need for continuous 

refinement and optimization of supervised learning models, acknowledging the complexities and dynamics 

inherent in botnet behaviors. In conclusion, the application of supervised learning within the Hybrid SOM 

Approach offers a nuanced perspective on botnet detection, shedding light on the strengths and challenges of 

different algorithms. The outcomes provide a foundation for further research and optimization, encouraging 

ongoing efforts to enhance the accuracy and adaptability of supervised learning models in safeguarding IoT 

sensor networks against the evolving threat landscape of botnets. 
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