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 One of the new areas of cryptography considered-homomorphic 
cryptography. The article presents the main areas of application of 

homomorphic encryption. An analysis of existing developments in the field 

of homomorphic encryption carried out. The analysis showed that existing 

library implementations only allow processing bits or arrays of bits and do 
not support division and subtraction operations. However, to solve applied 

problems, support for performing integer operations are necessary. Because 

of the analysis, the need to implement the homomorphic division and 

subtraction operations identified, as well as the relevance of developing our 
own implementation of a homomorphic encryption library over integers. The 

ability to perform four operations (addition, difference, multiplication and 

division) on encrypted data will expand the areas of application of 

homomorphic encryption. A homomorphic division and subtraction methods 

proposed that allows the division operation performed on homomorphically 

encrypted data. An architecture for a library of fully homomorphic 

operations on integers is proposed. The library supports basic homomorphic 

operations on integers, as well as homomorphic division method. The article 
also provides measurements of the time required to perform certain 

operations on encrypted data and analyzes the efficiency of the developed 

implementation of the library. 
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1. INTRODUCTION 

Throughout history, cryptography has played a crucial role in ensuring the secure transmission of 

information in environments vulnerable to security breaches, preserving the confidentiality of transmitted 

data [1], [2]. This discipline has undergone continuous evolution, with a relatively recent advancement being 

homomorphic cryptography. What distinguishes homomorphic cryptography is its capacity to manipulate 

encrypted data without requiring prior decryption [3], [4]. This unique attribute ensures that the outcomes of 

operations performed on encrypted data, once decrypted, replicate the results of operations conducted on 

unencrypted data. This innovation addresses a fundamental challenge in cryptography: ensuring the secure 

generation, storage, and distribution of shared session keys. This progress significantly bolsters data security, 

enabling servers to receive encrypted data, process it, and return encrypted results, all while maintaining open 

data and encryption keys within a secure segment during network interactions [5]-[8]. For instance, consider 

a scenario where a hospital holds a substantial amount of private and sensitive patient information; it can 

https://creativecommons.org/licenses/by-sa/4.0/
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homomorphically encrypt the data and transmit it to a third party for analysis. The third party can conduct 

computations on the encrypted data and send back the results (also encrypted) to the hospital, which can then 

decrypt the data using a private key to view the outcomes. Homomorphic encryption schemes are classified 

based on the number of operations permitted on encrypted data. For a cryptosystem to be fully homomorphic 

encryption (FHE), it must support an unlimited number of arbitrary computations. Examples of fully 

homomorphic schemes include the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [9] and the chandler 

good government index CGGI scheme [10]. However, in practice, fully homomorphic schemes incur 

significant overhead and are computationally expensive. Somewhat homomorphic encryption (SWHE) 

schemes are more practical, but they only allow certain operations on encrypted data and restrict the number 

of computations due to the ciphertext size increasing with each step because of noise [11], [12]. Examples of 

SWHE schemes include various ones. Partially homomorphic encryption (PHE) schemes [13]-[16], such as 

others, permit only one type of operation (either addition or multiplication) on encrypted data any number of 

times, in contrast to somewhat homomorphic schemes that support both. The development of such schemes 

remains an active area of research, and the establishment of standards for homomorphic encryption has 

recently gained momentum, as discussed in various sources. 

Compared to other homomorphic encryptions, the Paillier cipher is a more attractive option in a 

number of ways. The Paillier cipher has a unique feature that allows both addition and multiplication 

operations on encrypted data, unlike some PHEs which are limited in this regard. This makes it more flexible 

and versatile for solving various problems. In addition, the Paillier cipher has less significant computational 

and hardware overhead compared to FHE, which makes it more practical for implementation in real systems. 

It should also be noted that the Paillier cipher provides better performance and lower resource requirements 

compared to some PHEs, making it a more attractive choice for many applications. Overall, the Paillier 

cipher is an efficient and powerful solution for homomorphic encryption, given its ability to support both 

basic operations and its moderate resource requirements. 

At the moment, there are already several implementations of libraries for homomorphic encryption 

[17]-[19]. Among them, the two most significant implementations available for general use are: 

i) The HElib library, created by Shai Haveli and Victor Shoup, implements the BGV cryptosystem with 

GHS optimization. 

ii) The FHEW library, developed by Leo Douglas and Daniel Micchianakio, is a combination of Regev's 

error-learning cryptosystem and Alperin-Sheriff and Peukert's flexible circuit design technique. 

In this study, it was studied that both libraries have high speed and good optimization, and are also 

implemented in the C++ programming language. Although earlier research has examined application needs 

for homomorphic encryption, these implementations are of limited practical value because they can only 

handle bits (or arrays of bits) rather than integers. They clearly did not pay attention to the fact that these 

implementations do not support division and subtraction operations on encrypted data. Based on the analysis, 

it was concluded that it is necessary to develop a library for FHE that allows you to operate with integers and 

perform all mathematical operations on them (addition, subtraction, multiplication and division). 

Section 2 of this study will highlight our specific contribution, focusing on adding the mathematical 

operation of subtraction and division to encrypted data. Subsequently, a full analysis of the obtained data will 

be carried out in section 3. This will be followed by a conclusion summarizing the important findings and 

insights gained from this study. 

 

 

2. METHOD 

The Paillier cryptosystem [20]-[22] is an asymmetric algorithm rooted in public key cryptography, 

relying on the challenge of computing the nth residue class, a known computationally challenging problem. 

This cryptosystem operates as an additive homomorphic system and has found widespread application in 

electronic cash transactions and secure electronic voting. However, the computational demands of the Paillier 

homomorphic encryption and decryption processes pose a significant challenge for devices with limited 

processing resources [23]-[25]. Therefore, there is a need for an improved and faster encryption and 

decryption version that supports devices with limited processing resources. An improved and fast decryption 

version used for Paillier homomorphic encryption and a library created. The main transformations that 

characterize this cryptosystem are as follows: 

Key generation: 

 

𝑝, 𝑞. 𝐺𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1,   

𝑛 = 𝑝 ∗ 𝑞and 𝜆=𝑙𝑐𝑚(𝑝 − 1)(𝑞 − 1),  

𝜇 = (𝐿(𝑔𝜆𝑚𝑜𝑑𝑛2))
−1

𝑚𝑜𝑑𝑛,  
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where 𝐿(𝑢) = (
𝑢−1

𝑛
) 

𝑝𝑢𝑏𝑙𝑖𝑐𝑘𝑒𝑦(𝑛); 

𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑘𝑒𝑦(𝑝, 𝑞, 𝑛). 

Encryption: 

 

𝑟𝜖𝑍𝑛 ,   𝑔𝑐𝑑(𝑟, 𝑛) = 1,  

 

с = 𝑔𝑚 ∗ 𝑟𝑛𝑚𝑜𝑑𝑛 (1) 

 

Decryption: 

 

𝑚𝑝 = (
𝑐𝑝−1𝑚𝑜𝑑𝑝2−1

𝑝
) ∗ ℎ𝑝𝑚𝑜𝑑𝑝 ,      𝑚𝑞 = (

𝑐𝑞−1𝑚𝑜𝑑𝑞2−1

𝑞
) ∗ ℎ𝑞𝑚𝑜𝑑𝑞 (2) 

 

ℎ = [𝐿(𝑔𝜑 𝑛⁄ 𝑚𝑜𝑑𝑛2)]
−1

𝑚𝑜𝑑𝑛;  

ℎ𝑝 = (
𝑔𝑝−1𝑚𝑜𝑑𝑝2−1

𝑝
)

−1

𝑚𝑜𝑑𝑝 , ℎ𝑞 = (
𝑔𝑞−1𝑚𝑜𝑑𝑞2−1

𝑞
)

−1

𝑚𝑜𝑑𝑞;  

𝑚 = 𝐿(𝑐𝜑 𝑛⁄ 𝑚𝑜𝑑𝑛2) ∗ ℎ𝑚𝑜𝑑𝑛;  

 

Homomorphic property: 

a) Homomorphic addition of plain texts: 

 

𝐷(𝐸(𝑚1)*𝐸(𝑚2)𝑚𝑜𝑑𝑛2)= 𝑚1+𝑚2𝑚𝑜𝑑𝑛  (3) 

 

b) Homomorphic multiplication of plain texts: 

 

(𝐸(𝑚1, 𝑟1)𝑚2𝑚𝑜𝑑𝑛2)= 𝑚1*𝑚2𝑚𝑜𝑑𝑛 (4) 

 

c) Homomorphic subtraction of plaintexts: 

 

𝐷(𝐸(𝑚1)*𝐸(𝑚2)-1𝑚𝑜𝑑𝑛2)= (𝑚1-𝑚2)𝑚𝑜𝑑𝑛 (5) 

 

d) Homomorphic division of plaintexts: 

 

𝐷(𝐸(𝑚1, 𝑟1)𝑚2
−1

𝑚𝑜𝑑𝑛2)= 𝑚1/𝑚2𝑚𝑜𝑑𝑛 (6) 

 

An example of how the system works: 

Key generation: 

a. 𝑝 = 43, 𝑞 = 37. 𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1, 𝑚1 = 180, 𝑚2 = 90, 

b. 𝑛 = 1591        𝜆=252, 

c.  𝜇 = 1168, 𝑔 = 1592, 𝑟1 = 63,    𝑟2 = 19 

Encryption: 

𝑐1 = 242783, 𝑐2 = 347602. 

Decryption: 

𝑚1 = 180, 𝑚2 = 90.  
a) Homomorphic addition of plain texts: 

 

242783 ∗ 347602𝑚𝑜𝑑2531281 = 1479107 𝐷 =
1479107252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 =

1218 ∗ 1168𝑚𝑜𝑑1591 = 270; 

 

b) Homomorphic multiplication of plain texts: 

 

24278390𝑚𝑜𝑑2531281 = 2174010 𝐷 =
2174010252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 = 406 ∗

1168𝑚𝑜𝑑1591 = 290; 

 

c) Homomorphic subtraction of plaintexts: 
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242783 ∗ 347602−1𝑚𝑜𝑑2531281 = 1746509  𝐷 =
1746509252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 =

504 ∗ 1168𝑚𝑜𝑑1591 = 90; 

 

d) Homomorphic division of plain texts: 

 

24278390−1
𝑚𝑜𝑑2531281 = 42190 𝐷 =

42190252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 = 406 ∗

1168𝑚𝑜𝑑1591 = 2. 

 

The developed library is implemented in the C++ programming language. To provide the ability to 

perform multiple operations on encrypted numbers and minimize computational inaccuracies (for example, 

rounding values), the library uses the NTL large number library. When developing this library, the following 

tasks were set: providing the ability to process integers; implementation of FHE; supports all mathematical 

operations, including division. To support the division operation, the library architecture is based on the 

homomorphic division method. 

Development of a software module for the FHE algorithm within Paillier's cryptosystem.  

Encryption procedure: 

1. Input of initial plaintext data. Encryption files are incorporated, and data is extracted from these files. 

2. In the "Parameters" section, 𝑝 and 𝑞 are randomly sample until 𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) is satisfied. 

𝑛 = 𝑝 ∗ 𝑞, 𝜆 = 𝐿𝐶𝑀(𝑝 − 1, 𝑞 − 1), 𝑔 = 𝑛 + 1, 𝜇 = (
𝑔𝜆𝑚𝑜𝑑𝑛2−1

𝑛
)

−1

𝑚𝑜𝑑𝑛 keys are calculated, where 𝑛, 𝑔–

public, 𝜇, 𝜆–private key. 

3. The encryption block is implemented using mathematical operations. 

3.1 Randomly select 𝑟 (𝑟 is an integer) 

3.2 𝑐 = 𝑔𝑚 ∗ 𝑟𝑛𝑚𝑜𝑑𝑛2 based on which open data is encrypted. 

4. Mathematical operations on encrypted data are performed as:  

4.1 Add operation: 
(𝑐1∗𝑐2%𝑛2)

𝜆
%𝑛2−1

𝑛
∗ 𝜇%𝑛; 

4.2 Subtraction operation:
(𝑐1∗𝑐2

−1%𝑛2)
𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛; 

4.3 Multiplication operation:
(𝑐1

𝑚2%𝑛2)
𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛;   

(𝑐2
𝑚1%𝑛2)

𝜆
%𝑛2−1

𝑛
∗ 𝜇%𝑛; 

4.4 Division operation: 
(𝑐1

𝑚2
−1

%𝑛2)

𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛;   

(𝑐2
𝑚1

−1
%𝑛2)

𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛. 

5. Decrypts data encrypted using the formula. 𝑚 = (
𝑐𝜆𝑚𝑜𝑑𝑛2−1

𝑛
) ∗ 𝜇𝑚𝑜𝑑𝑛  

The pseudo code of the performed operations illustrated in Figure 1. 

 

 

3. RESULTS AND DISCUSSION  

A C++ static library was developed to enable Paillier FHE. This library utilizes the Boost library to 

handle extensive numerical operations, ensuring precision in calculations involving encrypted numbers. 

Throughout the modification process, key objectives included support for integer processing, complete 

homomorphic encryption, and the inclusion of all mathematical operations, including division. In order to 

facilitate division operations, the library's architecture devised based on the homomorphic division method 

mentioned earlier. The library structured around cryptographic and mathematical classes, along with a class 

responsible for fundamental information, as illustrated in Figure 2. 

The secret key class is responsible for managing data related to the secret key used in the 

cryptographic algorithm. It offers functionalities such as key generation, random key generation, and key 

utilization. The present implementation of the library employs a standard library's random number generator 

with automatic randomization based on the current time for key and polynomial coefficient generation. 

However, it is important to note that the pseudo-random number generator from the standard library 

considered cryptographically insecure due to its use of a linear congruence method. To address this security 

concern, an interface introduced to enable the utilization of external random generators. By mutual 

agreement, the recommended choice is the random number generator from the Boost library, known for its 

non-deterministic random number generation and cryptographic security. 
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Figure 1. Operations performed in the homomorphic Paillier cryptosystem 
 

 

The encrypted data module primarily deals with a homomorphically encrypted number as its main 

data type. Within the encryption class, functionalities are implemented for creating new ciphertexts through 

plaintexts and secret keys (data encryption operation), as well as extracting clear data from encrypted data 

based on the encryption key (data decryption operation). Homomorphism is employed to execute 

fundamental mathematical operations, including subtraction, addition, division, and multiplication on 

encrypted data. Encryption and decryption can be performed using pre-generated keys or by providing secret 

parameters. Moreover, the class encompasses all the necessary mathematical operations for polynomials, 

such as division, multiplication, subtraction, and addition. 

Decrypted data, on the other hand, reverses encrypted data using a private key and homomorphism. 

The verification of homomorphism involves several operations. For addition, an array named resBuf is 

opened, and its size is determined based on the length of the larger polynomial. All elements of resBuf are 

initially set to 0, and a loop is used to add index polynomial values corresponding to each index. The sum 

value is calculated using the variable resu=0 and resu+=resbuff[0]*x0, with similar steps performed for the 

remaining parts of the polynomial. 

For subtraction, the algorithm involves placing the numbers of the first polynomial into the resBuf 

array and subtracting the numbers of the second polynomial from it, similar to the addition-checking algorithm. 

Multiplication operation verification includes opening an array called Kob, with a size of [(size of first 

polynomial)×(size of second polynomial)]. This array is divided into two columns, where the first column 

contains coefficients in front of x, and the second column contains the exponents of x. The resu array is then 

opened, and the same ranks are added to it. The division operation utilizes the horner scheme on encrypted data. 

When dividing one polynomial by another, the algorithm divides and takes the remainder. An architecture for 

Paillier homomorphic encryption has been developed, and the constructed architecture is depicted in Figure 2. 

Following this architecture, a static library for the Paillier encryption algorithm has been created. 

Secret key: this category manages information pertaining to the secret key employed in the 

cryptographic algorithm. It facilitates key generation, random key generation, and provides access to both the 

public and private keys. Encryption: this process involves taking public data values from the ASCII table and 

encrypting the data using the public key. Homomorphism: this functionality executes various mathematical 

operations on encrypted data. DecryptedData: following operations on encrypted data, this allows for reverse 

encryption using a secret key, enabling retrieval of results from the performed operations. Once the data is 

reverse-encrypted, it can be used in its clear text form, and operations can be conducted on the data following 
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homomorphic transformations. Development of a software module for the FHE algorithm within Paillier's 

cryptosystem. The generated software is depicted in Figure 3. In Table 1 present Paillier library 

implementation functions. In Table 2 shows execution time of the developed library. Figure 4 shows the 

dependence of the execution time of the algorithm on the encryption parameters. 

 

 

 
 

Figure 2. Architecture of Paillier homomorphic encryption 

 

 

 
 

Figure 3. The result of the FHE algorithm of the Paillier cryptosystem 

 

 

Multiplication tests: in Figure 4, the charts illustrate the correlation between data processing time 

using the library and the number of sequential operations involved in the multiplication operation. Notably, 

the multiplication operation exhibits exponential complexity due to a rapid surge in noise during its 

execution. With each multiplication operation, the ciphertext volume approximately doubles, contributing to 

the observed exponential growth. Addition tests: in the same figure, Figure 4 portrays the relationship 

between data processing time using the library and the number of sequential operations for the addition 
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operation. The graphs indicate that the addition operation demonstrates linear complexity relative to the 

number of consecutive addition operations. This linearity is attributed to the comparatively slow expansion of 

ciphertext size resulting from the addition operation. 
 

 

Table 1. Paillier library implementation functions 
Homomorphism over two numbers 

The name of the function The signature of the function Description 

Add Add(long long a, long long b); Calculating the sum of two large integers. a and b are integers. 

Modpow Modpow(long long a, long long b, 

long long c); 

Obtaining the remainder when dividing a certain power of a 

number by the next number. a, b, c are integers (𝑎𝑏%𝑐). 

ReverseMod ReverseMod(long long a, long 

long b) 

Obtain the remainder of the power of -1 of a number divided by 

the next number. 

a and b are integers (𝑎−1%𝑏). 

PrintSome PrintSome(long long A[], long 

long n); 

A [] displays the data set (n is the length of the set). 

IsPrime IsPrime(int n); Determines whether a given number is prime or not. n is an 

integer. 

NOD NOD(long long int a, long long int 

b); 

It is used to find the greatest common divisor (GCD) of two 

numbers 

a and b are integers. 

Nok Nok(int a, int b); Nok Nok(int a, int b); used to find the least common multiple 

(LCM) of two numbers 

a and b are integers. 

FindG FindG(long long g, long long ly, 

long long n2, long long n, int 

size); 

 

Gomomorph Gomomorph(long long x, long 

long ly, long long n, long long n2); 

The homomorphic property is proven by performing 

mathematical operations on encrypted data. 

x is the value obtained as a result of operations, ly is a secret 

key, n is an integer. 

EncryptionPeye EncryptionPeye(long long int C[], 

long long int M[], long long int r[], 

long long g, long long n, long long 

n2, long long size); 

Searches the ASCII table for each character in the text. The 

values from the table are encrypted. 

C[] is a set of returned ciphers, M[] is a set of input data, r[] are 

integers used for each encryption process, g,n are public keys, n2 

= n2 

DecryptionPeye DecryptionPeye(long long int C[], 

long long int M2[], long long ly, 

long long mu, long long n, long 

long n2, long long size); 

Performs the decryption of encrypted values. The outcome of the 

inverse encryption involves referencing the numbers in the 

ASCII table and recording the corresponding symbols. 

C[] represents a collection of ciphers for the reverse encryption 

process, M2[] denotes numbers acquired through reverse 

encryption, ly and mu are secret keys, n is an integer, and size 

indicates the length of the dataset. 

 

 

The developed subtraction and division operations are of significant practical importance in the 

context of the use of homomorphic encryption in real applications. For example, computer security: adding 

subtraction and division operations expands the use of FHE to protect data privacy across systems. This is 

especially important in areas where arithmetic operations on encrypted data are required, such as financial 

transactions and processing of personal data. Processing sensitive data: subtraction and division operations 

enable a wider range of analytical tasks to be performed on encrypted data, which can be useful for 

organizations processing sensitive data, such as medical research where maintaining patient confidentiality is 

important. Research in cryptography: the development of new operations for homomorphic encryption 

represents an important step in the development of cryptographic methods for ensuring data confidentiality. 

This could lead to more efficient and secure encryption methods, which in turn will improve overall 

information security. 
 

 

Table 2. Execution time of the development library 
2-digit, different 

even numbers 
Key generation, encryption 

decryption, add, 

ms 
decryption, subtraction, 

ms 
decryption, multiplication, 

ms 
decryption, division, 

ms 
100 6.65 6.7 9 10.85 
200 9.65 9.73 12.87 15.42 
300 12.65 12.79 17.09 20.34 
400 15.68 15.86 21.3 24.45 
500 18.69 18.9 25.4 28.75 
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Figure 4. Algorithm execution time dependence on encryption parameters 

 

 

4. CONCLUSION 

Through the undertaken investigation, a comprehensive analysis of homomorphic encryption was 

conducted, unveiling both its vulnerabilities and strengths, while also elucidating potential avenues for 

practical application. A scrutiny of existing homomorphic encryption libraries revealed a gap in 

implementations capable of effectively handling integers with a complete mathematical framework. This 

assessment underscores the imperative to design and develop a proprietary library dedicated to FHE of 

integers. The envisioned library aims to facilitate accurate cryptographic transformations on integer data, 

encompassing essential mathematical operations such as addition, multiplication, subtraction, and division. 

Notably, the absence of a fully realized implementation for homomorphic encryption of integers prompted 

the identification of a crucial need in the field. Consequently, the research culminated in the formulation and 

proposal of a method specifically tailored to enable homomorphic division, ensuring its applicability across 

diverse fully homomorphic algorithms. This proposed solution addresses a critical gap in existing 

implementations, paving the way for more versatile and comprehensive homomorphic encryption practices. 

This scientific article has high practical significance in the field of cryptography and information security, 

making FHE more accessible and applicable in various fields. Our findings provide conclusive evidence that 

this phenomenon helps improve data security and privacy in the modern information world. 
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