
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 3, June 2024, pp. 1989~1998

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp1989-1998  1989

Journal homepage: http://ijeecs.iaescore.com

Development Paillier's library of fully homomorphic

encryption

Temirbekova Zhanerke Erlanovna1,2, Tynymbayev Sakhybay2, Abdiakhmetova Zukhra Muratovna1,

Turken Gulzat1
1Faculty Information Technology, Kazakh National University Named After Al-Farabi (KazNU), Almaty, Kazakhstan

2Faculty of Computer Technology and Cybersecurity, International IT University (IITU), Almaty, Kazakhstan

Article Info ABSTRACT

Article history:

Received Jan 17, 2024

Revised Feb 21, 2024

Accepted Mar 10, 2024

 One of the new areas of cryptography considered-homomorphic
cryptography. The article presents the main areas of application of

homomorphic encryption. An analysis of existing developments in the field

of homomorphic encryption carried out. The analysis showed that existing

library implementations only allow processing bits or arrays of bits and do
not support division and subtraction operations. However, to solve applied

problems, support for performing integer operations are necessary. Because

of the analysis, the need to implement the homomorphic division and

subtraction operations identified, as well as the relevance of developing our
own implementation of a homomorphic encryption library over integers. The

ability to perform four operations (addition, difference, multiplication and

division) on encrypted data will expand the areas of application of

homomorphic encryption. A homomorphic division and subtraction methods

proposed that allows the division operation performed on homomorphically

encrypted data. An architecture for a library of fully homomorphic

operations on integers is proposed. The library supports basic homomorphic

operations on integers, as well as homomorphic division method. The article
also provides measurements of the time required to perform certain

operations on encrypted data and analyzes the efficiency of the developed

implementation of the library.

Keywords:

Cryptography

Homomorphic encryption

Library

Paillier cryptosystem

Security

This is an open access article under the CC BY-SA license.

Corresponding Author:

Temirbekova Zhanerke Erlanovna

Faculty Information Technology, Kazakh National University Named After Al-Farabi (KazNU)

71/10 Farabi, Almaty, Kazakhstan

Email: temyrbekovazhanerke2@gmail.com

1. INTRODUCTION

Throughout history, cryptography has played a crucial role in ensuring the secure transmission of

information in environments vulnerable to security breaches, preserving the confidentiality of transmitted

data [1], [2]. This discipline has undergone continuous evolution, with a relatively recent advancement being

homomorphic cryptography. What distinguishes homomorphic cryptography is its capacity to manipulate

encrypted data without requiring prior decryption [3], [4]. This unique attribute ensures that the outcomes of

operations performed on encrypted data, once decrypted, replicate the results of operations conducted on

unencrypted data. This innovation addresses a fundamental challenge in cryptography: ensuring the secure

generation, storage, and distribution of shared session keys. This progress significantly bolsters data security,

enabling servers to receive encrypted data, process it, and return encrypted results, all while maintaining open

data and encryption keys within a secure segment during network interactions [5]-[8]. For instance, consider

a scenario where a hospital holds a substantial amount of private and sensitive patient information; it can

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1989-1998

1990

homomorphically encrypt the data and transmit it to a third party for analysis. The third party can conduct

computations on the encrypted data and send back the results (also encrypted) to the hospital, which can then

decrypt the data using a private key to view the outcomes. Homomorphic encryption schemes are classified

based on the number of operations permitted on encrypted data. For a cryptosystem to be fully homomorphic

encryption (FHE), it must support an unlimited number of arbitrary computations. Examples of fully

homomorphic schemes include the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [9] and the chandler

good government index CGGI scheme [10]. However, in practice, fully homomorphic schemes incur

significant overhead and are computationally expensive. Somewhat homomorphic encryption (SWHE)

schemes are more practical, but they only allow certain operations on encrypted data and restrict the number

of computations due to the ciphertext size increasing with each step because of noise [11], [12]. Examples of

SWHE schemes include various ones. Partially homomorphic encryption (PHE) schemes [13]-[16], such as

others, permit only one type of operation (either addition or multiplication) on encrypted data any number of

times, in contrast to somewhat homomorphic schemes that support both. The development of such schemes

remains an active area of research, and the establishment of standards for homomorphic encryption has

recently gained momentum, as discussed in various sources.

Compared to other homomorphic encryptions, the Paillier cipher is a more attractive option in a

number of ways. The Paillier cipher has a unique feature that allows both addition and multiplication

operations on encrypted data, unlike some PHEs which are limited in this regard. This makes it more flexible

and versatile for solving various problems. In addition, the Paillier cipher has less significant computational

and hardware overhead compared to FHE, which makes it more practical for implementation in real systems.

It should also be noted that the Paillier cipher provides better performance and lower resource requirements

compared to some PHEs, making it a more attractive choice for many applications. Overall, the Paillier

cipher is an efficient and powerful solution for homomorphic encryption, given its ability to support both

basic operations and its moderate resource requirements.

At the moment, there are already several implementations of libraries for homomorphic encryption

[17]-[19]. Among them, the two most significant implementations available for general use are:

i) The HElib library, created by Shai Haveli and Victor Shoup, implements the BGV cryptosystem with

GHS optimization.

ii) The FHEW library, developed by Leo Douglas and Daniel Micchianakio, is a combination of Regev's

error-learning cryptosystem and Alperin-Sheriff and Peukert's flexible circuit design technique.

In this study, it was studied that both libraries have high speed and good optimization, and are also

implemented in the C++ programming language. Although earlier research has examined application needs

for homomorphic encryption, these implementations are of limited practical value because they can only

handle bits (or arrays of bits) rather than integers. They clearly did not pay attention to the fact that these

implementations do not support division and subtraction operations on encrypted data. Based on the analysis,

it was concluded that it is necessary to develop a library for FHE that allows you to operate with integers and

perform all mathematical operations on them (addition, subtraction, multiplication and division).

Section 2 of this study will highlight our specific contribution, focusing on adding the mathematical

operation of subtraction and division to encrypted data. Subsequently, a full analysis of the obtained data will

be carried out in section 3. This will be followed by a conclusion summarizing the important findings and

insights gained from this study.

2. METHOD

The Paillier cryptosystem [20]-[22] is an asymmetric algorithm rooted in public key cryptography,

relying on the challenge of computing the nth residue class, a known computationally challenging problem.

This cryptosystem operates as an additive homomorphic system and has found widespread application in

electronic cash transactions and secure electronic voting. However, the computational demands of the Paillier

homomorphic encryption and decryption processes pose a significant challenge for devices with limited

processing resources [23]-[25]. Therefore, there is a need for an improved and faster encryption and

decryption version that supports devices with limited processing resources. An improved and fast decryption

version used for Paillier homomorphic encryption and a library created. The main transformations that

characterize this cryptosystem are as follows:

Key generation:

𝑝, 𝑞. 𝐺𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1,

𝑛 = 𝑝 ∗ 𝑞and 𝜆=𝑙𝑐𝑚(𝑝 − 1)(𝑞 − 1),

𝜇 = (𝐿(𝑔𝜆𝑚𝑜𝑑𝑛2))
−1

𝑚𝑜𝑑𝑛,

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Development Paillier's library of fully homomorphic encryption (Temirbekova Zhanerke Erlanovna)

1991

where 𝐿(𝑢) = (
𝑢−1

𝑛
)

𝑝𝑢𝑏𝑙𝑖𝑐𝑘𝑒𝑦(𝑛);

𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑘𝑒𝑦(𝑝, 𝑞, 𝑛).

Encryption:

𝑟𝜖𝑍𝑛 , 𝑔𝑐𝑑(𝑟, 𝑛) = 1,

с = 𝑔𝑚 ∗ 𝑟𝑛𝑚𝑜𝑑𝑛 (1)

Decryption:

𝑚𝑝 = (
𝑐𝑝−1𝑚𝑜𝑑𝑝2−1

𝑝
) ∗ ℎ𝑝𝑚𝑜𝑑𝑝 , 𝑚𝑞 = (

𝑐𝑞−1𝑚𝑜𝑑𝑞2−1

𝑞
) ∗ ℎ𝑞𝑚𝑜𝑑𝑞 (2)

ℎ = [𝐿(𝑔𝜑 𝑛⁄ 𝑚𝑜𝑑𝑛2)]
−1

𝑚𝑜𝑑𝑛;

ℎ𝑝 = (
𝑔𝑝−1𝑚𝑜𝑑𝑝2−1

𝑝
)

−1

𝑚𝑜𝑑𝑝 , ℎ𝑞 = (
𝑔𝑞−1𝑚𝑜𝑑𝑞2−1

𝑞
)

−1

𝑚𝑜𝑑𝑞;

𝑚 = 𝐿(𝑐𝜑 𝑛⁄ 𝑚𝑜𝑑𝑛2) ∗ ℎ𝑚𝑜𝑑𝑛;

Homomorphic property:

a) Homomorphic addition of plain texts:

𝐷(𝐸(𝑚1)*𝐸(𝑚2)𝑚𝑜𝑑𝑛2)= 𝑚1+𝑚2𝑚𝑜𝑑𝑛 (3)

b) Homomorphic multiplication of plain texts:

(𝐸(𝑚1, 𝑟1)𝑚2𝑚𝑜𝑑𝑛2)= 𝑚1*𝑚2𝑚𝑜𝑑𝑛 (4)

c) Homomorphic subtraction of plaintexts:

𝐷(𝐸(𝑚1)*𝐸(𝑚2)-1𝑚𝑜𝑑𝑛2)= (𝑚1-𝑚2)𝑚𝑜𝑑𝑛 (5)

d) Homomorphic division of plaintexts:

𝐷(𝐸(𝑚1, 𝑟1)𝑚2
−1

𝑚𝑜𝑑𝑛2)= 𝑚1/𝑚2𝑚𝑜𝑑𝑛 (6)

An example of how the system works:

Key generation:

a. 𝑝 = 43, 𝑞 = 37. 𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1, 𝑚1 = 180, 𝑚2 = 90,

b. 𝑛 = 1591 𝜆=252,

c. 𝜇 = 1168, 𝑔 = 1592, 𝑟1 = 63, 𝑟2 = 19

Encryption:

𝑐1 = 242783, 𝑐2 = 347602.

Decryption:

𝑚1 = 180, 𝑚2 = 90.
a) Homomorphic addition of plain texts:

242783 ∗ 347602𝑚𝑜𝑑2531281 = 1479107 𝐷 =
1479107252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 =

1218 ∗ 1168𝑚𝑜𝑑1591 = 270;

b) Homomorphic multiplication of plain texts:

24278390𝑚𝑜𝑑2531281 = 2174010 𝐷 =
2174010252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 = 406 ∗

1168𝑚𝑜𝑑1591 = 290;

c) Homomorphic subtraction of plaintexts:

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1989-1998

1992

242783 ∗ 347602−1𝑚𝑜𝑑2531281 = 1746509 𝐷 =
1746509252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 =

504 ∗ 1168𝑚𝑜𝑑1591 = 90;

d) Homomorphic division of plain texts:

24278390−1
𝑚𝑜𝑑2531281 = 42190 𝐷 =

42190252𝑚𝑜𝑑2531281−1

1591
∗ 1168𝑚𝑜𝑑1591 = 406 ∗

1168𝑚𝑜𝑑1591 = 2.

The developed library is implemented in the C++ programming language. To provide the ability to

perform multiple operations on encrypted numbers and minimize computational inaccuracies (for example,

rounding values), the library uses the NTL large number library. When developing this library, the following

tasks were set: providing the ability to process integers; implementation of FHE; supports all mathematical

operations, including division. To support the division operation, the library architecture is based on the

homomorphic division method.

Development of a software module for the FHE algorithm within Paillier's cryptosystem.

Encryption procedure:

1. Input of initial plaintext data. Encryption files are incorporated, and data is extracted from these files.

2. In the "Parameters" section, 𝑝 and 𝑞 are randomly sample until 𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) is satisfied.

𝑛 = 𝑝 ∗ 𝑞, 𝜆 = 𝐿𝐶𝑀(𝑝 − 1, 𝑞 − 1), 𝑔 = 𝑛 + 1, 𝜇 = (
𝑔𝜆𝑚𝑜𝑑𝑛2−1

𝑛
)

−1

𝑚𝑜𝑑𝑛 keys are calculated, where 𝑛, 𝑔–

public, 𝜇, 𝜆–private key.

3. The encryption block is implemented using mathematical operations.

3.1 Randomly select 𝑟 (𝑟 is an integer)

3.2 𝑐 = 𝑔𝑚 ∗ 𝑟𝑛𝑚𝑜𝑑𝑛2 based on which open data is encrypted.

4. Mathematical operations on encrypted data are performed as:

4.1 Add operation:
(𝑐1∗𝑐2%𝑛2)

𝜆
%𝑛2−1

𝑛
∗ 𝜇%𝑛;

4.2 Subtraction operation:
(𝑐1∗𝑐2

−1%𝑛2)
𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛;

4.3 Multiplication operation:
(𝑐1

𝑚2%𝑛2)
𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛;

(𝑐2
𝑚1%𝑛2)

𝜆
%𝑛2−1

𝑛
∗ 𝜇%𝑛;

4.4 Division operation:
(𝑐1

𝑚2
−1

%𝑛2)

𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛;

(𝑐2
𝑚1

−1
%𝑛2)

𝜆

%𝑛2−1

𝑛
∗ 𝜇%𝑛.

5. Decrypts data encrypted using the formula. 𝑚 = (
𝑐𝜆𝑚𝑜𝑑𝑛2−1

𝑛
) ∗ 𝜇𝑚𝑜𝑑𝑛

The pseudo code of the performed operations illustrated in Figure 1.

3. RESULTS AND DISCUSSION

A C++ static library was developed to enable Paillier FHE. This library utilizes the Boost library to

handle extensive numerical operations, ensuring precision in calculations involving encrypted numbers.

Throughout the modification process, key objectives included support for integer processing, complete

homomorphic encryption, and the inclusion of all mathematical operations, including division. In order to

facilitate division operations, the library's architecture devised based on the homomorphic division method

mentioned earlier. The library structured around cryptographic and mathematical classes, along with a class

responsible for fundamental information, as illustrated in Figure 2.

The secret key class is responsible for managing data related to the secret key used in the

cryptographic algorithm. It offers functionalities such as key generation, random key generation, and key

utilization. The present implementation of the library employs a standard library's random number generator

with automatic randomization based on the current time for key and polynomial coefficient generation.

However, it is important to note that the pseudo-random number generator from the standard library

considered cryptographically insecure due to its use of a linear congruence method. To address this security

concern, an interface introduced to enable the utilization of external random generators. By mutual

agreement, the recommended choice is the random number generator from the Boost library, known for its

non-deterministic random number generation and cryptographic security.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Development Paillier's library of fully homomorphic encryption (Temirbekova Zhanerke Erlanovna)

1993

Figure 1. Operations performed in the homomorphic Paillier cryptosystem

The encrypted data module primarily deals with a homomorphically encrypted number as its main

data type. Within the encryption class, functionalities are implemented for creating new ciphertexts through

plaintexts and secret keys (data encryption operation), as well as extracting clear data from encrypted data

based on the encryption key (data decryption operation). Homomorphism is employed to execute

fundamental mathematical operations, including subtraction, addition, division, and multiplication on

encrypted data. Encryption and decryption can be performed using pre-generated keys or by providing secret

parameters. Moreover, the class encompasses all the necessary mathematical operations for polynomials,

such as division, multiplication, subtraction, and addition.

Decrypted data, on the other hand, reverses encrypted data using a private key and homomorphism.

The verification of homomorphism involves several operations. For addition, an array named resBuf is

opened, and its size is determined based on the length of the larger polynomial. All elements of resBuf are

initially set to 0, and a loop is used to add index polynomial values corresponding to each index. The sum

value is calculated using the variable resu=0 and resu+=resbuff[0]*x0, with similar steps performed for the

remaining parts of the polynomial.

For subtraction, the algorithm involves placing the numbers of the first polynomial into the resBuf

array and subtracting the numbers of the second polynomial from it, similar to the addition-checking algorithm.

Multiplication operation verification includes opening an array called Kob, with a size of [(size of first

polynomial)×(size of second polynomial)]. This array is divided into two columns, where the first column

contains coefficients in front of x, and the second column contains the exponents of x. The resu array is then

opened, and the same ranks are added to it. The division operation utilizes the horner scheme on encrypted data.

When dividing one polynomial by another, the algorithm divides and takes the remainder. An architecture for

Paillier homomorphic encryption has been developed, and the constructed architecture is depicted in Figure 2.

Following this architecture, a static library for the Paillier encryption algorithm has been created.

Secret key: this category manages information pertaining to the secret key employed in the

cryptographic algorithm. It facilitates key generation, random key generation, and provides access to both the

public and private keys. Encryption: this process involves taking public data values from the ASCII table and

encrypting the data using the public key. Homomorphism: this functionality executes various mathematical

operations on encrypted data. DecryptedData: following operations on encrypted data, this allows for reverse

encryption using a secret key, enabling retrieval of results from the performed operations. Once the data is

reverse-encrypted, it can be used in its clear text form, and operations can be conducted on the data following

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1989-1998

1994

homomorphic transformations. Development of a software module for the FHE algorithm within Paillier's

cryptosystem. The generated software is depicted in Figure 3. In Table 1 present Paillier library

implementation functions. In Table 2 shows execution time of the developed library. Figure 4 shows the

dependence of the execution time of the algorithm on the encryption parameters.

Figure 2. Architecture of Paillier homomorphic encryption

Figure 3. The result of the FHE algorithm of the Paillier cryptosystem

Multiplication tests: in Figure 4, the charts illustrate the correlation between data processing time

using the library and the number of sequential operations involved in the multiplication operation. Notably,

the multiplication operation exhibits exponential complexity due to a rapid surge in noise during its

execution. With each multiplication operation, the ciphertext volume approximately doubles, contributing to

the observed exponential growth. Addition tests: in the same figure, Figure 4 portrays the relationship

between data processing time using the library and the number of sequential operations for the addition

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Development Paillier's library of fully homomorphic encryption (Temirbekova Zhanerke Erlanovna)

1995

operation. The graphs indicate that the addition operation demonstrates linear complexity relative to the

number of consecutive addition operations. This linearity is attributed to the comparatively slow expansion of

ciphertext size resulting from the addition operation.

Table 1. Paillier library implementation functions
Homomorphism over two numbers

The name of the function The signature of the function Description

Add Add(long long a, long long b); Calculating the sum of two large integers. a and b are integers.

Modpow Modpow(long long a, long long b,

long long c);

Obtaining the remainder when dividing a certain power of a

number by the next number. a, b, c are integers (𝑎𝑏%𝑐).

ReverseMod ReverseMod(long long a, long

long b)

Obtain the remainder of the power of -1 of a number divided by

the next number.

a and b are integers (𝑎−1%𝑏).

PrintSome PrintSome(long long A[], long

long n);

A [] displays the data set (n is the length of the set).

IsPrime IsPrime(int n); Determines whether a given number is prime or not. n is an

integer.

NOD NOD(long long int a, long long int

b);

It is used to find the greatest common divisor (GCD) of two

numbers

a and b are integers.

Nok Nok(int a, int b); Nok Nok(int a, int b); used to find the least common multiple

(LCM) of two numbers

a and b are integers.

FindG FindG(long long g, long long ly,

long long n2, long long n, int

size);

Gomomorph Gomomorph(long long x, long

long ly, long long n, long long n2);

The homomorphic property is proven by performing

mathematical operations on encrypted data.

x is the value obtained as a result of operations, ly is a secret

key, n is an integer.

EncryptionPeye EncryptionPeye(long long int C[],

long long int M[], long long int r[],

long long g, long long n, long long

n2, long long size);

Searches the ASCII table for each character in the text. The

values from the table are encrypted.

C[] is a set of returned ciphers, M[] is a set of input data, r[] are

integers used for each encryption process, g,n are public keys, n2

= n2

DecryptionPeye DecryptionPeye(long long int C[],

long long int M2[], long long ly,

long long mu, long long n, long

long n2, long long size);

Performs the decryption of encrypted values. The outcome of the

inverse encryption involves referencing the numbers in the

ASCII table and recording the corresponding symbols.

C[] represents a collection of ciphers for the reverse encryption

process, M2[] denotes numbers acquired through reverse

encryption, ly and mu are secret keys, n is an integer, and size

indicates the length of the dataset.

The developed subtraction and division operations are of significant practical importance in the

context of the use of homomorphic encryption in real applications. For example, computer security: adding

subtraction and division operations expands the use of FHE to protect data privacy across systems. This is

especially important in areas where arithmetic operations on encrypted data are required, such as financial

transactions and processing of personal data. Processing sensitive data: subtraction and division operations

enable a wider range of analytical tasks to be performed on encrypted data, which can be useful for

organizations processing sensitive data, such as medical research where maintaining patient confidentiality is

important. Research in cryptography: the development of new operations for homomorphic encryption

represents an important step in the development of cryptographic methods for ensuring data confidentiality.

This could lead to more efficient and secure encryption methods, which in turn will improve overall

information security.

Table 2. Execution time of the development library
2-digit, different

even numbers
Key generation, encryption

decryption, add,

ms
decryption, subtraction,

ms
decryption, multiplication,

ms
decryption, division,

ms
100 6.65 6.7 9 10.85
200 9.65 9.73 12.87 15.42
300 12.65 12.79 17.09 20.34
400 15.68 15.86 21.3 24.45
500 18.69 18.9 25.4 28.75

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1989-1998

1996

Figure 4. Algorithm execution time dependence on encryption parameters

4. CONCLUSION

Through the undertaken investigation, a comprehensive analysis of homomorphic encryption was

conducted, unveiling both its vulnerabilities and strengths, while also elucidating potential avenues for

practical application. A scrutiny of existing homomorphic encryption libraries revealed a gap in

implementations capable of effectively handling integers with a complete mathematical framework. This

assessment underscores the imperative to design and develop a proprietary library dedicated to FHE of

integers. The envisioned library aims to facilitate accurate cryptographic transformations on integer data,

encompassing essential mathematical operations such as addition, multiplication, subtraction, and division.

Notably, the absence of a fully realized implementation for homomorphic encryption of integers prompted

the identification of a crucial need in the field. Consequently, the research culminated in the formulation and

proposal of a method specifically tailored to enable homomorphic division, ensuring its applicability across

diverse fully homomorphic algorithms. This proposed solution addresses a critical gap in existing

implementations, paving the way for more versatile and comprehensive homomorphic encryption practices.

This scientific article has high practical significance in the field of cryptography and information security,

making FHE more accessible and applicable in various fields. Our findings provide conclusive evidence that

this phenomenon helps improve data security and privacy in the modern information world.

REFERENCES
[1] A. Y. U. Pyrkova and Z. H. E. Temirbekova, “Compare encryption performance across devices to ensure the security of the IOT,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 20, no. 2, pp. 894–902, 2020, doi:

10.11591/ijeecs.v20.i2.pp894-902.

[2] Z. Kasiran, S. Abdullah, and N. M. Nor, “An advance encryption standard cryptosystem in iot transaction,” Indonesian Journal of

Electrical Engineering and Computer Science (IJEECS), vol. 17, no. 3, pp. 1548–1554, 2020, doi:

10.11591/ijeecs.v17.i3.pp1548-1554.

[3] W. A. Awadh, A. S. Alasady, and M. S. Hashim, “A multilayer model to enhance data security in cloud computing,” Indonesian

Journal of Electrical Engineering and Computer Science (IJEECS), vol. 32, no. 2, pp. 1105–1114, 2023, doi:

10.11591/ijeecs.v32.i2.pp1105-1114.

[4] Q. Zhang, “An overview and analysis of hybrid encryption: the combination of symmetric encryption and asymmetric

encryption,” Proceedings - 2021 2nd International Conference on Computing and Data Science, CDS 2021, pp. 616–622, 2021,

doi: 10.1109/CDS52072.2021.00111.

[5] W. A. Awadh, A. S. Alasady, and A. K. Hamoud, “Hybrid information security system via combination of compression,

cryptography, and image steganography,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 6,

pp. 6574–6584, 2022, doi: 10.11591/ijece.v12i6.pp6574-6584.

[6] M. N. S. Perera, T. Nakamura, M. Hashimoto, H. Yokoyama, C. M. Cheng, and K. Sakurai, “A survey on group signatures and

ring signatures: traceability vs. anonymity,” Cryptography, vol. 6, no. 1, p. 3, 2022, doi: 10.3390/cryptography6010003.

[7] A. Sakhi, S. E. Mansour, and A. Sekkaki, “Enhancing security mechanisms for robot-fog computing networks,” Indonesian

Journal of Electrical Engineering and Computer Science (IJEECS), vol. 33, no. 3, pp. 1660–1666, 2024, doi:

10.11591/ijeecs.v33.i3.pp1660-1666.

[8] J. Wei, W. Liu, and X. Hu, “Secure data sharing in cloud computing using revocable-storage identity-based encryption,” IEEE

Transactions on Cloud Computing, vol. 6, no. 4, pp. 1136–1148, 2018, doi: 10.1109/TCC.2016.2545668.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic encryption without bootstrapping,” ACM Transactions on

Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster packed homomorphic operations and efficient circuit

bootstrapping for TFHE,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 10624LNCS, 2017. doi: 10.1007/978-3-319-70694-8_14.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Development Paillier's library of fully homomorphic encryption (Temirbekova Zhanerke Erlanovna)

1997

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully homomorphic encryption: Bootstrapping in less than 0.1

seconds,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 10031 LNCS, pp. 3–33, 2016, doi: 10.1007/978-3-662-53887-6_1.

[12] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” in Proceedings of the 15th international

conference on Practice and Theory in Public Key Cryptography, 2012, pp. 1–16, [Online]. Available:

https://eprint.iacr.org/2012/144.

[13] A. C. Yao, “Protocols for secure computations.,” in Annual Symposium on Foundations of Computer Science - Proceedings,

1982, pp. 160–164, doi: 10.1109/sfcs.1982.38.

[14] D. Boneh, E. J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts,” in Theory of Cryptography, vol. 3378,

Springer, 2005, pp. 325–341.

[15] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted data,” in Theory of Cryptography, vol. 4392 LNCS,

Springer, 2007, pp. 575–594.

[16] S. Halevi and V. Shoup, “Bootstrapping for HElib,” Journal of Cryptology, vol. 34, no. 7, pp. 641–670, 2021, doi:

10.1007/s00145-020-09368-7.

[17] V. Vaikuntanathan, “Computing blindfolded: new developments in fully homomorphic encryption,” in Proceedings - Annual

IEEE Symposium on Foundations of Computer Science, FOCS, 2011, pp. 5–16, doi: 10.1109/FOCS.2011.98.

[18] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the integers,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6110

LNCS, pp. 24–43, 2010, doi: 10.1007/978-3-642-13190-5_2.

[19] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security and privacy in distributed internet of things,”

Computer Networks, vol. 57, no. 10, pp. 2266–2279, Jul. 2013, doi: 10.1016/j.comnet.2012.12.018.

[20] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in internet of things: the road ahead,”

Computer Networks, vol. 76, pp. 146–164, Jan. 2015, doi: 10.1016/j.comnet.2014.11.008.

[21] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic encryption be practical?,” in Proceedings of the ACM

Conference on Computer and Communications Security, 2011, pp. 113–124, doi: 10.1145/2046660.2046682.

[22] K. Hussain, N. Z. Jhanjhi, H. M. ur-Rahman, J. Hussain, and M. Hasan Islam, “Using a systematic framework to critically analyze

proposed smart card based two factor authentication schemes,” Journal of King Saud University - Computer and Information

Sciences, vol. 33, no. 4, pp. 417–425, 2021, doi: 10.1016/j.jksuci.2019.01.015.

[23] U. Musa, M. O. Adebiyi, F. Bukie Osang, A. Aduragba Adebiyi, and A. Ariyo Adebiyi, “An improved secured cloud data using

dynamic rivest-shamir-adleman key,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 33, no.

1, p. 433, Jan. 2024, doi: 10.11591/ijeecs.v33.i1.pp433-441.

[24] M. Kaur and V. Kumar, “A comprehensive review on image encryption techniques,” Archives of Computational Methods in

Engineering, vol. 27, no. 1, pp. 15–43, Jan. 2020, doi: 10.1007/s11831-018-9298-8.

[25] C. L. Stergiou, A. P. Plageras, K. E. Psannis, and B. B. Gupta, “Secure machine learning scenario from big data in cloud

computing via internet of things network,” in Handbook of Computer Networks and Cyber Security, Cham: Springer International

Publishing, 2020, pp. 525–554.

BIOGRAPHIES OF AUTHORS

Temirbekova Zhanerke Erlanovna was born in Jambyl Region, Kazakhstan in

1989. She received the B.S. degree from the Kazakh National University named after al-Farabi

in 2011 and the M.S. degree from the Kazakh National University named after al-Farabi in

2013, both in computer science. She is senior lector at Faculty of Information Technology of
Al-Farabi Kazakh National University. She holds a Ph.D. degree in Computer Engineering

with specialization in Computer Science. Her research interests include cryptography,

microcontroller security, microcontroller protection algorithms. She can be contacted at email:

temyrbekovazhanerke2@gmail.com.

Tynymbayev Sakhybay holds the academic title of Professor and earned his

Candidate of Technical Sciences degree. He has been honored with several state awards from

the Republic of Kazakhstan, including the Medal "For Labor Distinction" (1984) and the

Medal "Veteran of Labor of the USSR" (1989). Recognized for his outstanding achievements,

he received the Breastplate of the USSR Ministry of Higher Education and a Certificate of

Honor from the Ministry of Education and Science of the Republic of Kazakhstan (2009).

With over 62 years of total work experience, he has spent more than 55 years in the industry.
Noteworthy accomplishments include being the first graduate of the Faculty of Automation

and Computer Science at Kazakh Polytechnic Institute named after V.I. Lenin in 1964, and

successfully defending his dissertation for the degree of Candidate of Technical Sciences in

1971. Tynymbayev has served as a professor in the Departments of Computer Science and
Information Security at KazPTI named after V.I. Lenin from 1970 to 2017. He is an author

and co-author of more than 200 scientific works, including 2 monographs and 10 textbooks.

Additionally, he holds 37 patents for his inventions. He can be contacted at email:
s.tynym@mail.ru.

https://orcid.org/0000-0003-3909-0210
https://orcid.org/0000-0002-9326-9476

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1989-1998

1998

Abdiakhmetova Zukhra Muratovna was born in East Kazakhstan Region in

1987. She received the B.S. degree from the Kazakh National University named after al-Farabi
in 2009 and the M.S. degree from the Kazakh National University named after al-Farabi in

2011, both in computer science. She is senior lector at Faculty of Information Technology of

Al-Farabi Kazakh National University. She holds a Ph.D. degree in Computer Engineering

with specialization in Computer science. Her research interests include cryptography,
microcontroller security, neural networks, artificial intelligent. She can be contacted at email:

zukhra.abdiakhmetova@gmail.com.

Turken Gulzat was born in China in 1988. She received the B.S. degree from the
Al-Farabi Kazakh National University in 2008 and the M.S. degree from the Al-Farabi Kazakh

National University in 2014, both in Computer Science. She is senior lecturer at Faculty of

Information Technology of Al-Farabi Kazakh National University. Her research interests

include cryptography, neural networks, artificial intelligent, database management system and
data warehouse. She can be contacted at email: turken.gulzat@gmail.com.

https://orcid.org/0000-0002-6619-9417
https://orcid.org/0000-0003-4981-514X

