
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 35, No. 3, September 2024, pp. 1744~1750

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v35.i3.pp1744-1750  1744

Journal homepage: http://ijeecs.iaescore.com

Enhanced query performance for stored streaming data through

structured streaming within spark SQL

Benymol Jose1, Rajesh N.2, Lumy Joseph1
1Department of Computer Applications, Marian College Kuttikkanam Autonomous, Idukki, Kerala, India

2Department of Computer Applications, SAS SNDP Yogam College, Pathanamthitta, India

Article Info ABSTRACT

Article history:

Received Jan 16, 2024

Revised Apr 26, 2024

Accepted May 7, 2024

 Traditional database systems like relational databases can store data which

are structured with predefined schema, but in the case of bigdata, the data

comes in different formats or are collected from diverse sources. The
distributed databases like not only spark querying language (NoSQL)

repositories are often used in relation to bigdata analytics, but a continual

updating is required in business because of the streaming data that comes

from stock trading, online activities of website visitors, and from the mobile
applications in real time. It will not have to delay, for some report to show

up, to assess and analyse the current situation, to move forward with the next

business choice. Apache Spark’s structured streaming offer capabilities for

handling streaming data in a batch processing mode with faster responses
compared to MongoDB which is a document-based NoSQL database. This

study completes similar queries to evaluate Spark SQL and NoSQL database

performance, focusing on the upsides of Spark SQL over NoSQL databases

in streaming data exploration. The queries are completed with streaming
data stored in a batch mode.

Keywords:

Bigdata

MongoDB

NoSQL databases

Spark SQL

Streaming data

This is an open access article under the CC BY-SA license.

Corresponding Author:

Benymol Jose

Department of Computer Applications, Marian College Kuttikkanam Autonomous

Kuttikkanam, Idukki, Kerala, India

Email: benymol.jose@mariancollege.org

1. INTRODUCTION

Bigdata computing is a new trend in computing and based on processing requirements, it may be

roughly divided into two categories: processing stream data in real-time and batch processing of stored data

[1][3]. Large volumes and high velocity of data have been made conceivable by advances in information

technology, but the necessity to hold data continually leads to a number of computing issues [1].

Continuously created data is referred to as streaming data, and with batch processing, stream data can be

stored and converted into a corpus which can be processed later. Identifying pertinent and appropriate content

from these streams is necessary to make timely judgements using this massive volume of unstructured data [4].

Using the information gathered from this type of analysis, businesses can monitor a variety of company and

consumer activities including service consumption, server activity, website clicks, and device and person

geolocation. And allows them to respond quickly to new circumstances.

As a result of the recent explosion in the amount of unstructured data, non-traditional databases like

not only spark querying language (NoSQL) are emerging to address the problems associated with

conventional databases [5], [6]. NoSQL databases like HBase, MongoDB, CouchDB, and Neo4j. Offer the

scalability feature [7] which allows distributed computing possibilities. This feature allows storage of huge

data in a distributed fashion in different commodity machines and hence these types of databases are mainly

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhanced query performance for stored streaming data through … (Benymol Jose)

1745

used for bigdata and real-time web applications [8], [9]. Wei-ping et al. [10], in their study, tries to present

NoSQL as a new technology which can be used effectively, when querying in massive datasets is to be

performed. Here a performance comparison of the two technologies has been done with the purpose to

replace the relational databases with the NoSQL implementations. Nayak et al. [11] conducted a discussion

and study concerning the uses and problems of NoSQL databases and proposed it as a possible replacement

to relational databases, which are still the most used type of databases. But a real mechanism is missing to get

the operational flexibilities of querying with stream data or batch data, to get a timely response or to perform

a real time mining [12] in a NoSQL database that houses unstructured data [13].

Singh et al. [14] suggest that the existence of growing unstructured data requires management, other

than storage. According to them, after the data has been cleaned and restructured, we must use some data

processing tools to analyse and visualize it. In their work, the data processing and analysis frameworks

employed are Apache Spark and Hadoop MapReduce. Memory, CPU latency, and query performance are

some of the data processing parameters used to make a comparison between these two frameworks.

Kumar et al. [15] describes the MapReduce method, which was shaped and effectively deployed by Google,

as the most successful algorithm for effective bigdata analytics (BDA). They suggested the Apache Hadoop

distributed file system, which works with bigdata across the clusters of computers. Hadoop is known for its

batch processing capabilities [16] and the processing done in it is based on the MapReduce strategy. The

major consequence is that it can initiate a memory operation only by a two-pass operation, which are the

‘map’ and the ‘reduce’ algorithms [17]. But, with this method the complexity increases exponentially with

each iteration which makes it incompetent to handle the velocity aspect of bigdata [18].

In another approach, Shoro and Soomro [19] explores the concept of bigdata analysis and the

significance of real time processing by retrieving some meaningful information from twitter data. Unlike

earlier Hadoop tests, they suggested Apache Spark, an open-source cluster computing platform that can

complete tasks up to 100 times quicker in memory and 10 times faster when operating in secondary memory

[20]. Apache Spark can handle workloads involving frequent access to datasets such as machine learning,

interactive processing, graph processing, in-memory processing, and SQL [21]. The authors propose to use

this potent open-source engine in processing bigdata, which is proficient of both stream and batch processing

[22], [23]. Kolajo et al. [24] conducted a thorough assessment of bigdata stream analysis and discovered that

there is growing interest in analysing bigdata in motion. A search of the literature revealed that limited

studies have focused on processing of streaming data in a batch mode up to now. Hence, the authors steered

an exhaustive examination of the state of stream processing today and recommend that more emphasis be

placed on the empirical analysis of bigdata streaming technologies and approaches.

This research developed a way for performing faster querying with stored streaming data using

Spark SQL. With the proposed approach, processing of streaming data in a batch mode is done using a

unified bigdata analytics platform, Apache Spark, which can handle both stream and batch data. To make a

performance test, the queries are applied with Spark SQL and MongoDB, which is a document-based NoSQL

database. To measure performance, the process of comparing the execution times of similar queries that are

utilized with Spark SQL and MongoDB is used [25], [26] on the same the dataset of size 2 GB. The added

advantages of the stream processing competence, which supports the velocity component of Bigdata is better

achieved with Apache Spark SQL querying strategy. This document is organized as follows: section 1

provides an overview of Apache Spark, the Hadoop ecosystem, and the review of literature. Section 2 goes

on to detail the methodology, the dataset that is used, and the experimental setup. All the experimental

evaluations and result discussions are followed in section 3, and finally the summary and the conclusion are

arranged in section 4.

2. METHOD

With the new method, in-memory support can be used for querying either streaming data or batch

data stored in the distributed file system [27], [28]. A resilient distributed dataset, an immutable collection of

objects that conducts computations across several cluster nodes, is the fundamental data structure of Apache

Spark. In Spark resilient distributed dataset (RDD), each dataset is logically divided among numerous servers

to enable computation on various cluster nodes. They are resilient because they are fault tolerant and

distributed since data resides on multiple nodes [28]. With the ability to compute in-memory, Spark RDDs

keep intermediate results in primary memory rather than on a disk or other stable storage medium. Both the

batch and stream processing in Spark are enabled by the pipelining architecture, which is a core component

of computer organizational aspects. Typically, pipelines are separated into stages that connect to each other

to produce a structure similar to a pipe [28]. It consists of a sequence of interconnected data processing

elements where each element’s output serves as its subsequent element’s input [29], [30] and it increases the

total instruction throughput. The new method opted for performing bigdata analytics using Spark is more

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1744-1750

1746

useful to the administrative sections of the organizations rather than the end users. The following are the

different operations executed to achieve this in a unified environment with the unstructured data.

2.1. Querying strategy for processing stored streaming data

The querying is performed on batch data with SQL. The entire stream of data, reaching to the

system is stored in the distributed file system and later it is considered as batch data and queries are applied

on this. The query processing is postponed to a later part and streams are stored as they arrive. When the

queries are made, the entire stream of data will be considered as a static data frame and the data can be

studied with the querying of the information which helps in understanding the situation. To validate the faster

query performance achieved here, a performance comparison is done with the execution time taken by the

same category of queries used with MongoDB which is a NoSQL database. Both the query operations with

Spark SQL and MongoDB, which is document-based NoSQL database, are performed with the same the

dataset of size 2 GB.

2.2. Dataset used and experimental setup
The dataset utilized comes from https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_

reviews_us_Sports_v1_00.tsv.gz and is called Amazon-reviews of sports and outdoors. It consists of

4,833,093 records of around 2 GB size and a sample of the JSON dataset is shown in Figure 1 and it includes

information about sports products, customer reviews, and a summary of reviews. The query processing is

done with the specified dataset, considering the unstructured textual reviews, ‘review_body’ made by

customers along with the ‘star rating’ of different sports products. The spark distributed file system stores the

data by dividing it into several chunks.

The experiments are conducted with the databricks community edition for Apache Spark ecosystem

consisting of the following configurations, 6 GB RAM, 0.88 cores, databricks runtime (DBR) 6.4 with Spark

2.4.5 and Scala 2.11, which is mainly used for executing the Spark SQL operations. Another interesting

option used was the Google Colab, the free cloud platform provided by Google to motivate the research to

opt google cloud platform (GCP) for computations and evaluation, which gives a wide range of

environmental benefits such as integrating reporting tools and ETL tools.

Figure 1. The sample JSON document in the dataset

By using Colab, Google offers us better opportunities to move forward the research to a more powerful

environment on GCP, which can help to integrate various resources along with horizontal scalability with the

help of Google compute engine. The pipelining executions in Spark are executed using PySpark with

12.72 GB RAM and 107.77 GB diskspace, which is supported by the GCP compute engine backend.

3. RESULTS AND DISCUSSION

3.1. Querying strategy for processing stored streaming data with spark SQL
To execute queries, the entire data is considered as a batch and the queries are applied to mine

information, following the strategies in Spark SQL. The entire data which are kept in the distributed file

system is accessed with the data frame named ‘staticInputDF’ which is shown below.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhanced query performance for stored streaming data through … (Benymol Jose)

1747

To filter the whole data and to get the count of each ‘star_rating’ on each ‘review_date’, an output data

frame, ‘staticCountsDF’ is constructed from it with one day windows. To do this, grouping is done by the

‘star_rating’ column and one day windows over the ‘review_date’ column. Then this data frame is registered

as a table ‘static_counts’ with fields ‘star_rating’, ‘counts’ and ‘window’, which corresponds to per day

review_date as shown in Figure 2.

Figure 2. The data frame ‘staticCountsDF’

The query executed with SQL for retrieving the sum of count of each ‘star_rating’ from the

‘static_counts’ table and the result obtained are as shown in Figure 3. Since the data is so big, the results can

be easily understood by using a graphical representation as shown in Figure 4. Here, an area chart or area

graph is used, in which the region between the axis and the line is typically highlighted with colors, textures,

and hatchings that displays quantitative data graphically. Another graphical representation for the same query

with the legacy line chart is as shown in Figure 5, which typically display data points connected by straight

lines, making them accessible to a wide range of users without specialized training in data visualization.

This query displays the total count of each star_rating, and since the queries are applied without

applying any pre-processing to the data, we have 20 undefined star_ratings as evident from Figure 4. It is

evident from the aforementioned Figures 3 to 5 that there are 2,956,533 cases of “5” star ratings, 805,605

occurrences of “4” star ratings, 365,912 cases of “3” star ratings, “2” star ratings with a count of 220,084, and

“1” star ratings with a total count of 348,847. We have optimized query execution performance using this

method, taking only 5.75 seconds to complete.

Figure 3. The query used to retrieve the ‘total_count’ of each ‘star_rating’

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1744-1750

1748

Figure 4. Area plot representation of query in Figure 3

Figure 5. Legacy line chart representation of query in Figure 3

3.2. Querying strategy for processing stored streaming data with MongoDB

The queries are completed on a data with a size of around 2 GB. When the same dataset was used

for the SELECT query with aggregation function ‘sum()’ in MongoDB, which is a document based NoSQL

database, it took 12,372 milliseconds. With the proposed method of using Spark SQL, the query execution

took 5.75 seconds i.e., 5,750 milliseconds as shown in Figure 4, which is 2.15 times faster than using

MongoDB. The performance comparison of both the queries based on their execution time and size of data is

shown in Figure 6.

Figure 6. Query execution time comparison of MongoDB and Spark SQL

0

2000

4000

6000

8000

10000

12000

14000
12372

5750

Query Execution Time Comparison of MongoDB and Spark
Batch Query

MongoDB Spark

Platform(Data Size ≈ 2GB .)

T
im

e
in

 M
il

li
 S

ec
o

n
d

s

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhanced query performance for stored streaming data through … (Benymol Jose)

1749

The time expended to explore the data with some constraining parameters cost us around

0.63 seconds as shown in Figure 2, which is a tremendous leap since dealing with a bigdata environment is

dealt with. Retrieving or aggregating data over a distributed computing environment is far more complex

than of operations in inhouse data repositories. It is found that the performance of the query with Spark SQL
is very satisfactory as we consider the time taken to conclude it, with the distributed nature and map reduce

computational complexities. And with the structured streaming concept used, queries were executed on

stored streaming data, which can help in real time decision making.

4. CONCLUSION

The objective of this study was to accomplish the new concept of implementing faster querying with

stored streaming data with Apache Spark. The queries are applied, and the performance is compared to that

of equivalent queries in MongoDB, which is a document-based NoSQL database. Spark SQL outshines the

general query language interfaces such as NoSQL databases by providing faster responses. With the

structured streaming concept, queries are executed on streaming data, which can help in real time decision

making. The paper came up with a solution for performing faster querying with stored streaming data with

Spark SQL and it was found that querying on stored stream data is conceivable with the Spark distributed

systems. All the experiments are done using pseudo clusters and the performance can be further improved by

integrating high performance computing units with parallel processing capabilities with the nodes in the

distributed platform.

REFERENCES
[1] A. Mavragani, G. Ochoa, and K. P. Tsagarakis, “Assessing the methods, tools, and statistical approaches in Google trends

research: systematic review,” Journal of Medical Internet Research, vol. 20, no. 11, p. e270, Nov. 2018, doi: 10.2196/jmir.9366.

[2] M. T. Özsu and P. Valduriez, “Big data processing,” in Principles of Distributed Database Systems, Cham: Springer International

Publishing, 2020, pp. 449–518.

[3] D. Sun, G. Zhang, W. Zheng, and K. Li, “Key technologies for big data stream computing,” in Big Data, Chapman and Hall/CRC,

2015, pp. 230–251.

[4] B. P. Ranjitha, “Streaming analytics over real-time big data,” Global Journal of Computer Science and Technology, vol. 15, no. 5,

2015.

[5] D. Damodaran B, S. Salim, and S. M. Vargese, “Performance evaluation of MySQL and MongoDB databases,” International

Journal on Cybernetics & Informatics, vol. 5, no. 2, pp. 387–394, Apr. 2016, doi: 10.5121/ijci.2016.5241.

[6] B. Jose and S. Abraham, “Exploring the merits of nosql: a study based on MongoDB,” in 2017 International Conference on

Networks and Advances in Computational Technologies, NetACT 2017, Jul. 2017, pp. 266–271,

doi: 10.1109/NETACT.2017.8076778.

[7] J. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino, “Choosing the right NoSQL database for the job: a quality

attribute evaluation,” Journal of Big Data, vol. 2, no. 1, p. 18, Dec. 2015, doi: 10.1186/s40537-015-0025-0.

[8] J. Pokorny, “NoSQL databases: a step to database scalability in web environment,” in ACM International Conference Proceeding

Series, Dec. 2011, pp. 278–283, doi: 10.1145/2095536.2095583.

[9] P. Sun and Y. Wen, “Scalable architectures for big data analysis,” in Encyclopedia of Big Data Technologies, Cham: Springer

International Publishing, 2018, pp. 1–9.

[10] Z. Wei-ping, L. Ming-xin, and C. Huan, “Using MongoDB to implement textbook management system instead of MySQL,”

in 2011 IEEE 3rd International Conference on Communication Software and Networks, May 2011, pp. 303–305,

doi: 10.1109/ICCSN.2011.6013720.

[11] A. Nayak, A. Poriya, and D. Poojary, “Type of NOSQL databases and its comparison with relational databases,” International

Journal of Applied Information Systems, vol. 5, no. 4, pp. 16–19, 2013.

[12] T. Pay, “Totally automated keyword extraction,” in 2016 IEEE International Conference on Big Data (Big Data), Dec. 2016,

pp. 3859–3863, doi: 10.1109/BigData.2016.7841059.

[13] K. Gutfreund, “Big data techniques for predictive business intelligence,” Journal of Advanced Management Science, vol. 5, no. 2,

pp. 158–163, Mar. 2017, doi: 10.18178/joams.5.2.158-163.

[14] A. Singh, M. Mittal, and N. Kapoor, “Data processing framework using apache and spark technologies in big data,” in Studies in

Big Data, vol. 43, 2019, pp. 107–122.

[15] M. Kumar, G. S. Baluja, and D. P. Sahu, “Conceptualizing big data analytics through Hadoop,” COMPUSOFT, An international

journal of advanced computer technology, vol. 6, no. V, pp. 2335–2340, 2017.

[16] P. Raj, “A detailed analysis of NoSQL and NewSQL databases for bigdata analytics and distributed computing,” in Advances in

Computers, vol. 109, 2018, pp. 1–48.

[17] I. A. T. Hashem, N. B. Anuar, A. Gani, I. Yaqoob, F. Xia, and S. U. Khan, “MapReduce: review and open challenges,”

Scientometrics, vol. 109, no. 1, pp. 389–422, Oct. 2016, doi: 10.1007/s11192-016-1945-y.

[18] S. N. Khezr and N. J. Navimipour, “MapReduce and its applications, challenges, and architecture: a comprehensive review and

directions for future research,” Journal of Grid Computing, vol. 15, no. 3, pp. 295–321, 2017, doi: 10.1007/s10723-017-9408-0.

[19] A. G. Shoro and T. R. Soomro, “Big data analysis: Apache Spark perspective,” Global Journal of Computer Science and

Technology, vol. 15, no. C1 SE-Articles, pp. 7–14, 2015, [Online]. Available:

https://computerresearch.org/index.php/computer/article/view/1137.

[20] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda architecture for monitoring scientific infrastructure,”

IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408, Jun. 2021,

doi: 10.1109/TPDS.2017.2772241.

[21] Apache Software Foundation, “Unified engine for large-scale data analytics,” Apache Spark, 2023. https://spark.apache.org/

(accessed Nov. 15, 2023).

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1744-1750

1750

[22] E. Shaikh, I. Mohiuddin, Y. Alufaisan, and I. Nahvi, “Apache Spark: a big data processing engine,” in 2019 2nd IEEE Middle

East and North Africa COMMunications Conference, MENACOMM 2019, Nov. 2019, pp. 1–6,

doi: 10.1109/MENACOMM46666.2019.8988541.

[23] L. R. Nair and S. D. Shetty, “Streaming twitter data analysis using spark for effective job search,” Journal of Theoretical and

Applied Information Technology, vol. 80, no. 2, pp. 349–353, 2015.

[24] T. Kolajo, O. Daramola, and A. Adebiyi, “Big data stream analysis: a systematic literature review,” Journal of Big Data, vol. 6,

no. 1, p. 47, Dec. 2019, doi: 10.1186/s40537-019-0210-7.

[25] S. Sankarapandi, M. Sai Baba, S. Jayanthi, and E. Soundararajan, “Storing of unstructured data into MongoDB using consistent

hashing algorithm,” International Journal of Emerging Technologies in Engineering Research (IJETER), vol. 3, no. January,

2015, doi: 10.13140/ RG.2.1.3749. 8961.

[26] G. Wang and J. Tang, “The NoSQL principles and basic application of cassandra model,” in Proceedings - 2012 International

Conference on Computer Science and Service System, CSSS 2012, Aug. 2012, pp. 1332–1335, doi: 10.1109/CSSS.2012.336.

[27] A. Svyatkovskiy, K. Imai, M. Kroeger and Y. Shiraito, "Large-scale text processing pipeline with Apache Spark," 2016 IEEE

International Conference on Big Data (Big Data), Washington, DC, USA, 2016, pp. 3928-3935, doi:

10.1109/BigData.2016.7841068.

[28] M. V. Kamal, P. Dileep, and D. Vasumati, “Spark streaming for predictive business intelligence,” in Advances in Intelligent

Systems and Computing, vol. 898, 2019, pp. 289–298.

[29] “Data Pipeline development | Deductive | Data science | Data analytics,” 2020. https://deductive.com/data-pipelines/ (accessed

Sep. 17, 2020).

[30] Amazon Web services, “What is streaming data?,” Amazon Web Services (AWS), 2017. https://aws.amazon.com/streaming-

data/?nc1=h_ls (accessed Oct. 21, 2023).

BIOGRAPHIES OF AUTHORS

Dr. Benymol Jose pursed Masters in Computer Science from Bharathidasan

University, Thiruchirappally, Tamil Nadu in 1999, M. Phil in Computer Science from
Madurai Kamaraj University, Madurai, Tamil Nadu in the year 2014 and Ph.D. in computer

science from Mahatma Gandhi University, Kottayam, Kerala, India in 2021 in the topic

“Unstructured data mining in Bigdata: a NoSQL perspective”. She is currently working as

Associate Professor in Department of Computer Applications, Marian College, Kuttikkanam
Autonomous, Idukki, Kerala, India. She had published many papers in journals and

conference proceedings including IEEE, Elsevier, and ACM and most of them are indexed by

Scopus. Her main research work focuses on unstructured data mining, machine learning,

NoSQL databases and bigdata analytics. She has 25 years of teaching experience and 7 years
of research experience. She can be contacted at email: benymol.jose@mariancollege.org.

Dr. Rajesh N is currently working as an Associate Professor in the Department

of Computer Applications, S A S S N D P Yogam College, Konni, Pathanamthitta, Kerala,

under the affiliation of Mahatma Gandhi University, Kottayam, Kerala, India. He did his
MCA from University of Madras, Tamilnadu, in 1998 and Ph.D. in Computer Science from

Mahatma Gandhi University, Kottayam, Kerala in 2021. He has 24 years of undergraduate

and 14 years of postgraduate teaching experience till date. He has now 7 years of research

experience especially in the field of privacy preserved spatio-temporal trajectory data mining
and Publication. His research interests include bigdata management, spatio-temporal data

mining, e-learning, data analytics, and machine learning. He has published 17 papers in the

various reputedInternational, National and State Journals and Conference proceedings and

most of them were indexed by Scopus / ESCI / WoS. He can be contacted at email:
nrajesh1121@gmail.com.

Dr. Lumy Joseph is an Associate Professor in the Department of Computer

Applications at Marian College Kuttikkanam Autonomous, in Kerala, India. She received her
doctorate in “an intelligent e-learning environment for enhancing learner performance” from

Mahatma Gandhi University, Kottayam, Kerala, India in 2021. Learning analytics, machine

learning, educational data mining, e-learning and bigdata analytics are some of her research

areas. She has articles in international journals and conference proceedings. She has 26 years
of teaching experience and 7 years of research experience. She can be contacted at email:

lumy.joseph@mariancollege.org.

https://orcid.org/0000-0001-6475-3982
https://orcid.org/0000-0003-0542-6994
https://orcid.org/0000-0003-3928-1287

