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Abstract 
The paper proposes a new output feedback adaptive tracking control scheme using neural 

network for a class of uncertain non-affine nonlinear systems that only the system output variables can be 
measured. The scheme adopts low-pass filter to transform non-affine nonlinear systems into affine in the 
pseudo-input dynamics. No state observer is employed and few adapting parameters to be tuned and 
Lipschiz assumption, SPR condition is not required. Only the output error is used in control laws and 
weights update laws which make the system construct simple. Boundedness for the output tracking error 
and all states in the closed-loop system are guaranteed, and simulation results have verified the 
effectiveness of the proposed approach. 
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1. Introduction 

In the past decade, the adaptive control has seen rapid and significant development 
leading to global stability and asymptotic tracking results for large classes of uncertain nonlinear 
systems. In recent years, fuzzy logic control [1-8] and adaptive neural network [9-12] that model 
the functional mechanism of the human brain that can cooperate with human expert knowledge 
have been successfully applied to many control problems because they need no accurate 
mathematical models of the system under control. Likewise, for a class of nonlinear continuous-
time systems, adaptive direct and indirect control using fuzzy logic have been proposed in [3, 4] 
by using “dominate inputs” concept. Controllers in [3, 4] using a state feedback approach is valid 
if all of the system states are available for measurement. In practice, however, the state 
feedback control does not always hold because system states are not always available. Based 
on [3, 4], references [5, 6] present adaptive output control algorithms based on state observer 
and error observer. Most of them deal with the control problem of the affine nonlinear systems. 
However, in practice, the control methods of affine nonlinear systems do not always hold and 
the control methods of the non-affine nonlinear systems are necessary. And few results are 
available for non-affine nonlinear systems in which the control input appears in a nonlinear 
fashion. In [7] authors addressed the indirect adaptive fuzzy control problem of SISO non-affine 
nonlinear systems. The approach is based on the approximation of the nonlinear plant dynamics 
by a fuzzy system and then the control action is computed based on local inversion of the fuzzy 
model. In [8], an indirect adaptive fuzzy controller is proposed, within this approach, the SISO 
non-affine nonlinear system is firstly transformed into an affine form by considering a Taylor 
series expansion around an operating trajectory. However, the indirect adaptive approach has 
the drawback of the controller singularity problem, i.e., division by zero may occur in the control 
law. In [9], an observer-based direct adaptive fuzzy-neural control scheme is presented for non-
affine nonlinear systems. By using implicit function theorem and Taylor series expansion and 
SPR Lyapunov theory, the stability of the close-loop system is verified. Recently, in [10] an 
output feedback-based adaptive neural controller has been presented for a class of uncertain 
non-affine nonlinear systems with unmodelled dynamics which reduce the complexity of control 
design. But in the scheme, a low-pass filter is designed to make the estimation error dynamics 
satisfy the strictly positive-real (SPR) condition so that they can use Meyer-Kalmon-Yakubovitz 
(MKY) lemma, which makes the stability analysis of the closed-loop system and real 
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implementation very complicated. And the parameters of filter are hard to be chosen. In [11], 
output feedback tracking control scheme is investigated for a class of uncertain nonlinear 
systems. The distinguished aspect of the algorithm is that no Lipschitz assumption and SPR 
condition are employed which makes the system construct simple. But the observer must be 
employed.  In order to simplify the design of controller, in [12], an output feedback-based 
adaptive neural controller has been proposed for a class of uncertain nonlinear systems. No 
state observer was employed in the algorithm and only the output error was used in control laws 
and weights update laws. 

Based on the above observation, a novel systematic design procedure is developed for 
non-affine nonlinear systems without state observer to simplify the design of control system. 
First, a low-pass filter is employed to transform the normal form non-affine nonlinear system into 
affine in the pseudo-input dynamics. No state observer is employed and the neural weights 
update laws is tuned according to only the output tracking error. The stability analysis depends 
heavily on the universal function approximation property, only one RBFN is employed to 
approximate the lumped uncertain nonlinear function. There are no restrictive conditions on the 
design constants. The proposed scheme has few adapting parameters to be tuned and Lipschiz 
assumption, SPR condition are not required.  

The paper is organized as follows. First, the problem is formulated in Section II. 
Adaptive neural network controller design is given in III. In Section IV, stability analysis is 
included. Simulation results are presented to confirm the effectiveness and applicability of the 
proposed method in Section V. Finally, conclusions are included. 

 
 

2. Problem Formulation 
The following notations and definitions will be used extensively throughout this paper. 

Let R be the real number, and nR represent the real n-vectors. k denotes the usual Euclidean 

norm of a vector k . In case where k is a scalar, k denotes its absolute value. 

 We consider the following non-affine nonlinear system: 
  

  
1

1

    1, , 1

( , )                  

                         

i i

n

x x i n

x f x u

y x
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Where y R , u R  are the outputs and input of the system and 1[ , , ]T n

nx x x R   is the 

system state vector. The smooth function ( )f �  is unknown. The states are not measurable, only 

y is available for control design. 

 For the controllability issue, the following assumption must be made. 

Assupmtion 1: The value of 
f

u




is nonzero. Without loss of generality, we assume that 

for all nx R  , 0u

f
f

u


 


. 

The control objective is to design an adaptive neural network controller for a class of 
non-affine nonlinear systems (1) such that the system output y follows a desired trajectory dy , 
while all signals in the closed-loop system are bounded.  

In the followings, we will adopt low-pass filter to transform (1) into affine in the pseudo-
input dynamics [13]. The overall scheme is illustrated in Figure 1. 

The transfer function of the low-pass filter is: 

 ( )L s
s







                                                          (2) 

 
Where  is a positive design constant. Then, although the pseudo-control pu shows a chattering 

phenomenon due to a switching function, the actual control input u applied to the real plant is 
smooth because u  is made by low pass filtering of pu , 
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pu u u                                                                                    (3) 

 
 
 
 
 

 
 

Figure 1. Basic Idea for Smoothing Control 
 
  

We define the augmented state variable as 

  ( 1) ( )
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If we define the functions ( )a  and ( )b   as: 

 

1
1

( )
n

i
i i

f f
a x u

x u
 



  
    
  

( )
f

b
u

  



                                                                                              (5) 

 
Where ( )b  is nonzero and positive according to Assumption 1. Thus there exist positive 

constant 0b such that 0( )b b  for all mR .And we can see that the original nth-order non-

affine nonlinear system becomes the mth-order affine in the pseudo-input nonlinear system: 
 

1   1, 2, ,

( ) ( )
i i

m p

x x i n

x a b u 
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 

 


                                                                           (6) 

 
 
3. Adaptive Neural Network Controller Design  

Define the reference vector ( )[ ]n T m
d d d dy y y y R   . The reference signal dy and 

its time derivative are assumed to be smooth and bounded. We also define the tracking error as 

de y y   and corresponding error vector as ( )[ , , ]n T m
de y e e e R     . A filtered tracking 

error is defined as: 
 

 
1

1
m

Td
s e e e

dt
 


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                                                      (7) 

 

Where 0   is a design constant. 1 2, ( 1) , , ( 1)
Tm mm m         ， 1T     . The time 

derivative of s is derived as:  
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Where 1 0
TT     , ( )

1 1
m T

d dv y y  . For the system (1) satisfies Assumption 1, if the ideal 

control is designed as: 
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Where 1
( )

2
k t   is a design parameter, 1 2( ) ( ) ( )T Ta a b k         ,    1 2 1 2, ,v v v v b v    ，
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2 0, ( 1) , ( 1) ,1

Tmm m       , Then, s converges to zero. 

 Proof: Consider the Lyapunov function 21

2sV s . Taking the time derivative of  sV  along 

(8) yields: 
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According to the Lyapunov theorem, the results implies that lim 0

t
s


 . 

However, ( )a  ( )b  are unknown in ideal controller (9), and the state vector   can not 

be measured. *
pu  is not available.  The ideal controller (9) can be rewrittened as: 

  
* 1 *( ) m

adu k t e u                                                                                (11) 

               

Where *
( )

( )ad

a v
u

b





 is an unknown function.   

In this paper, a radial basis function (RBF) neural network (NN) is used to capture the 
unknown nonlinearity *

adu  in (11). In general, the output of the multiple-input-single-output 

RBFNN is described by: 
                     

( ) ( )Th W                                                                                (12) 

 
Where ( )h R  is the RBFN output, LW R  is the adjustable parameter vector, 1( ) : n LR R  �  

is a nonlinear vector function of the inputs with L being the number of RBFs. The ith element of
W , , 1, ,i i L   , is the synaptic weight between the ith neuron in the hidden layer and output 

neuron and ( )i   is a Gaussian function in the form of: 
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Where i  is a m-dimensional vector representing the center of the ith basis function and i is 

the variance representing the spread of the basis function. 
The key advantage of RBFN is that it has the capability to approximate nonlinear 

mappings to any degree of accuracy. So: 
 

* *
( )

( )
( )

T

ad

a v
u W

b


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

                                                                    (14) 

 

Where approximation error  satisfy 0  ,  1 1 1 2( ), ( ), , ( ( 1) ), ( ), ( )
T

y t y t d y t m d v t v t     is 

the input vector to the RBFNN and 1 0d  is a positive time delay . *W  is an ideal parameter 

vector which minimizes the function   and be defined as:  
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Where  |W W    , 0   is the design constant. So the neural network output 

feedback controller can be described as: 
  
 1 ˆ ( )m

p adu k e u                                                                                    (16) 

                 
Where ˆˆ ( ) ( )T

adu W    is the output of RBFNN, Ŵ is the estimated value of the optimal weight 
*W .              

The adaptive law for the estimated parameters of the NN is determined as the following: 
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Where adaptive gain , 0   and the e-modification term is introduced to improve the 
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Thus, it follows that if ˆ mW
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 then 0V  .So ˆ ( ) , 0W t t   . 
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From (8), the time derivative of the filtered tracking error can be derived as: 
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Where *ˆW W W  . 
 
 
4. Stability Analysis  

We are now ready to present our main theorem which is summarized in Theorem 1. 
 Theorem 1: Consider the pure-feedback nonlinear system (1) with the controller input 
(16) and adaptive law (17). Then, all the signals in the closed-loop system are bounded and the 
state vector x remains in: 
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Since Ŵ is bounded as shown in (18), it follows that W b , *mb W
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From the above equation, s is bounded and it implies that x  is bounded. Following [14], 

the state vector x will remain in x for all t T .This completes the proof. 

 
 

5. Simulation Study 
In this part, the following non-affine nonlinear system is simulated to illustrate the 

effectiveness of the proposed adaptive neural network output feedback tracking controller. The 
non-affine nonlinear system is described as follows: 
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The tracking objective is to make the system output y  follow the desired trajectory
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which satisfy the assumption. The simulation parameters are selected as 

follows: 20.0  , 2.0  ， 22.0k  .The adaptive gain 95.0  , 0.02  . According to the 

design process, we can get controller and weights update law as follows: 
  

20 20 pu u u      

 2 ˆ22 2pu e W        

ˆ ˆ95 ( 0.02 )W e e W   
   

 
The system initial conditions are 1 2(0) 0, (0) 0x x  . The simulation result using MATLAB 

is shown in Figure 1-4. 
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Figure 1. Plots of Output Tracking of System Figure 2. Plots of the Weights Norm 
 
 

 
 

 

Figure 3. Plots of Control Input Figure 4. Plots of Output Error 
 
 

Figure 1 and Figure 4 shows the results of output tracking. It can be seen that the actual 
trajectory converges rapidly to the desired one. The weights norm is shown in Figure 2 and the 
bounded control input is indicated in Figure 3. These simulation results demonstrate the tracking 
capability of the proposed controlled and its effectiveness for control tracking of uncertain non-
affine nonlinear systems. 
 
 
6. Conclusion 

This paper proposes a new output feedback adaptive neural network adaptive controller 
for a class of uncertain non-affine nonlinear systems. The distinguished aspect of the proposed 
control algorithm is that no state observer is employed. Only the output error is used to generate 
control input and update laws. The stability analysis depends heavily on the universal function 
approximation property, only one RBFN is employed to approximate the lumped uncertain 
nonlinear function (16). There are no restrictive conditions on the design constants. So the 
system construct is very simple. Outputs tracking error and all states in the closed-loop system 
are guaranteed to be bounded by Lyapunov approach. Simulation results have verified the 
effectiveness of the proposed approach. 
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