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Abstract 
Speed controller in induction motor direct torque control (DTC) system usually adopts the 

traditional PI controller. But the traditional PI controller has characteristic of nonlinear saturation, what will 
make the control performance of actual system become worse. In order to improve system control 
performance, this paper adopts a new type Anti-Windup PI controller, This method separately control the 
integral state by feed backing the output of the integrator to the input port of the integrator according to 
whether the controller output is saturated or not, which can make the system leaving saturation as soon as 
possible. As a result, the overshoot and settling time of the system are reduced. Simulation and 
experimental results show that this method can significantly suppress the integral windup phenomenon as 
well as reduce the overshoot and shorten the settling time. The new Anti-Windup PI controller has a better 
performance than the traditional PI controller. 
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1. Introduction 

Direct torque control (DTC) technology is a high-performance AC speed regulating 
technique. It appears later than the vector control technology. But compared with vector control 
technology, DTC technology will not be restricted by current regulator bandwidth. So the torque 
dynamic response is faster and not sensitive to the change of the parameters of motor [1-5]. But 
a typical speed controller of DTC system usually uses PI controller. While the traditional PI 
controller does not consider the upper limit of actual torque. When the mutation in the speed is 
happened, PI controller will output a big torque. But actually the motor can’t output such a big 
torque. It will make the performance of the system become worse. We call this phenomenon 
Windup [6-10]. 

To solve this problem, this paper adopts a new type Anti-Windup PI controller. The new 
controller can quickly exit the saturated zone, So as to realize the reducing of overshoot and 
faster response speed [11-14]. 
 
 
2. New Anti-Windup PI Controller 

In the induction motor, the relationship between speed and torque is:  
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Using s-function can be expressed as: 
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In the equation,  is angular velocity of the mechanical rotor, J is the moment of inertia 
of the motor, B is the Viscous friction coefficient, TE

* is the given torque of the motor, TL is the 
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load torque, J/B is called the mechanical time constant. Let km=J/B, that is to say km is 
mechanical time constant. 

Traditional PI controller is affected by the Windup phenomenon, its equivalent on the 
output side joined a limiting function TE * (u). Equation (3) is the expression. Figure 1 is the 
function of the corresponding curve. Figure 2 is the PI controller structure with a saturation limit.  
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In this equation, u is the output of traditional PI controller, sgn(u) is the sign function. 
 
 

 
 

Figure 1. The Function Curve of TE
*(u) 
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Figure 2. Traditional PI Controller Structure with a Saturation Limit  
 
 

To inhibition the saturation phenomenon, this article introduced a new type Anti - 
Windup PI controller, figure 3 shows the control block diagram. According to the Figure 3, When 
u = TE *, switch S1 will be closed, S2 will be opened. The controller turns into the typical PI 
controller. When u > TE *, switch S2will be closed, S1 will be opened. The output multiplied by a 
coefficient and then negative feedback to the input. So that the integral output can converges to 
zero rapidly.  
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Figure 3. The New Anti-Windup PI Controller Structure 
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The i in the Figure 3 is integral state. Its expression is: 
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                                                            (4) 

 
In Equation (4), Ki is integral constant. k is the integral feedback gain coefficients. And k, Ki<<km. 
 
 
3. Stability Analysis 

If the system is stable, the system must meet two conditions. First the system in the 
linear region is stable. Second the system could convergence to the linear area from the 
saturated zone. If two conditions are satisfied at the same time, the system will be stable. 
 
3.1. First Condition 

In the linear, the new Anti-Windup PI controller is the same as traditional PI controller. 
At this time the error can be expressed as: 
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 Lyapunov function is defined as follow: 
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 In the Equation (6), i0 is i’s stable value, so: 
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 In the linear, it always meets:  
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 To sum up, the controller’s stable condition in the linear is: 
 

*
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3.2. Second Condition 

In the saturated zone, we can get the expression of error from Equation (1). 
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From equation (4) we can get: 
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Because of k<<km, the dynamic speed error is far slower than the integral dynamic 
state. That is to say, the integral state i was immediately set to zero when the controller is in the 
saturated zone. So: 
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                                                           (13) 

 
If Eb=Tmax/Kp. From Equation (13), we can find that, when |e|<=Eb the controller is in the 

linear, when |e|>Eb the controller is in the saturated zone.  
Lyapunov function is defined as follow: 
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After the derivation: 
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Take Equation (2) and Equation (13) into Equation (15) 
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Because of 1( ) 0L e  , only need to meet: 
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 So we can get the condition: 
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 Compared Equation (10) and Equation (18), we can see that as long as the system 
meet Equation (10) must meet Equation (18). So Equation (10) is the stable condition. 

To sum up we can get the stable condition as follow: 
 

*
maxLT B T                                                        (19) 

 
 
4. Modeling and Simulation 

Matlab/Simulink is used to carry out the modeling and simulation. Figure 4 is the 
structure chart of the DTC system with the new Anti-Windup PI controller. First of all, according 
to Figure 4 the model of induction motor DTC system with traditional PI controller was 
established. And then the model of the new Anti-Windup PI controller was established, shown in 
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the Figure 5. Finally the new Anti-windup PI controller replaced the traditional PI controller, so 
that we can get two different simulation diagrams of speed response. 
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Figure 4. The Structure Chart of the System 
 
 

 
 

Figure 5. The New Anti-Windup PI Controller Simulation Diagram 
 
 

5. Simulation and Experiment 
5.1. The Simulation Results 

Motor parameters are listed as follows: the stator resistance Rs=2.5, the rotor 
resistance Rr=2.7, the stator inductance Ls=0.3325mH, the rotor inductance Lr=Ls= 0.3325mH, 
the mutual inductance Lm= 0.3194mH, the logarithmic P=2, the moment of inertia 
J=0.0086kg.m2. PI parameters is same in the two controllers, Kp=1，Ki=10. The integral 
feedback gain coefficients in the new Anti-Windup PI controller is k=0.95. The maximum output 
torque of the motor is Tmax=10N.m, discrete sampling period is 50s. The stator flux linkage 
given value is *=0.8Wb. 

Induction motor is starting with no load, but the load torque will become 4N.m at 1s. 
Speed is 0 at the beginning, then step to 400rad/s at 0.1s. Figure 6 is the results of simulation 
graphs. Figure 7 and Figure 8 are the partial enlarged figures. 

From Figure 7 we can see that, traditional PI controller’s overshoot amount of speed 
response reached 17.5% and adjustment time is 0.6s, but the new Anti-Windup PI controller is 
almost no overshoot amount of speed response and adjustment time is only 0.25s. From the 
simulation results can be seen, the new Anti-Windup PI controller’s control performance has 
very obvious advantage. 

From Figure 8 we can see that, when the load turns into 4N.m, the two curves are 
similar. Two types of controller’s ability to resist load disturbance is almost the same. 

q

TE*

1

u

Sum

P

Proportional

1

s

Integral

Action
q &q

If Action
Subsystem1

Action
e &q

If Action
Subsystem

u1
if (u1 ~= 0)

else

If

2

1

e



TELKOMNIKA  ISSN: 2302-4046  

A New Anti-Windup PI Controller for Direct Torque Control System (MIAO Jing-Li) 

5273

 
  Figure 6. Simulation Result  

 
 

 
 

Figure 7. Partial Enlarged Graph of Speed Step Response 
 

 
 

Figure 8. Partial Enlarged Graph of Joining the Load 
 
 

5.2. Experimental Result 
On the basis of theoretical analysis and digital simulation, this article has carried on the 

corresponding experimental research. Experiment system adopts the special motor control 
digital signal processor TMS320F2812 as the controller. Processor TMS320F2812 with RS - 
232 serial communication ports will be collected experimental data transmitted to the PC. 

The motor parameters are the same. The stator flux linkage amplitude to 0.8 Wb. 
Speed given value for 50 rad/s = 477.5 r/min. The load is about 1 N.m. 

Figure 9 to 10 are the experimental results. The experimental results and simulation 
results are consistent. It validates the correctness of this method. 
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Figure 9. Experimental Results of 
Conventional PI Controller with Saturation 

Limits 

Figure10. Experimental Results of New Anti-
Windup PI Controller 

 
 

6. Conclusion 
The traditional PI controller has integral saturation problem, so this paper adopts a new 

type Anti-Windup PI controller. And the condition for the stability of the system is given. 
Simulation and experimental results show that, the new Anti-Windup PI controller can reduce or 
even eliminate overshoot amount of speed response, and shortens adjusting time. At the same 
time, the controller also has the advantages of simple structure and easy to project 
implementation. 
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