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Abstract 
 This paper presents the adaptive control and hybrid synchronization of Lorenz-84 chaotic system 
using a master-slave topology. The Lorenz-84 is an 11-term dissipative system that possessed  four 
quadratic nonlinearities in its coupled algebraic structure which results to the evolution of  a dense chaotic 
attractors in both 2-D and 3-D spaces. Firstly, an adaptive nonlinear feedback controller was designed to 
suppress the chaotic dynamics of the system. By using Lyapunov stability criterion, the asymptotic stability 
of the error states was guaranteed and the state dynamics were stabilized. Secondly, adaptive nonlinear 
feedback controllers were designed to guarantee the co-existence of synchronization and anti-
synchronization of the system. By suitable selection of feedback coefficients and Lyapunov function 
candidate, the uncertain parameters of the slave system were estimated. Numerical simulations via 
MATLAB show the convergence of the uncertain parameters to their true values after a transient time while 
the two systems synchronized completely.   
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1. Introduction  
Research interest in chaotic phenomena has risen astronomically during the last 

decades. This is owing to the fact that  inquisition into chaotic phenomena continues to reveal 
new ways that chaos is embedded in man-made and natural systems, leading to better 
understandings of their usefulness in solving non-trivial challenges in engineering and non-
engineering sciences. The breakthrough by Ott, Grebogi and Yorke [1] gave impetus to chaos 
control resulting in diverse methods of suppressing chaos in experimental and real-life 
scenarios. With the successful coupling of two chaotic systems by Pecora and Caroll [2], there 
has been a convergence of multidisciplinary approaches on studying methods of coupling 
almost all evolved chaotic systems.  

Synchronization is a process whereby the trajectories of two identical or non-identical 
systems are coupled unidirectionally or bidirectionally using suitably designed linear and 
nonlinear controllers. In the literature, most synchronization schemes falls into two classes, viz. 
master-slave type and mutual synchronization. In master-slave type, an original chaotic system 
serves as the drive system to provide coupling dynamics to regulate the state trajectories of 
another system termed the response system into synchrony in transient time. Chaos and chaos 
synchronization of chaos have found application in different types of communications systems 
[3], power systems [4], biological systems [5] and oscillators [6] amongst others. Different types 
of synchronization schemes have been proposed in the literature such as generalized 
synchronization [7], hybrid synchronization [8], generalized projective synchronization [9], and 
hybrid function synchronization [10].   
 Methods of synchronization include adaptive control [11], sliding mode control [12], 
fuzzy control [13], adaptive feedback [14], observer-based control [15], backstepping design 
[16], and impulsive synchronization [17] among others.  Adaptive methods of synchronization 
have gained acceptance due to their practical relevance in real-life system where most or all the 
system parameters may be unknown or uncertain. Unlike most other synchronization schemes 
where the control objectives are contingent upon the availability of all state parameters, the 
adaptive methods can be used to estimate unknown parameters of the system. The objective of 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 7, July 2014:  5251 – 5260 

5252

this work is to design adaptive controllers via feedback control techniques to control and hybrid-
synchronize the complex dynamics of the Lorenz-84 system.  

 
 

2. The Lorenz-84 Chaotic System 
 The Lorenz-84 system [18] is an 11-term dissipative system that possessed four 
quadratic nonlinearities in its coupled algebraic structure which results to the evolution of  a 
dense chaotic attractors in both 2-D and 3-D spaces. The Lorenz-84 is topologically non-
equivalent to the Lorenz-63 [19] which evolves the well-known butterfly attractor. However, 
unlike the Lorenz-63 system which is arguably one of the most studied chaotic system, the 
Lorenz-84 system has received very scanty interest in the literature even though it dynamics 
and properties have tremendous applications in engineering and non-engineering systems 
design. Thus, the motivation for this study is to study the controllability and synchronizability of 
the system. The governing equations of the Lorenz-84 system is given by: 
 

 

           (1) 

 
 

Where 1 2 3, ,x x x  are states of the system. , , ,    are positive constants. For values of   

0.25, 8, 1, 4       , the system evolves the state dynamics in Figure 1. 

 
 

 
 

Figure 1. 2-D Portraits of the Open-loop Lorenz-84 Chaotic System 
 
 
By linearizing (1) at the point (0,0,0)E , we obtained  the Jacobian given by: 
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 The characteristic equation is 3 21.75 0.5 0.25     . This gives the following 

eigenvalues 1,2,3 (1,1, 0.25)   .  

 
 
3. Adaptive Control of the Lorenz-84 System with Uncertain Parameters 

In order to asymptotically y stabilize the dynamics of the Lorenz-84 systems with 

uncertain parameters at equillibrium point 0ex  , we add adaptive feedback controllers and the 

controlled system (1) becomes: 
 

 
 
 
              (3) 

 

 Where , 1,2,3iu i   are adaptive feedback controllers  to be designed using the states 

of the system and  ˆ ˆˆ ˆ, , ,    are estimated parameters of  , , ,   . The adaptive feedback 

controllers can be represented as: 
 

 
 
           (4)
  

 

Where , 1,2,3i i  is given as:  
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 And   is a diagonal matrix whose diagonals elements 11 22 33[ , , ]diag     constitutes  

the feedback coefficients of the controllers, such that: 
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By inserting (6) into (4), Equation (3) becomes: 
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After expanding, (7) becomes: 

10pt

' 2 2
1 2 3 1 1

'
2 1 2 1 3 2 2

'
3 1 2 1 3 3 3

x x x x u

x x x x x x u

x x x x x x u



 



       

    

   

2 2 1
1 2 3 1

2
2 1 2 1 3 2

3
3 1 2 1 3 3

ˆ ˆ ˆ

ˆˆ

ˆ

u x x x

u x x x x x

u x x x x x

 

  

 

      

     

    



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 7, July 2014:  5251 – 5260 

5254

'
1 1 1 1

'
2 1 3 2 2

'
3 1 2 3 3

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( ) ( ) ( )

ˆˆ( )

ˆ( )

x x x

x x x x

x x x x

    

   

 

                  

      

    

                      (8) 

Let, 
  

ˆ

ˆ

ˆ

ˆ

  
  
  

    
 
 
 









                                                                                                              (9) 

 
By using (9) in (8), the equation reduces to: 
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Inorder to derive the relationship for the parameter update law, we choose a Lyapunov function 
candidate [20]: 
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For asymptotic stabilization of the system, (0) 0; (.) 0;V V 
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From (9), it is noted that: 
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Putting (10) and  (13) into (12) and solving gives the following: 
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From (15), the parameter update laws becomes: 
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Where , 4,5,6,7i i  are positive constants.  

 Theorem 1: The controlled Lorenz-84 system (3) with uncertain parameters is 
asymptotically stabilized in the sense of Lyapunov for all initial conditions by the adaptive 
feedback control law (4) where the parameter update law is given by (16).  

Proof: By inserting (16) into (15), it is observed that: 
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Which is negative definite function on 
7 . Therefore, the parameter estimation errors would 

converge exponentially to zero as 0t  . 
 
 
4. Numerical Simulations 
 The Lorenz-84 system (3), adaptive feedback control laws (4) and the parameter 
update laws (16) were simulated in MATLAB environment for the following parameters  

0.25, 8, 1, 4        and initial conditions for system 1 2 3[ (0), (0), (0)] [2,6,10]x x x  , 

parameter estimates ˆ ˆˆ ˆ[ (0), (0), (0), (0)] [ 4,7,12, 2]      . The resultant plots are given in 

the following figures. 
                 

 
(a) Stabilized state dynamics 

 
(b) Converged control laws 
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(c) Converged estimation error dynamics 

 
(d) Converged parameter estimates 

 
Figure 2. Simulated Results of the Lorenz-84 System 

 
 
5. Adaptive Hybrid Synchronization of the Lorenz-84 Chaotic System 
 In this section, the objective of complete synchronization of identical Lorenz-84 is 
realized via the design of linear and nonlinear controllers. In hybrid synchronization, there is a 
co-existence of complete synchronization and anti-synchronization [21]. In this paper, the slave 
system is adopted as the controlled system with uncertain parameters. Thus, the two systems 
are represented as follows: 
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Let the hybrid synchronization error be defined as:  
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By using (20), the error dynamics of the two systems becomes: 
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By using (23) in (22), the equation reduces to:  
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And the adaptive control law becomes: 
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Then by inserting (25) in (24), we have a new relationship for the synchronization error 
dynamics: 
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We can also note from (23) that: 
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By using (26) and (27) in (29), the relationship (29) becomes: 
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law (25) where the parameter update law is given by (31) while the synchronization errors and 
parameter estimation errors converged asymptotically in transient time.  
 Proof: By inserting (31) into (30), it is observed that: 
  

2 2 2 2 2 2 2
1 1 1 2 3 3 4 5 6 7(.) ( )V e e e

   


                                 (32) 

 

Which is negative definite function on 
7 . Therefore, the synchronization and parameter 

estimation errors would converge exponentially to zero as 0t  . 
 
 
6. Numerical Simulations 

 

 
(a) Synchronized x1-y1 states 

 
(b)  Antisynchronized x2-y2 states 

 
(c) Synchronized x3-y3 states 

 
(d) Converged error dynamics 
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(e) Converged parameter estimates 

 
(f) Converged estimation errors 

 
(g) Converged adaptive laws 

 
Figure 3. Dynamics of the Synchronized Lorenz-84 Systems 

 
 
The master Lorenz-84 system (18), adaptive controlled response system (19), adaptive 

control laws (25) and the parameter update law (31) were simulated in MATLAB environment for 
the following parameters  0.25, 8, 1, 4         and initial conditions for master system

1 2 3[ (0), (0), (0)] [2, 1, 14]x x x    , slave system 1 2 3[ (0), (0), (0)] [ 3,4,9]y y y  
 
parameter 

estimates ˆ ˆˆ ˆ[ (0), (0), (0), (0)] [10,8,14, 5]     . The initial conditions of the synchronization 

error dynamics becomes 1 2 3[ (0), (0), (0)] [ 5,3,23]e e e   .
 
The resultant plots are given in the 

Figure 3. 
 

 
7. Conclusion 
 Adaptive control and hybrid synchronization of the Lorenz-84 system with uncertain 
parameters is reported in this paper. By appropriately selecting the feedback coefficients of the 
control law, the state dynamics of the system were asymptotically stabilized in transient time 
and the estimated parameters converged to their true values. Appropriate control laws were 
equally designed for co-existent coupling of identical Lorenz-84 system in a master-slave 
topology via hybrid synchronization scheme. Proper selection of the feedback coefficients 
engendered a complete synchronization and anti-synchronization of the states of the system 
while the estimated parameters of the controlled slave system converged to their true values in 
transient time.  
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