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 This study proposes the integration of a beamforming neural network 

(BFNN) and multiple-input single-output based non-orthogonal multiple 

access (MISO-NOMA) with hybrid beamforming (HBF) for cell edge users 

(CEU) in a millimeter wave (mmWave)-based beyond 5G cellular 

communication system. This system is referred to as MISO-NOMA-HBF-

BFNN. The proposed scheme has been implemented to support multiple 

users simultaneously and also to considerably enhance and significantly 

improve the overall the sum channel capacity (SC) and user channel 

capacities. Additionally, the simulation results demonstrate the superiority of 

the proposed MISO-NOMA-HBF-BFNN scheme over the existing MISO-

NOMA with HBF and MISO-OMA with HBFBFNN based schemes in 

terms of user capacities and SC. 
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1. INTRODUCTION 

Non-orthogonal multiple access (NOMA) has drawn significant attention in the domain of beyond 

5G (B5G) cellular communication systems [1], [2]. Existing orthogonal multiple access (OMA) techniques, 

including TDMA/FDMA/CDMA, may encounter significant obstacles when implemented beyond 5G (B5G) 

cellular communication systems due to the restricted availability of resources (time/frequency/code) [3].  

The sum capacity (SC) and user capacities of OMA-based cellular communication systems can be diminished 

by the additional resource utilization. However, the power domain NOMA can mitigate this issue. 

Additionally, NOMA and millimeter wave (mmWave) systems offer a solution for B5G cellular 

communication. This is due to the fact that mmWaves can support ultra-high channel capacities, while 

NOMA can simultaneously support multiple access for multiple users [4]. However, challenges such as 

restricted resources and incomplete channel state information (CSI) continue to exist, requiring inventive 

approaches to improve user capabilities and aggregate SC. 

Prior research has investigated the augmentation of channel capacity via power domain downlink 

NOMA, employing methodologies such as successive interference cancellation (SIC) [5]. The integration of 

NOMA with mmWave technology has demonstrated potential in the realm of B5G cellular communication. 

This approach capitalizes on the exceptionally high capacities offered by mmWave and NOMA’s capability 
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to accommodate several users concurrently [6]. Again, study shows [7] hybrid beamforming (HBF) has been 

recognized as a viable option for mmWave systems; yet, traditional approaches encounter constraints when it 

comes to facilitating multiuser access. The optimization of analog precoders in HBF systems presents 

considerable difficulties [8], [9] because existing methods assume perfect CSI. Accurate optimization of 

analog precoders is hindered by imperfections in CSI estimate, which arise from factors such as user mobility 

and hardware restrictions [10]. In addition, analog precoders have a limited pre-defined codebook, hence 

manifold optimization, element-wise iterative algorithms, and analog beamformer optimization techniques 

have been proposed in previous research [11]. Recent research indicates that the utilization of deep learning 

(DL) methods, namely beam forming neural networks (BFNN), has the potential to enhance the performance 

of analog precoders in the presence of suboptimal CSI conditions [12]. This is particularly relevant for cell 

edge users (CEUs), as it can lead to improved user capacities and system capacity. Hence, BFNN can 

optimize the analog precoder of the multiple-input single-output based non-orthogonal multiple access 

(MISO-NOMA), HBF scheme depending on the imperfect CSI, channel condition, and the SINR of CEU to 

improve the user capacities as well as SC [13]. 

Hence, the emergence of NOMA has attracted considerable interest due to its potential to offer high 

data rates to numerous users, especially within the framework of beyond 5G (B5G) cellular communication 

systems. Nevertheless, obstacles such as constrained resources and imperfect CSI continue to present 

challenges, prompting the search for novel solutions aimed at bolstering both user capacities and overall SC. 

This research paper presents a novel methodology called MISO-NOMA-HBF-BFNN, which leverages the 

integration of NOMA, HBF, and DL-based BFNN to effectively tackle the aforementioned obstacles. Our 

proposal suggests combining NOMA with MISO-HBF to enable multiuser access. Additionally, we aim to 

improve performance by optimizing analog precoders for CEUs using DL-based BFNN. The subsequent 

sections will provide a comprehensive explanation of the approach and execution of the proposed MISO-

NOMA-HBF-BFNN scheme, encompassing the simulation configuration and assessment criteria. The 

efficiency of the proposed scheme is compared and evaluated with existing schemes (e.g., MISO-NOMA-

HBF and MISO-OMA-HBF-BFNN) and demonstrated through simulation results, specifically in relation to 

user capabilities and SC under varied scenarios, including varying pilot-to-noise ratios (PNR) and poor CSI. 

 

 

2. SYSTEM MODEL 

In this scenario, a narrowband downlink DL MISO-NOMA system [14]-[18] which illustrated in 

Figure 1, with HBF and BFNN is considered in a millimeter-wave (mmWave) communication environment. 

Let’s break down the key components and their roles in this system: 

A. System setup: 

− Base station (S): a single base station serves as the source in the system. It is equipped with one radio 

frequency (RF) chain and multiple transmit antennas (N) antennas. 

− Users 

− Cell center user (CCU): this user, denoted as (UE_1) is positioned near the base station (S).  
− Cell edge user (CEU): this user, denoted as (UE_2) is located near the cell edge, farther away from the 

base station. 

B. Transmission scheme: 

− MISO-NOMA: multiple input single output NOMA is employed. It allows multiple users to share the 

same time-frequency resources by superimposing their signals and decoding them at the receiver. 

− Hybrid beamforming (HBF) 

− Digital precoder (vD): a scalar digital precoder applied to the superimposed signal. This precoder 

manipulates the signal in the digital domain before transmission. 

− Analog precoder (vRF ): an ( N × 1)  analog precoder combined with phase shifters. This precoder 

manipulates the signal in the analog domain before transmission through the (N) transmit antennas. 

− Superimposed signal (A): this signal is simultaneously transmitted towards both users, composed of 

data symbols for ( UE1) (x1)and ( UE2) (x2) weighted by power allocation coefficients p1 and p2 

respectively, where p1 + p2 = 1 and p1 < p2. 

C. Signal representation: 

− The superimposed signal (𝐴) can be mathematically represented as: 

 

𝐴 = (√𝑝1𝑃𝑥1 + √𝑝2𝑃𝑥2) 

 

where 𝑃 is the total transmitted power from the base station; 

x1 and 𝑥2 are the data symbols, 𝑝1 and 𝑝2 represent the power allocation for 𝑈𝐸1 and 𝑈𝐸2 respectively 
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D. Spatial consideration: 

− Distances 𝑑1 and 𝑑2: these represent the distances of (𝑈𝐸1) and (𝑈𝐸2) from the base station 

(𝑆) respectively. Typically, (𝑑1 < 𝑑2) due to the positioning of (𝑈𝐸1) and (𝑈𝐸2) within the cell. 

− The CEU is situated near the cell edge, is marked as 𝑈𝐸2 in Figure 1. The precoded and superimposed 

signal (𝐴 = √𝑝1𝑃𝑥1 + √𝑝2𝑃𝑥2) can be represented by (1): 

 

χ=𝑣𝑅𝐹 𝑣𝐷𝐴 (1) 

 

 

 
 

Figure 1. System model of proposed MISO-NOMA-HBF-BFNN scheme 

 

 

In summary, the system employs HBF with digital and analog precoders to manipulate the 

transmitted signal, allowing for efficient transmission to multiple users simultaneously. The MISO-NOMA 

scheme enables multiple users to share the same resources, with power allocation coefficients determining 

the contribution of each user to the superimposed signal. Finally, the spatial positioning of users within the 

cell is taken into account to optimize signal transmission based on their distances from the base station. 

Again, in the described system architecture shows in Figure 2, a narrow band downlink DL MISO-

NOMA-HBF-BFNN scheme is implemented in a mmWave communication system. Let’s break down the 

elaboration of various components and processes involved: 

E. Channel model: 

− The channel response between the base station (𝑆) and the users (𝑈𝐸1 and 𝑈𝐸2) is modeled using a 

Saleh-Valenzuela mmWave channel model. This model incorporates a combination of line-of-sight 

(LOS) and non-line-of-sight (NLOS) paths. 

− The channel response (ℎ𝑘
𝐻) is represented as a sum of complex gains (𝛼𝑙) multiplied by antenna array 

response vectors (𝑎𝑙
𝐻(𝜙𝑡

𝑙)) at the base station. The channel response can be represented by (2) [12]-[14]: 

 

ℎ𝑘
𝐻 = √

𝑁

𝐿
∑  𝐿

𝑙=1 𝛼𝑘𝑙
𝑎𝑙

𝐻(𝜙𝑡
𝑙) (2) 

 

where 𝛼𝑙  is the complex gain of the 𝑙𝑡ℎ path and 𝑎𝑡(𝜙𝑡
𝑙) represents the antenna array response vector at 𝑆, 

with (𝜙𝑡
𝑙) representing the departure azimuth angle related to the path 𝑙. 𝑙 = 1 represents a LOS 

component in ℎ𝑘
𝐻 . 

F. Received signal at users: 

− The received signal at 𝑈𝐸1 and 𝑈𝐸2 (𝑦1 and 𝑦2) is obtained by multiplying the transmitted 

superimposed signal (𝐴) with the channel response and the analog and digital precoders (𝑣𝑅𝐹  and 𝑣𝐷). 

The received signal at 𝑈𝐸1 and 𝑈𝐸2 can be expressed by (3) and (4): 

 

𝑦1 = ℎ1
𝐻𝑣𝑅𝐹𝑣𝐷𝐴 + 𝑛1 (3) 

 

𝑦2 = ℎ2
𝐻𝑣𝑅𝐹𝑣𝐷𝐴 + 𝑛2 (4) 

 

− Additive complex Gaussian noise (𝑛𝑘) is added to the received signals, characterized by zero mean and 

covariance σ𝑘
2 . 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 205-213 

208 

 
 

Figure 2. Principle of BFNN based MISO-NOMA-HBF for CEU 

 

 

G. BFNN design for 𝑈𝐸2: 

− Due to the higher path loss between 𝑆 and 𝑈𝐸2, a unique BFNN technique is devised to optimize the 

analog beamforming for the 𝑆 and 𝑈𝐸2 link. 

− The BFNN is trained to predict the optimized analog beamforming vector (𝑣𝑅𝐹 ) based on estimated 

channel parameters (ℎ2𝑒𝑠𝑡
) and SINR estimation (γ2𝑒𝑠𝑡

). 

− A self-defined lambda layer is included at the end of the BFNN to enforce a 'sigmoid' activation 

function on the output, ensuring it falls within the range (0,1). This is crucial as analog beamforming 

involves phase shifters, and the phase values must be within a specific range. 

Therefore, the complex output value can be expressed by (5): 

 

𝑣𝑅𝐹 = 𝑒𝑗.2𝜋𝛼2 = cos(2𝜋𝛼2) + 𝑗. 𝑠𝑖𝑛(2𝜋𝛼2) (5) 

 

Because of the ‘sigmoid’ activation function, 𝛼2 symbolizes the real input value [13] within the range 

(0,1) where 𝑗 = √−1 , 2𝜋α2 is corresponding to phases of 𝑣𝑅𝐹 . 

− The loss function of the BFNN is derived to minimize the SINR and maximize the channel capacity at 

𝑈𝐸2. The loss function due to the considered BFNN can be derived as follows [13]: 

 

𝐿𝑜𝑠𝑠 =
1

𝑀
∑  𝑀

𝑚=1 log2 (1 +
𝛾2𝑚

𝑁
||ℎ2𝑚

𝐻 𝑣𝑅𝐹,𝑚||2 (6) 

 

where 𝑀 represents the total number of samples for training, and 𝛾2𝑚
, ℎ2𝑚

, and 𝑣𝑅𝐹,𝑚 represent the 

SINR, CSI, and output analog BF (𝑣𝑅𝐹) associated with the 𝑚𝑡ℎ sample, respectively. The loss 

reduction is related to the increase of the average channel capacity of the 𝑈𝐸2 [13]. 

H. BFNN training and deployment: 

− The BFNN is trained offline using randomly generated channel samples and SINR values. The loss is 

calculated based on the predicted analog beamforming vectors and the actual SINR values. 

− During online deployment, practical mmWave channel estimation techniques are used to estimate the 

channel parameters at 𝑈𝐸2. These estimated parameters are fed into the trained BFNN to generate 

optimized analog beamforming vectors. 

I. BFNN structure: 

− The BFNN structure consists of multiple dense layers with ReLU and sigmoid activation functions.  

The dense layers of the BFNN were set to 256, 128, and 64 neurons, accordingly [13] which is shown in 

Table 1. 

 

 

Table 1. Parameters of BFNN for CEU 
Layer name Function No. of Params. O/P Dim. 

Input layer \ 0 129 × 1 

Dense layer 1 reLu 33024 256 × 1 
Dense layer 2 reLu 32896 128 × 1 

Dense layer 3 sigmoid 8256 64 × 1 

Lambda layer \ 0 64 × 1 
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− Batch normalization layers are incorporated for convergence. 

− The input to the BFNN includes the real and imaginary parts of the estimated channel parameters 

(ℎ2𝑒𝑠𝑡
), concatenated with SINR estimation (γ2𝑒𝑠𝑡

). 

− The output of the BFNN undergoes a modulus operation using the lambda layer to obtain the final 

analog beamforming vector. 

J. Training dataset: 

− The training, testing, and validation datasets contain a large number of samples to ensure the robustness 

and generalization of the BFNN. 

− Training data includes various channel conditions and SINR levels to cover a wide range of scenarios. In 

this study, the training, testing, and validation sets contained 105, 104, and 104 samples, respectively [13]. 

Overall, the described BFNN-based optimization technique for analog beamforming in the MISO-NOMA-

HBF system aims to enhance the performance of the mmWave communication system by efficiently 

allocating resources and mitigating the effects of channel variations. 

 

 

3. CHANNEL CAPACITY 

3.1.  Capacity of MISO-NOMA-HBF-BFNN 

The signal to interference and noise ratio (SINR) of 𝑈𝐸1 and 𝑈𝐸2 are expressed as 𝛾1 and 𝛾2 

respectively. 𝛾1 and 𝛾2 can be expressed as follows for the proposed scheme: 

 

𝛾1 = 𝑝1||ℎ1
𝐻𝒗𝑹𝑭𝒗𝑫||2𝜌 (7) 

 

𝛾2 =
𝑝2||ℎ2

𝐻𝒗𝑹𝑭𝒗𝑫||2𝜌

𝑝2||ℎ2
𝐻𝒗𝑹𝑭𝒗𝑫||2𝜌+1

 (8) 

 

where 𝜌 =
𝑃

𝜎2 is the transmit signal-to-noise ratio (SNR). The channel capacity of 𝑈𝐸1 is expressed as 𝐶1 and 

the channel capacity of 𝑈𝐸2 can be expressed as 𝐶2. The user channel capacities can be expressed by (9) and 

(10). 

 

𝐶1 = 𝑙𝑜𝑔2(1 + 𝛾1) (9) 

 

𝐶2 = 𝑙𝑜𝑔2(1 + 𝛾2) (10) 

 

The optimal value of 𝑣𝐷 for maximizing 𝐶2 is represented by √
𝑝2

𝑁
 . Afterwards, the HBF optimization 

problem for 𝑣𝑅𝐹  for 𝑈𝐸2 can be expressed as follows [13]: 

 

𝑚𝑖𝑛
𝑣𝑅𝐹

   log2(1 +
𝑝2||ℎ2

𝐻𝒗𝑹𝑭𝒗𝑫||2𝜌

𝑁

𝑝2||ℎ2
𝐻𝒗𝑹𝑭𝒗𝑫||2𝜌

𝑁
+1

) (11) 

 

subjected to [𝑣𝑅𝐹]𝑖|
2 = 1 and 𝑖 = 1, . . . , 𝑁 [13]. In this study 𝛾2𝑒𝑠𝑡

= 𝛾2 is assumed because the SINR can be 

estimated more accurately than the CSI. Where, 𝛾2𝑒𝑠𝑡
 is the estimated SINR [13]. Furthermore, the SC (𝐶𝑆) 

of the proposed MISO-MISO-NOMA-HBF-BFNN can be derived by adding 𝐶1 and 𝐶2 as in the (12): 

 

𝐶𝑆 = 𝐶1 + 𝐶2 (12) 

 

3.2.  Capacity of MISO-OMA-HBF-BFNN 

The MISO-OMA-HBF-BFNN scheme employs time-division multiple access (TDMA) to allocate 

independent time slots for transmitting individual symbols to 𝑈𝐸1 and 𝑈𝐸2. These time slots, denoted as 𝑡1 

and 𝑡2, are divided equally (𝑡1 = 𝑡2 =
1

2
) to compare user channel capacities and the SC. The total transmit 

power from S is represented by P [13], [16]. Thus, the achievable capacity of 𝑈𝐸1, 𝑈𝐸2, and the SC can be 

presented as follows for the MISO-OMA-HBF-BFNN scheme: 

 

𝐶1
𝑂𝑀𝐴 =

1

2
𝑙𝑜𝑔2(1 + 𝛾1

𝑂𝑀𝐴) (13) 

 

𝐶2
𝑂𝑀𝐴 =

1

2
𝑙𝑜𝑔2(1 + 𝛾2

𝑂𝑀𝐴) (14) 
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where 𝛾1
𝑂𝑀𝐴 = ||ℎ1

𝐻𝑣𝑅𝐹𝑣𝐷||2𝜌, 𝛾2
𝑂𝑀𝐴 = ||ℎ2

𝐻𝑣𝑅𝐹𝑣𝐷||2𝜌. Moreover, the optimal 𝑣𝐷 for enhancing 𝐶2 is 

expressed by √
𝑃

𝑁
. Then, the optimization problem for 𝑣𝑅𝐹  due to MISO-OMA-HBF-BFNN for 𝑈𝐸1 and 𝑈𝐸2 

can be expressed as follows by [13]. 

 

𝑚𝑖𝑛
𝑣𝑅𝐹

    log2 (1 + ||ℎ1
𝐻𝑣𝑅𝐹||2 𝜌

𝑁
) (15) 

 

𝑚𝑖𝑛
𝑣𝑅𝐹

    log2 (1 + ||ℎ2
𝐻𝑣𝑅𝐹||2 𝜌

𝑁
) (16) 

 

Subject to [𝑣𝑅𝐹]𝑖|
2 = 1 and 𝑖 = 1, . . . , 𝑁. As the SINR can be estimated more accurately than the CSI, hence 

𝛾1𝑒𝑠𝑡
𝑂𝑀𝐴 = 𝛾1

𝑂𝑀𝐴 and 𝛾2𝑒𝑠𝑡
𝑂𝑀𝐴 = 𝛾2

𝑂𝑀𝐴 are assumed in this study. Where 𝛾1𝑒𝑠𝑡
𝑂𝑀𝐴 and 𝛾2𝑒𝑠𝑡

𝑂𝑀𝐴 are the estimated SINR 

[13]. Furthermore, the SC of MISO-OMA-HBF-BFNN can be derived by adding 𝐶1
𝑂𝑀𝐴 and 𝐶2

𝑂𝑀𝐴 as in  

the (17). 

 

𝐶𝑆
𝑂𝑀𝐴 = 𝐶1

𝑂𝑀𝐴 + 𝐶2
𝑂𝑀𝐴 (17) 

 

 

4. RESULTS AND DISCUSSION 

In the simulation setup described, several key parameters and techniques are employed to evaluate 

the performance of the proposed MISO-NOMA-HBF-BFNN scheme and compare it with existing schemes 

under various conditions. Let’s delve into the elaboration of the simulation results and comparisons: 

A. Simulation parameters 

A MISO-based array antenna with 𝑁 = 64 elements and uniform linear half-wave spacing is 

considered at the base station (𝑆). The Saleh-Valenzuela-based mmWave channel model is utilized for all 

communication links [19]. Parameters such as [20] power allocation (𝑝1 and 𝑝2), total transmitted power (𝑃), 

and number of channel paths (𝐿) are set according to the defined system model. Parameters 𝑝1 = 0.2, 𝑝2 =
1 − 𝑝1, 𝑃 = 1 and 𝐿 = 3 were considered in this study. The PNR is chosen as an indicator of [21], [22] 

channel estimation due to practical considerations where PNR may differ from SNR. 

B. BFNN parameters and optimization 

The BFNN parameters are defined [23], [24] according to Table 1, and they remain constant 

throughout all experiments. The Adam optimizer with a learning rate initialized at 0.001 is employed for 

training the BFNN. The training samples cover a wide range of SNR values (-20 dB to 20 dB), and imperfect 

CSI is considered for all comparisons. 

C. Simulation findings 

− Figure 3 depicts capacity comparisons for a PNR of 20 dB and estimated channel paths (𝐿𝑒𝑠𝑡) equal to 3. 

− The proposed MISO-NOMA-HBF-BFNN scheme outperforms other schemes significantly in terms of 

user capacities. This improvement is attributed to the optimized analog beamformer 𝑣𝑅𝐹  based on 

estimated channel parameters and SINR. Both the CCU and CEU capacities are notably enhanced 

compared to other schemes, resulting in improved spectral efficiency (SC). 

− Figure 4 shows the capacity and SC caoparison for both PNR and 𝐿𝑒𝑠𝑡 optimized values. 

− Hence, Figure 4(a) illustrates CCU capacity comparisons under a lower PNR of 0 dB and 𝐿𝑒𝑠𝑡 = 3. 

− The proposed scheme continues to exhibit superior performance, providing higher user capacities 

compared to existing schemes even under lower PNR conditions. Although capacities decrease 

compared to the higher PNR scenario, the proposed scheme maintains its advantage due to the 

effectiveness of the BFNN-based optimization technique. 

− Figure 4(b) shows channel capacity comparisons for a PNR of 20 dB and 𝐿𝑒𝑠𝑡 = 1. 

− The proposed scheme demonstrates significantly higher user channel capacities and SC compared to 

conventional schemes under lower SNR conditions [25]. However, capacities degrade compared to 

conventional schemes under higher SNR conditions due to less effective optimization of the analog 

beamformer 𝑣𝑅𝐹  in the presence of less accurate channel path estimation (𝐿𝑒𝑠𝑡). The results highlight 

the effectiveness of the proposed BFNN-based optimization technique in improving system 

performance under various channel conditions. 

− The scheme exhibits resilience to lower PNR and less accurate channel estimation, showcasing its 

potential for practical deployment in mmWave systems. However, under high SNR conditions,  

the scheme’s performance may be impacted by the accuracy of channel path estimation, necessitating 

further investigation into robust estimation techniques. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Optimizing channel capacity for B5G with deep learning approaches in … (Muhammad Atique Masud) 

211 

In summary, the simulation results underscore the efficacy of the proposed MISO-NOMA-HBF-

BFNN scheme in enhancing user capacities and spectral efficiency in mmWave communication systems, 

particularly under challenging channel conditions. 

 

 

 
 

Figure 3. Capacity comparisons for PNR = 20 dB and 𝐿𝑒𝑠𝑡 = 3 

 

 

  
(a) (b) 

 

Figure 4. Capacity and SC comparisons for PNR and 𝐿𝑒𝑠𝑡  (a) Capacity comparisons for PNR = 0 dB and 

𝐿𝑒𝑠𝑡 = 3 and (b) SC comparisons for PNR = 20 dB and 𝐿𝑒𝑠𝑡 = 1 

 

 

5. CONCLUSION 

The MISO-NOMA-HBF-BFNN scheme is proposed in this study for mmWave-based downlink 

MISO-NOMA B5G cellular communication. The MISO-NOMA-HBF-BFNN scheme’s efficacy is 

thoroughly examined in terms of SC and user channel capacities. Additionally, the user channel capacities 

and SC of the proposed scheme are compared to the conventional MISO-NOMA-HBF and MISO-OMA-

HBF-BFNN schemes. The analysis of the results demonstrates that the proposed scheme enhances the CCU 

channel capacity, CEU channel capacity, and SC in comparison to the other compared schemes.  

This improvement is attributed to the BFNN for CEU, which is a consequence of imperfect CSI. This is 

because the imprecise CSI allows the BFNN to effectively optimize the analog beamformer for CEU. 

Consequently, the user channel capacities and SC of the proposed MISO-NOMA-HBF-BFNN scheme are 

enhanced in comparison to other existing schemes. The proposed scheme is also compared to other existing 

schemes, and the impact of various PNR and 𝐿𝑒𝑠𝑡  is also analyzed. The result analysis also demonstrated that the 

proposed scheme outperforms other existing schemes in terms of user capacities and SC for various PNR and 𝐿𝑒𝑠𝑡  

as well. 
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