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Abstract 
This paper presents a new method based on wavelet for a class of nonlinear hybrid systems 

identification. Hybrid systems identification is composed of two problems; estimate the discrete modes or 
switch among the system modes and estimate continues submodels. In this paper, we assumed that 
haven’t any prior knowledge about data classification and submodels identification. Also the combining of 
feature vector selection algorithm and wavelet are used in subspace learning and support vector machine 
as a classifier. The results indicate that the error of using the wavelet in subspace learning process 
becomes low. In addition, the proposed method is convergent and has an acceptable response in 
presence of high-power noise. 
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1. Introduction 
Hybrid systems switch among several continues modes described as systems which 

includeboth continue and discrete states. In many application, an accurate model of system is 
not available, thus it is necessary to identify system parameters and their dynamics. In this 
paper, a class of nonlinear hybrid system identification in nonlinear autoregressive with external 
input (NARX) form is considered as follows: 

 
( )

ii i iy f x e          (1) 

 

Where ie  is an additive Gaussian noise term and 1 1[ , ..., , , ..., ]
a k k c

T
i i i n i n i n nx y y u u       is 

continues state regression. ,c an n  are lagged in outputs i ky   and inputs 
ki n ky    respectively. 

The discrete modes are determined by {1,2,..., }i n   in which the one of n submodels 

1{ }n
j jf   is active at time step i. Also the number of modes is known and any information about 

their regressors is not available. 
In [1], five methods of hybrid systems identification has been studied which these 

methods are non-convergent; in addition, optimization problem is enormously dependent on the 
initial condition. The mixed-integer programming is one of the mentioned methods which 
responses are limited to the number of data and variables [2, 3]. In [4], the number of modes is 
known and proposes an identification algorithm which combines clustering, regression and 
classification techniques. Unknown parameters of Bayesian approach are considered as 
random variables presented in [5]. This method has a three step: parameter estimation, data 
classification, and estimates of region and Bayesian law are inferred to estimate the 
parameters. In Algebraic Geometric approach, the applied system is assumed without noise [6]. 
The mentioned approach has obviously considerable error under the experimental systems. 
Bounded-error approach identifies the hybrid systems through imposing the error constriction 
[7]. In [8], formula construction is used as a least square problem with sum-of-norms 
regularization over regressor parameter differences. Automatic tuning approach applies 
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bounded-error approach and support vector regression (SVR) for extension of the algebraic 
method [9]. [10] uses algebraic and SVR approaches to establish a framework based on 
minimizing the product of loss functions along with a regularization term. Lauer is presented 
another method for hybrid systems identification based on support vector classifier and kernel 
function [11, 12]. Kernel function is used as a nonlinear transformation. In [13], Luange 
proposes four methods for feature extraction and uses them in SVM formula to identify the 
nonlinear hybrid systems. In addition, each mode has a different radial basic function 
covariance in which modes, train and test data are known in subspace mapping step. In [14] a 
new learning approach for piece wise smooth functions by regularized kernel regression is 
proposed. This is done by defining a new regularization term. In [15] identification of hybrid 
systems involving arbitrary and unknown nonlinearities in the submodels is investigated. In this 
approach, the submodels are estimated one by one by maximizing the sparsely of the 
corresponding error vector. 

In this paper, the proposed method improves the work of [13] with wavelet function. The 
main contribution of this paper is the change in the subspace learning form train and test data 
using the wavelet kernel function in nonlinear hybrid systems identification. Finally, the effect of 
kernel function coefficient and wavelet kernel function coefficient are investigated. In this paper, 
we assume that train and test data are unknown in data calssification and data have single RBF 
covariance. We know only about the number of modes. 

This paper is organized as follows: In Section 2, a framework of nonlinear hybrid 
systems identification is introduced. Section 3 presents the kernel principal component 
regression and wavelet kernel principal component regression. In Section 4, proposed method 
with numerical results is investigated. Finally, the conclusions are drawn in section 5. 
 
 
2. Framework of Nonlinear Hybrid Systems Identification 

First, This section presents the structure of kernel function for submodels estimating 
[12, 13]. Nonlinear hybrid systems submodels can introduce as: 

 

1

( ) ( , )
N

j kj j k j

k

f x k x x b


         (2) 

 
Where j  includes 1[ , ..., ]T

j Nj  , jb  is bias term for jf  and jk  is kernel function that satisfy 

the mercer conditions [16]. Typical kernel functions are linear kernel function, RBF kernel 
function and polynomial kernel function. In this paper, RBF kernel function

2 2

2
( , ) exp( 2 )k kk x x x x     is used. 

The method mentioned in [17-19] for identification and data classification is (3). 
 

( ) ( ) ( )reg empR w T w cR w         (3) 

 
Where ( )empR w  is empirical risk function. ( )T w  is a term which prevents the extra training and 

during minimizing the empirical risk function acts adjustment perform. c is the adjustment 
coefficient. According to (4), the aim of empirical risk function is minimizing the number and limit 
of classification error. 
 

1

1
( ) ( ( , ))

N

emp i
i

R w q y f x w
N 

        (4) 

 

Where iy , ( , )f x w  and q are class labels, output of classifier and weighted function 

respectively in support vector machines classification. According to (4), (3) is rewritten as 
follows: 
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Where 
1

N

i i i
i

w y x


   and .  is norm 1 or 2. To obtain the solution, the dual optimization 

problem must be solved with boundary expressed conditions by: 
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     (6) 

 
In (6), the input data can be in another space. This means that data have been mapped 

to another space. When the data have nonlinear behavior and cannot distinguish among them, 
data mapping is used. Mode estimation for each data obtains through (7). 

 

arg max ( )i i
i
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1

( )
N
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i i i i i
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3. Subspace Learning and Data Dimension Reduction 

The purpose of this section is to reduce the number of added data which describe the 
system with extra features. Subspace learning is used through selecting the eigenvalues and 
eigenvectors of the training data matrix and evaluating its effect on test data. Then use the 
Support Vector Machine Lagrangian multipliers 1,...,{ }ij j n   for each test vectors in each mode 

obtained. One of the support vector machine properties is reducing the number of test data. In 
fact, the number of data in two steps (subspace learning and classification) decreases. The 
operations of two steps are explained in the following. 
 
3.1. Kernel Principal Component Regression 

If the data distribution has nonlinear behavior in the original space, it cannot be 
changed by linear mapping. So it is necessary to use nonlinear mapping to reduce the nonlinear 
relation between the data. 

As mentioned in [13], [20-21], Kernel Principal Component Regression (KPCR) can 
reduce the training data dimension in optimal way. Suppose that a set of training feature vectors 

in the original space is 1 2{ , ,..., }Nz z z  where (1 )n
iz R i N    is feature extraction from 

mode i. Also suppose that : nR g   is a nonlinear transformation which transforms data from 

the original space of dimension n to a feature space of dimension l. In this space, scatter matrix 
is obtained according to (8). 

 

1

1
( ( ) )( ( ) )

N
T

t i i
i

S z e z e
N

 


         (8) 

 

Where ( ) (1 )iz f i N     is vector i in feature space and e is the average of all vectors in 

the feature space. If the mean of vectors is not zero, we can transfer kernel function in feature 
space to zero through (9). 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 7, July 2014:  5235 – 5243 

5238

1 1ˆ ( 1 ) ( 1 )j N N N j N N Nk I k I
N N          (9) 

 

Where NI  and 1N N  are Identity and unit matrix respectively. 

Eigenvalues and eigenvectors matrix of tS  placed out of null space g can be calculated 

through using the PCR algorithm. 
 

tS v v          (10) 

 

Where 
1

( )
N

i i
i

v z 


 . According to [21], (10) will be as (11). 

 
kW N W          (11) 
 

Where 1 2[ , , ..., ]T
NW     and k is kernel function matrix. If above operation (11) for m large 

eigenvalues of tS  is done, m vectors 1 2, ,..., mw w w  will be obtained. It is obvious that to obtain 

the m vectors, we must compute the eigenvalues and eigenvectors of kernel matrix k. Finally, 

mapping of each test feature vectors such as nz R  from original space with n dimension to m-
dimensional subspace ( m n ) is done by (12). 
 

T
zx W k          (12) 

 

Where 
mx R  is the mapping of test feature vector in subspace and 

1 2[ ( , ), ( , ), ..., ( , )]T
z Nk k z z k z z k z z . 

To obtain the kernel principal component regression and identification of system modes: 
1. Compute the kernel matrix for a set of training data. 
2. Compute eigenvalues and eigenvectors for kernel matrix determine its dimension 

by (13) and calculate the transfer matrix. 
 

1

1

m

ii
N

ii

s

s
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




         (13) 

 

Where m is matrix dimension, is  is eigenvalue of kernel matrix and [0,1]   relates system 

error to its dimension. The amount of this parameter can be decreased until the system error is 
low. 

3. Transfer the test data to feature space using the mapping matrix. 
4. Place the transferred test data in (6). 

5. Calculate f̂  for each data set using (14) and then identify and classify them by (6) 

and (7). 
 
ˆ ( ) (., )T T

j j j j jf x W k x b         (14) 

 
Where j  is lagrangian coefficient in feature space. 

 
3.2. Wavelet Kernel Principal Component Regression 

The wavelet kernel principal component regression is the extension of KPCR method. 
This method can be used for nonlinear systems. In this paper, wavelet transform is used for 
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subspace learning. The main idea of the wavelet analysis is to approximate functions by 
dilations and translations function ( )h x  called the mother wavelet. 

 
1

2
, ( ) ( )a c

x c
h x x h

a

 
        (15) 

 

Where , ,x a c R . a  is a dilation factor and c is a translation factor. If the wavelet function is 

multidimensional, it can rewrite as (16) [22]. 
 

1

( ) ( )
N

i
i

h x h x


    (16) 

 

Where 1 2( , , ..., ) N
Nx x x x R  . If , Nx x R  are two vectors in a space, wavelet kernel can 

be obtained from (17) [23]. 
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( , ) ( ) ( )
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i i i i
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x c x c
k x x h h
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In translation-invariant kernel ( , ) ( )k x x k x x   , (17) can be rewritten as (18). 

1

( , ) ( )
N

i i

i

x x
k x x h
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     (18) 

Mother wavelet function is assumed the form 
2

( ) [cos(1.75 ) exp( )]
2

Px
h x x  , kernel function is 

as (19). 
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Wavelet kernel is an orthonormal function [24] while this feature is not in Gaussian 

kernel function. In other words, due to the dependencies and correlations between data in the 
Gaussian kernel function, train speed will be lower than the wavelet kernel. 

WKPCR algorithm is applied in the same way as well as the KPCR algorithm except 
that their kernel function will be different. In feature extraction and subspace learning for 
nonlinear systems, wavelet kernel function is used. The process of the algorithm is as follows: 

1. Compute the wavelet kernel matrix for a set of training data. 

2. Check mean of the train data in mapping subspace using 
1

( )
N

j ii
x

  where 

( )j ix  is ith column of mapping train data matrix. If the mean of train data is not zero, the 

wavelet kernel function must be transferred by (9). 
3. Compute the mapping matrix using the eigenvectors of wavelet kernel matrix. 
4. Transfer the test data and place them in (6). 

5. Calculate f̂  for each data set using (14) and then identify and classify them by (6) 

and (7). 
 
 
4. Simulation Results 

This section involves the estimation of a function which switches among four unknown 
nonlinear systems. Consider the function arbitrarily switches among four nonlinear behaviors as 
(20). Estimation of the system is given in Figure 1. 
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The results of the KPCR [12, 13] and WKPCR for different values of their parameters are 
expressed in tables 1 and 2. 
 
 

 
 

Figure 1. Estimation of a Switched Nonlinear Function from 2000 Noisy Data Points 
 
 
A training set of N = 2000 points is generated by (20) with additive zero-mean Gaussian 

noise (standard deviation [0,0.7]  ) for uniformly distributed random [ 3,3]x   and 

uniformly distributed random {1,2,3, 4}i  . The number of train and test data is 100 and 300 

respectively. This system is identified by KPCR method and its results are given in Table 1. 
Data classification error obtained from multi-class support vector machines classification 
method and confused matrix shown in Table 1. Confused matrix shows the data which have 
been classified wrongly are place in which modes; the share of data classified incorrectly 
becomes high as the similarity of the shape and type of modes increases. This case occurs 
between modes 2 and 3. 

 
 

Table 1. Result of KPCR Method on Switched Nonlinear System 
  Test. Classif. Error % Confused Matrix 

25 10  2.1 0.35  

147.9 1.05 1.5 0.8 0.6 0.3 0

0 148.3 0.8 1.5 0.5 0

0 8.8 1.25 141.1 1.2 0

0 0.2 0.3 0.4 0.35 148.9 0.5

   
   
  
 

   

 

310  2.45 0.45  

147.3 1.6 2.05 1.25 0.6 0.6 0

0.2 0.35 147.9 1.1 2 0.6 0

1.2 0.8 0.9 0.25 148.2 2.65 0

0 0.2 0.25 .5 0.3 149.3 0.5

   
    
   
 

   

 

410  1.28 0.49  

150 0 0 0

0.4 0.7 145.3 3.2 4.3 3.1 0.2 0.63

0.4 0.45 2.6 1.8 147 1.8 0

0.1 0.32 0 0 149.2 0.2

 
     
   
 

  
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Table 2. Result of WKPCR Method on Switched Nonlinear System 
  Test. Classif. Error % Confused Matrix 

210  12.88 0.88  

131.9 1.37 1.4 1.26 0.3 0.67 16.4 1.51

15 2.62 131.6 2.84 0.7 0.82 2.7 1.34

11.4 2.59 3.5 1.65 127.1 2.23 8 2.36

18.2 1.4 0.5 0.71 0.7 0.95 130.6 1.9

    
     
    
 

     

 

22 10  2.27 0.65  

146.3 1.89 1.5 0.85 2.2 1.55 0

0 148.2 1.32 1.6 1.08 0

0 4.3 1.57 145.7 1.57 0

0 3.4 2.12 0.4 0.7 146.8 1.87

   
   
  
 

    

 

25 10  3.03 0.64  

143.7 1.95 2.3 1.5 3.8 2.53 0

0 147.8 1.14 2.2 1.14 0

0 4.3 1.16 145.7 1.16 0

0 5.1 1.91 0.9 0.74 144 1.89

   
   
  
 

    

 

410  1.17 0.32  

150 0 0 0

0 146.67 3.2 3 3.46 0.33 0.82

0 3.17 2.86 147.17 3.12 0

0 0.5 1.22 0 149.5 1.12

 
    
  
 

   

 

 
 
The data of Table 1 is shown that the data classification error decreases with the 

increment of  . This error is reduced to a specified value of  , then the error will be increased. 
Actually, the system error has a minimum point in RBF parameter. 
 In WKPCR method, the number of train and test data are 50 and 150, the value of c and 
P are 1000 and 1 respectively. The data classification error and confused matrix results are 
shown in Table 2. The classification error for small amount of   is high and classification error 
decreases considerably as increase of  . This method has a minimum point for classification 
error in wavelet parameter. If the value of p is not fixed, for a fixed value of wavelet kernel 

parameter such as 310  , error changes for different values of P is shown in Figure 2. 
 
 

 
 

Figure 2. Error Changes for Different Values of P 
 
The classification error for two methods is low as 15% as shown in Table 1 and 2. 

When the wavelet is used, the classification error is low in comparison with the case that the 
wavelet isn’t applied. Figure 3 shows the classification error in the same conditions for two 
methods. 
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Figure 3. Comparison of KPCR [12, 13] and WKPCR Classification Error in the Same 
Conditions 

 
 
5. Conclusion 

In this paper, a new method based on wavelet for identification and submodel 
estimation of nonlinear hybrid systems is proposed. Selected wavelet kernel function is 
multidimensional. This method could approximate a nonlinear hybrid system and can be 
implemented on the hybrid systems which switch among unknown modes. Estimating the 
number of submodels and data classification for linear and nonlinear hybrid systems is 
important issue presented in this paper. Dependence among kernel function training data 
causes reduction of learning speed. Furthermore, proposed method eliminates this dependency 
and improves learning speed. 

Further investigation will focus on optimizing and selecting the regular parameter c, 
choosing an appropriate kernel function for subspace learning and using the nonlinear support 
vector classification for mixed data. 
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