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ABSTRACT

Many areas of image identification and classification for medical imaging di-
agnostics have greatly benefited from deep learning (DL). Diabetic retinopa-
thy (DR) will become the most common cause of blindness worldwide, mak-
ing diabetes a major threat to public health. This research proposes an auto-
mated identification system using deep recurrent neural networks (RNNs) to
identify and classify four categories of diabetic eye diseases: DR, cataract,
glaucoma, and diabetic macular edema (DME). We use three different model
architectures based on RNN and their types, we called our proposed system
RNN Diabetic framework. These models are combined with one of the com-
monly used architectures that support sufficient accuracy and speed for the
model which is residual network (ResNet)152V2. The three model architectures
are RNN+ResNet152V2, gated recurrent unit (GRU)+ResNet152V2, and bidi-
rectional GRU (Bi-GRU)+ResNet152V2. The proposed models were assessed
as collected datasets: DIARETDB0, DIARETDB1, messidor, HEI-MED, ocu-
lar, and retina. A full analysis and evaluation of these three deep RNN architec-
tures are presented. The experiments showed that the Bi-GRU+ResNet152V2
model worked better than the other two proposed models. In addition, we com-
pare these three proposed models with the previous studies and find that the pro-
posed Bi-GRU+ResNet152V2 model achieves the highest results with accuracy
equal to 99.8%, 98.1% sensitivity, 98.6% specificity, 99.8% precision, 99.8%
F1 score, and 99.8% areas under the curve (AUC).
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1. INTRODUCTION
Deep learning (DL) is utilized in many areas to find new ways to solve important problems, and it

does well on tests that sort things into groups. Applications of artificial intelligence (AI) tools and techniques
are appropriate in the medical field. One of the 21st century’s most potently revolutionary technologies is
AI. Strong machine learning (ML) tools and methods like deep convolutional networks, generative adversarial
networks (GANs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and artificial
neural networks (ANNs) were used to bring about this change. DL has outperformed AI in speech recognition,
picture characterisation, and natural language creation.
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In several areas of medical imaging diagnostics, including image recognition and classification, DL
has proven to be an effective and significant technique. By using fundus images to assess and diagnose eye
disorders, DL can be used to detect and classify eye diseases, including diabetic eye disease. Under the general
category of diabetic eye illness are diabetic retinopathy (DR), cataract, glaucoma, and diabetic macular edema
(DME) [1], [2]. Diabetic eye disease can cause serious vision loss or even cause blindness in patients between
the ages of 20 and 74. Without early detection of diabetic eye disease, vision loss cannot be prevented. If
identified early, 90% of diabetics can prevent diabetic eye injury.

The goal of this research is to improve diabetic eye disease (DL) detection models. To be employed,
fundus images of diabetic eye diseases must be gathered in DL models. After that, several image preparation
methods are applied to the images. Utilizing pre-processed images, features are automatically extracted, and
analysis rules are learned and evaluated in the literature with a focus on using ML for respiratory disease de-
tection and classification. Including the most important articles released from 2018 till the end of 2021. These
findings help researchers plan their work and provide a useful contribution. Therefore, we discovered that
Ibrahim et al. [3] used transfer learning (TL) with the VGG19-CNN, ResNet152V2, ResNet152V2+gated re-
current unit (GRU), and ResNet152 V2+bidirectional GRU (Bi-GRU) architectures for multiclass classification
on a combination of chest X-ray and computed tomography (CT) scan images. Their research yielded a wealth
of advancements that encouraged us to use GRU and Bi-GRU for the multiclassification of diabetic ocular
disorders, particularly since these models are novel to this field. Additionally, Minarno et al. [4] found that
using some augmentation procedures along with EfficientNetB7 models increases the classification accuracy
for diabetic eye disorders.

Patients with diabetes are among the most common illness groups in the world today. Visual loss can
result from diabetic fundus disorders, which are the primary cause of blindness. Visual function is currently
affected by fundus illnesses such as DR, glaucoma, cataracts, and others [5]–[10]. CNN’s outstanding feature
learning capabilities have allowed it to excel in the realm of fundus imaging. Numerous deep-learning architec-
tures that have demonstrated exceptional performance in identifying certain diabetic eye conditions have been
documented in the literature. To the best of our knowledge, the categorization paradigm of the four diabetes-
related disorders (DR, DME, glaucoma, and cataract) had not been significantly altered before the start of our
study. However, by the end of 2021, Sarki et al. [11] had provided a framework for those four disorders’
classification. They only used one CNN model in their research, though, and the dataset they used revealed
class disparities. Their accuracy of 81.33% is still regarded as low when compared to the latest studies on DL
classifications.

Previous studies on cataract disease did not sufficiently examine cataract prediction and classification
[12]. To categorize the cataract disease individually, there was also independent research. DME disease iden-
tification was suggested as a research gap in [13] because it is extremely likely to indicate that the retina is
developing DR. This information helps researchers better understand the causes of retina-based disorders. The
second DL model focuses on training datasets with unequal distributions of classes across various diseases and
limited data. The findings of the training set may not be accurate enough to be deemed satisfactory if it is
small. It is taken into consideration as a potential remedy to apply traditional data augmentation techniques as
enhancing methods. This study investigated the effects of combining RNNs with residual networks (ResNet)
in identifying diabetic eye diseases. While earlier studies have explored the impact of only ResNet, they have
not explicitly addressed its influence on increasing the performance of identifying diabetic eye diseases. The
main contributions of this study are:
− Presenting the RNN diabetic framework, a multi-classification DL model designed to detect and classify

the four main eye disorders associated with diabetes: glaucoma, cataract, DME, and DR.
− Illustrating the influence of combining RNNs with ResNet in identifying diabetic eye diseases by using

ResNet152V2, GRU, and Bi-GRU.
− Analyzing these DL architectures are provided using four classes of public fundus datasets (DR, DME,

glaucoma, and cataract).
− Evaluating the suggested work by comparing its performance metrics to those of various models given in

prior studies for detecting and classifying diabetic eye diseases.
The paper’s remaining outline: section 2 summarizes the literature review, whereas section 3 details

the study’s materials and techniques. Section 4 presents the comparative analysis and discussion. In section 5,
the paper concludes.
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2. LITERATURE REVIEW
In this section, we present a few related deep neural network studies on diabetic eye problems. We

found that careful evaluation of the architecture and the data input is necessary for creating an effective neural
network classifier. Many studies have been conducted in the literature, as shown in [14]–[17], regarding using
DL for classifying diabetic eye illness utilizing fundus images. More people with diabetic eye disease are
presented in [18]–[22] adopt the TL approach. Rather than using random generation, the TL initializes the
parameters based on prior learning. The first layers pick up on extracting essential elements like edges, textures,
and intuitively. The top layers, analogous to blood vessels and exudates, are more particular to the task. The
TL is useful in cases where there is not enough data to train a neural network from the beginning [23]–[29].

Three CNN models DenseNet, ResNet50, and VGG16 were compared by Pan et al. [30] on four
different categories of DR lesions: microaneurysms, laser scars, leakages, and non-perfusion regions (NP).
4,067 fundus fluorescein angiography images from 435 eyes, 218 left eyes and 217 right eyes were collected
into databases by them. In terms of computation, DR lesion identification and the procedure were determined to
be efficient. According to experimental results, DenseNet is a useful model for automatically recognizing and
classifying retinal lesions in multi-label-classified fundus fluorescein angiography (FFA) images. Nevertheless,
because microaneurysms are often misclassified due to the widespread presence of fluorescein, the procedure
is not very accurate in identifying them. Samanta et al. [31] introduced a TL-based CNN architecture for
color fundus photography, which performs relatively well in identifying DR from hard exudates, blood vessels,
and texture on a much smaller dataset. The dataset was trained using their model on four classes (no DR,
mild DR, moderate DR, and proliferative DR) and reached a Cohen’s Kappa score of 0.8836 on the validation
set and 0.9809 on the training set. Their model uses several architectures, such as Inceptionv1, Inceptionv2,
Inceptionv3, Xception, VGG16, ResNet-50, DenseNet, and AlexNet.

Zhang et al. [32] presented a DeepDR framework for DR detection. DeepDR actively detects the
existence and severity of DR from fundus images by ensemble learning and TL, using several transfer and
ensemble learning methods. Additionally, the authors introduced a new dataset for DR images called macula-
centered retinal fundus images (13,767 images of 1,872 patients). The proposed network achieved 97.5%
sensitivity with a specificity of 97.7%. However, their model needs to be assessed with a more complex and
larger dataset. Using a small dataset, Badah et al. [23] developed a model to detect hard exudates using support
vector machine (SVM), a multilayer perceptron network. They found that CNN is not the best classifier for
hard exudate, but it does perform well. Moreover, good outcomes in challenging extraction can be obtained by
combining efficient classifiers with image-processing methods. A recent study demonstrated the application
of CNN based on the ResNet152 model in conjunction with other ML classifiers such as SVM, K-nearest
neighbors (KNNs), Naive Bayes, multi-layer perceptron, decision tree, and random forest to identify infections
causing glaucoma in patients.

Furthermore, Dipu et al. [10], The ODIR dataset was classified using four TL-based models. The ac-
curacy of the models was 97.23% for VGG-16, 90.85% for ResNet-34, 94.32% for MobileNetV2, and 93.82%
for EfficientNet. CNN can train discriminative features with an attention module for free, thanks to the design
proposed in [20]. They found multiple common labels for a patient’s left and right fundus image pairings,
which allowed them to address the class balancing problem in the highly unbalanced ODIR dataset.

Bhimavarapu and Battineni [25], an enhanced activation function was suggested for using fundus
images to diagnose DR. This function automatically lowers loss and processing time in the different CNN
models. To categorize DR images, four datasets DRIVE, CHASE, DIARETDB0, and Kaggle were taken into
consideration. The current activation functions used were scaled exponential linear unit (SELU), rectified linear
unit (ReLU), Sigmoid, and exponential linear unit (ELU). On the Kaggle dataset, ResNet-152 has the greatest
accuracy (99.41%). Butt et al. [18] suggests utilizing TL to extract fund picture features using ResNet-18 and
GoogleNet models to correct class imbalance in a public dataset. Similarly, [19], [26] enhances picture quality
with a hybrid DL classifier, utilizing ResNet50-based architecture. Table 1 shows a summary of studies that
used dDL methods, including how they worked and how well they classified images of the fundus that show
diabetic diseases using various models of ResNet.

3. MATERIALS AND METHODS
Our mission is to evaluate multiple DL models for detecting these four diabetes-related ocular prob-

lems. Our dataset will be compiled using data sourced from six separate open-source databases. Once images
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have been collected, they undergo several preprocessing steps. Once the dataset has been completed, the pre-
trained ResNet152V2 model is used to classify each disease using three different models. There are also RNN
models of the GRU and the Bi-GRU that are linked to ResNet152V2. Hence, we named the system we sug-
gested RNN Diabetic framework. Figure 1 illustrates a summary of our proposed RNN Diabetic framework
methodology.

Table 1. Summary of classification-based methods using different models of ResNet and their corresponding
measures in previous studies

Study Dataset DL model Performance
[30] Kaggle ResNet50-I Acc=81.40% Spc=87.9%

Sen=59.0% AUC=85.2%
ResNet50-II Acc=90.97% Spc=92.7%

Sen=97.6% AUC=92.31%
ResNet50-III Acc=95.85% Spc=98.8%

Sen=70.4% AUC=96.04%
ResNet50-IV Acc=91.15% Spc=95.4%

Sen=69.7% AUC=93.51%
[25] DIRATEDB0 ResNet-50 Acc=93.54% Pre=99.43%

Sen=95.27% F1=98.42%
Spe=98.32% AUC=89%

ResNet-152 Acc=96.64% Pre=99.53%
Sen=97.96% F1=99.15%
Spe=98.79% AUC=97%

Kaggle ResNet-50 Acc=94.64% Pre=95.74%
Sen=94.24% F1=97.72%
Spe=96.86% AUC=93%

ResNet-152 Acc=99.41% Pre=99.89%
Sen=98.28% F1=99.93%
Spe=99.94% AUC=98%

DRIVE ResNet-50 Acc=92.44% Pre=94.83%
Sen=93.72% F1=95.88%
Spe=95.27% AUC=93%

ResNet-152 Acc=97.84% Pre=99.68%
Sen=98.45% F1=99.57%
Spe=99.26% AUC=94%

CHASE ResNet-50 Acc=93.83% Pre=95.73%
Sen=93.22% F1=94.68%
Spe=96.95% AUC=96%

ResNet-152 Acc=99.05% Pre=99.94%
Sen=98.45% F1=99.89%
Spe=99.59% AUC=97%

[10] ODIR ResNet34 Acc=90.85% Pre=93.7%
Sen=93.17% F1=92.65%

[20] ODIR InceptionResNet Acc=97.38% F1=94.58%
Sen=96.08% AUC=96.08%
Pre=94.28%

3.1. Stage 1: datasets for the study
3.1.1. Data collection

Numerous sources of fundus images were accessed and compiled for our experiments. Included in this
group are DME, DR, cataract, and glaucoma. Initially, we chose 219 image datasets from DIARETDB0 and
DIARETDB1 [33] for DR. Second, for DME with 151 images and 169 images, respectively, we used Messidor
[34] and HEI-MED [35]. The ODIR dataset [36] is the third source of the dataset and includes information
on several classifications of eye diseases. For cataracts, we used 312 images, and for glaucoma, we used 178
images. The final dataset used for both glaucoma and cataracts is a retina dataset consisting of 99 and 100
pictures, respectively, according to [37]–[49]. 412, 320, 277, and 219 images for cataract, DME, glaucoma,
and DR, respectively, are the results of the datasets that were gathered. The datasets that were gathered yielded
a total of 1,228 images, which were then randomly split into training and validation sets. The collected datasets
yielded 412, 320, 277, and 219 pictures for cataract, DME, glaucoma, and DR, respectively as shown in Table 2.
From the datasets, 1,228 photos were randomly separated into training and validation sets.

RNN Diabetic framework for identifying diabetic eye diseases (Arwa Albelaihi)
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Figure 1. The methodology of our proposed RNN Diabetic framework

Table 2. Dataset details for DR, cataract, glaucoma, and DME classes
Disease Dataset images Total

DIARETDB0 100
DR DIARETDB1 119 219

Messidor 151
DME HEI-MED 169 320

ODIR 312
Cataract Retina 100 412

ODIR 178
Glaucoma Retina 99 277

3.1.2. Dataset pre-processing
Preparing a dataset to satisfy the demands of a DL model is commonly achieved through pre-processing.

Distinct pre-processing stages in the input images of our model. The dataset is divided into four classifications:
DR, cataract, glaucoma, and DME, as the initial step in the process. JPEG, PNG, GIF, BMP, and TIFF are found
among the image formats that TensorFlow does not support. The files’ extensions are merely for indication; the
contents of the images are not altered in any way. All image extensions are replaced with the JPG format in this
research. These images will then be used as input in the step of pre-processing data. After reading, they were
downsizing the images to 224 × 224, with a batch size of 32. This needs to be supplied because the pipeline
handles batches of images that are all the same size. They were offering genuine value when it came to data
shuffle decisions.

To get transformations equal to 100 and shuffling, they added optional random seeds. After that, the
images should be normalized and turned into arrays so that, they may be used as input for the model’s next
step. With the label mode categorial, a float 32 tensor of shape (batch size, num classes) encodes the class
index one-hot. To ensure our dataset for DL model training include different photos. Finally, we randomly
divided it into 70% and 30% sections for training and validation. Sample fundus pictures for DR, cataract,
glaucoma, and DME are shown in Figure 2.

3.2. Stage 2: deep recurrent neural networks
Several supervised DL algorithms are used to create classification models in this research. To detect

and eliminate the four diabetic eye illnesses, they will test their abilities. Three models are used: RNN+
ResNet152V2, GRU+ResNet152V2, and Bi-GRU+ResNet152V2. We explain each of the three models in the
following subsections.

3.2.1. Stage 2 model 1: RNN+ResNet152V2 deep model
The ResNet152V2 model was selected for this research as the model supports sufficient accuracy and

speed. The model has a RNN using the ResNet152V2 model, a reshape layer, 2D global average pooling, a
dropout layer, and a dense layer with a Softmax activation function to classify the image. Figure 3 provides
more details on the model’s architecture.

3.2.2. Stage 2 model 2: ResNet152V2 and GRU deep model
As shown in Figure 4, this model consists of GRU followed by ResNet152V2. The primary benefit of

using GRU is that it allows for the maintenance of details that are irrelevant to the prediction for an extended
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period without eliminating them. ResNet152V2, a reshape layer, a GRU layer after layer with 256 units, a
collapsed layer, a layer that is dense with 128 neurons, a layer with dropouts, and a dense layer use the function
of Softmax activation to classify the image into one of our four disease classifications.

Figure 2. Fundus image samples from the original dataset

Figure 3. Stage 2 model 1: RNN+ResNet152V2 model architecture

3.2.3. Stage 2 model 3: ResNet152V2 and Bi-GRU deep model
The sequential model of bi-GRU, followed by ResNet152V2, is the last proposed DL model in our

proposed RNN Diabetic framework. The model architecture is described in detail in Figure 5. The model
consists of a ResNet152V2, followed by a reshape layer, a bi-GRU layer with 512 units, a dense layer, a
dropout layer, and another dense layer, and it utilizes a Softmax activation function to categorize the image as
belonging to one of our four categories of disorders.

RNN Diabetic framework for identifying diabetic eye diseases (Arwa Albelaihi)
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Figure 4. Stage 2 model 2: GRU+ResNet152V2 model architecture

Figure 5. Stage 2 model 3: Bi-GRU+ResNet152V2 model architecture

4. RESULTS AND DISCUSSIONS
4.1. Training parameters

The models in this study were trained and assessed independently but with identical parameters and
metrics. We needed to increase the overall amount of data and epochs to adequately train DL models. To
achieve the best results, we trained the models on various epochs and batch size settings. Using an optimizer
and suitable fit functions, our models were trained and verified. Every model ran through about 300 epochs
of training, with a batch size of 32. The presented findings are the highest validation values that could be ob-
tained. The results were obtained by including the performance metric equations in the outputs of the resulting
validation data. For our suggested models, the (Adam) [7] optimizer was used to obtain the optimal outcomes.
Table 3 displays the learning rate (LR) values and optimizers used for all models.
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Table 3. The training parameters of the models: learning rate value and optimizer
Model Optimizer Learning rate

RNN+ResNet152V2 Adam 0.00001
GRU+ResNet152V2 0.00001

Bi-GRU+ResNet152V2 0.00001

4.2. Early stopping (callback)
Neural network training requires epoch selection. Too many or too few epochs might overfit or underfit

the training dataset. Set epochs with early stopping, model checkpoint, and other approaches. Our early
stopping method involves setting many epochs and halting training when the improvement is not enough and
matches our expectations. Early stopping sets an arbitrarily high number of training epochs and stops training
when model performance on a hold-out validation dataset stops improving. The early stopping callback from
Keras lets you terminate training early. Automatic callbacks run code and interact with the training model.
The validation dataset loss function for model optimization is calculated after each epoch. First evidence of
no improvement is not always ideal to stop training. This is because the model may stall or worsen before
improving rapidly. To postpone epochs without improvement, we set ”patience” to 60 in this experiment.

4.3. Performance metrics
The RNN Diabetic framework was assessed for diabetic eye disease categorization utilizing measures

such as accuracy, sensitivity, precision, specificity, F1-score, and areas under the curve (AUC). A confusion
matrix is then added to each model. In (1), accuracy is the number of occurrences that can be predicted
accurately given the total number.

Accuracy(Acc) =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
(1)

where TP and TN are true positive and negative parameters, whereas FP and FN are false positive and negative
values. In (2) gives recall as the number of samples that were both actually positive and projected to be positive.
In (3) shows the precision, or positive predictive value, of all expected positive samples. In (4) gives the real
negative rate or specificity, which is the number of truly negative samples anticipated to be negative. Last, (6)
shows the F1-score, or harmonic mean of precision and sensitivity.

Sensitivity(Sen) =
Tp

Tp+ Fn
(2)

Precision(Pre) =
Tp

Tp+ Fp
(3)

Specificity(Spc) =
Tn

Tn+ Fp
(4)

F1− score(F1) =
2 ∗ Pre ∗ Sen
Pre+ Sen

(5)

Recent research suggests confusion matrix analysis is effective for model validation [8] due to its ability to
characterize data linkages and distributions. Information on illustrating categorization models is included.

4.4. Multi-classification RNN Diabetic framework results
We organized an extensive experiment, and we obtained different outputs corresponding to the perfor-

mance metrics to discover the significant findings. Therefore, we illustrated the results in Table 4 for the three
models. The table shows classifier model performance in accuracy (Acc), sensitivity (Sen), specificity (Spe),
precision (Pre), F1-score (F1), and AUC. Most people use the confusion matrix to evaluate categorization er-
rors. We report loss, AUC, precision, recall, and accuracy between training and validation with 300 epochs in
all proposal models.

Table 4. The performance metrics for the three proposed models for our RNN Diabetic framework
Model Acc Sen Spe Pre F1 AUC

RNN+ResNet152V2 97.3 96.7 95.9 96.7 96.7 97.4
GRU+ResNet152V2 98.3 97.9 98.1 98.3 98.3 99

Bi-GRU+ResNet152V2 99.8 98.1 98.6 99.8 99.8 99.4

RNN Diabetic framework for identifying diabetic eye diseases (Arwa Albelaihi)
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4.4.1. Results of stage 2 model 1 (RNN+ResNet152V2 model)
Figure 6 displays the ResNet152V2 model confusion matrix of the RNN+ResNet152V2 model. The

figure shows the effective classification of four patient statuses: DR, DME, glaucoma, and cataract, with DR
images having the greatest ratio, followed by cataract, DME, and glaucoma.

Figure 6. Confusion matrix of stage 2-model 1: RNN+ResNet152V2 model

4.4.2. Results of stage 2 model 2 (GRU+ResNet152V2 model)
The GRU+ResNet152V2 model demonstrated improved performance with GRU, as seen in Table 4;

assumed values were higher. In Figure 7, the confusion matrix of the GRU+ResNet152V2 model classifies four
patient statuses: DR, DME, glaucoma, and cataract. The greatest ratio is for DME and DR pictures, followed
by cataract (0.9839) and glaucoma (0.9542).

Figure 7. Confusion matrix of stage 2-model 2: GRU+ResNet152V2 model

4.4.3. Results of stage 2 model 2 (Bi-GRU+ResNet152V2 model)
Figure 8 displays the performance indicators of the Bi-GRU+ResNet152V2 model, including loss,

AUC, precision, recall, and accuracy throughout training and validation, along with the number of epochs. See
Figure 9 for the confusion matrix of the Bi-GRU+ResNet152V2 model. Figure shows four precisely recog-
nized patient conditions: cataract, DR, DME, and glaucoma. The DR pictures have the highest ratio (0.9896),
followed by the DME, cataract, and glaucoma. They outperform the GRU+ResNet152V2 model but are infe-
rior to the RNN+ResNet152V2 model.
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Figure 8. Loss, AUC, precision, recall, and accuracy between the training and validation phases, with number
of epochs for stage 2-model 3: Bi-GRU+ResNet152V2 model

Figure 9. Confusion matrix of stage 2-model 3: Bi-GRU+ResNet152V2 model

4.5. Comparative analysis and discussion
This study recommends three deep RNN models for diabetic eye disease diagnosis: RNN+ResNet152V2,

GRU+ResNet152V2, and Bi-GRU+ResNet152V2. DR, DME, cataract, and glaucoma the four most common
diabetic eye diseases are classified using these models. The proposed models were evaluated using accu-
racy, sensitivity, F1-score, and AUC. According to our data, Bi-GRU+ResNet152V2 had the highest clas-
sification accuracy (99.8), followed by GRU+ResNet152V2. However, Table 4 and Figure 10 indicate that
RNN+ResNet152V2 has the smallest accuracy among all designs.

Table 5 compares the performance evaluation measures of our proposed RNN Diabetic framework to
existing DL models from past publications. This research evaluated the proposed model using AUC, sensitivity,
specificity, precision, F1-score, and accuracy. We used two figures to explain the comparisons. Figure 11

RNN Diabetic framework for identifying diabetic eye diseases (Arwa Albelaihi)
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illustrates the comparison between our proposed RNN Diabetic framework (the three models) and the previous
studies in terms of accuracy, sensitivity, and specificity, while Figure 12 represents the comparison between
our proposed RNN Diabetic framework (the three models) and the previous studies in terms of precision,
F1-score, and AUC. For simplicity, we used DS1 to represent dataset 1 which is DIRATEDB0 for the study
[25]. Similarly, DS2, DS3, and DS4 represent Kaggle, DRIVE, and CHASE, respectively. In comparison with
previous studies [10], [20], [25], [30] the results show that our proposed Bi-GRU+ResNet152V2 model with
accuracy 99.8% outperforms all the existing models by a significant value, which demonstrates the effectiveness
of our predictive model.

The experiments showed that the RNN+ResNet152V2 model achieved results near to the previous
studies with accuracy equal to 97.3%, 96.7% sensitivity, 95.9% specificity, 96.7% precision, 96.7% F1-score,
and 97.4% AUC. While the GRU+ResNet152V2 model worked better than the RNN+ResNet152V2 model and
achieved results with accuracy equal to 98.3%, 97.9% sensitivity, 98.1% specificity, 98.3% precision, 98.3%
F1-score, and 99% AUC. Finally, the experiments showed that the Bi-GRU+ResNet152V2 model worked better
than the other two proposed models. In addition, we compare these three proposed models with the previous
studies and find that the proposed Bi-GRU+ResNet152V2 model achieves the highest results with accuracy
equal to 99.8%, 98.1% sensitivity, 98.6% specificity, 99.8% precision, 99.8% F1-score, and 99.8% AUC.

Figure 10. Comparison between the performance metrics for the three proposed models for our
RNN Diabetic framework

Table 5. Performance measures of ResNet152V2 model
Model Acc Sen Spe Pre F1 AUC
ResNet50-I [30] 81.4 59 87.9 - - 85.2
ResNet50-II [30] 90.7 97.6 92.7 - - 92.3
ResNet50-III [30] 95.8 70.4 98.8 - - 96.1
ResNet50-IV [30] 91.1 69.7 95.4 - 93.5
ResNet-50-DS1 [25] 93.5 95.2 98.3 99.4 98.4 89
ResNet-152-DS1 [25] 96.9 97.9 98.7 99.5 99.1 97
ResNet-50-DS2 [25] 94.6 94.4 96.8 95.7 97.7 93
ResNet-152-DS2 [25] 99.4 98.2 99.9 99.8 99.9 98
ResNet-50-DS3 [25] 92.4 93.7 95.2 94.8 95.8 93
ResNet-152-DS3 [25] 97.8 98.4 99.2 99.6 99.5 94
ResNet-50-DS4 [25] 93.8 93.2 96.9 95.7 94.6 96
ResNet-152-DS4 [25] 99.1 98.4 99.5 99.9 99.8 97
ResNet34 [10] 90.8 93.1 - 93.7 92.6 -
InceptionResNet [20] 97.3 96.1 - 94.2 94.5 96.1
RNN+ResNet152V2 (Prop1) 97.3 96.7 95.9 96.7 96.7 97.4
GRU+ResNet152V2 (Prop2) 98.3 97.9 98.1 98.3 98.3 99
Bi-GRU+ResNet152V2 (Prop3) 99.8 98.1 98.6 99.8 99.8 99.4
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Figure 11. Comparison between our proposed RNN Diabetic framework (the three models) and the previous
studies in terms of accuracy, sensitivity, and specificity

We found that combining RNN with residual networks in identifying diabetic eye diseases correlates
with increasing the performance metrics. The proposed Bi-GRU+ResNet152V2 model in this study tended to
have an inordinately higher proportion of accuracy equal to 99.8%, 98.1% sensitivity, 98.6% specificity, 99.8%
precision, 99.8% F1-score, and 99.8% AUC.

Figure 12. Comparison between our proposed RNN Diabetic framework (the three models) and the previous
studies in terms of precision, F1-score, and AUC
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5. CONCLUSION AND FUTURE WORK
A multi-classification DL model called the RNN Diabetic framework was created and tested in this

study to find DR, DME, glaucoma, and cataracts in fundus images. The main goal of this research is to illustrate
the influence of combining RNNs with rsidual networks in identifying diabetic eye diseases. Early diagnosis
helps guide treatment for many disorders. Fundus images are difficult to discern, and even competent oph-
thalmologists can misdiagnose eye lesions. This study gave three model architectures: RNN+ResNet152V2,
GRU+ResNet152V2, and Bi-GRU+ResNet152V2. Although most previous research focused on classifying
and developing a single fundus disease, the focus was on multi-classifying four diabetes eye diseases and
explaining how RNNs and ResNet can identify diabetic eye diseases. This study examined the technique’s
real-world robustness and flexibility using many datasets. The proposed model was assessed by its accuracies,
sensitivities, specificities, precisions, F1-scores, and AUC. With an accuracy of 99.8 percent, our proposed Bi-
GRU+ResNet152V2 model significantly outperforms all the existing models, as shown by our comparison with
previous studies. Recent observations suggest that the Bi-GRU+ResNet152V2 model worked better than the
other two proposed models. In addition, we compare these three proposed models with the previous studies and
find that the proposed Bi-GRU+ResNet152V2 model achieves the highest results with accuracy equal to 99.8%,
98.1% sensitivity, 98.6% specificity, 99.8% precision, 99.8% F1-score, and 99.8% AUC. To improve clinical
acceptance of DL models, future research should focus on deep neural network features and visualization.
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