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 In this paper, an improved local based stereo vision disparity map (SVDM) 

algorithm is proposed. The proposed local based SVDM algorithm include 

four stages and they are matching cost computation, cost aggregation 

disparity optimization and disparity refinement. The matching cost 

computation started by combining pixel to pixel matching techniques, which 

are absolute difference (AD) and gradient matching (GM) in producing the 

initial disparity map. Next, the cost aggregation uses minimum spanning tree 

(MST) segmentation, which equipped with edge preserving properties and 

noise filtering. Then, disparity optimization uses local approach with 

winner-take-all (WTA) technique. At the final stage, disparity refinement 

uses bilateral filter (BF) with weighted median (WM), which can improve 

the disparity map through noise removing and edges preserving. Then, the 

research continues to optimize the proposed local based SVDM algorithm 

through parameters optimization in obtaining the final disparity map.  

Here, multiple parameters from the proposed SVDM algorithm are 

manipulated and they are constant values for GM and several constant 

parameters in BF. By selecting the optimum parameter values, the 

performance of the proposed SVDM algorithm increased, especially 

robustness towards the horizontal streaks. 
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1. INTRODUCTION 

The proposed local based stereo vision disparity map (SVDM) algorithm is organized into four 

stages which are matching cost computation, cost aggregation, disparity optimization and disparity 

refinement. At matching cost computation, pixel to pixel matching such as absolute difference (AD), squared 

difference (SD) and gradient matching (GM) are computational simple and fast and, but the disparity maps 

often highly unfavourable. To increase the robustness of matching techniques, many researchers have 

proposed on the blending of multiple matching techniques such as in [1], combines speeded up robust 

features (SURF) feature matching and census transform. Budiharto et al. [2] also proposed matching 

technique that combined weighted census transform (CT) and weighted sum of absolute difference (SAD). 

Finally, Winarno et al. [3] also proposed matching technique that combine rank transform (RT) and sum of 

squared difference (SSD). In this research, AD and GM techniques are combined to produce the initial 

disparity map. Here, the stereo image pairs (left image and right image) corresponded with each other and 
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produce the initial disparity map. During the matching phase, two pixel-based matching techniques undergo 

the corresponding process respectively. Then, their respective matching cost volumes combine to form a new 

initial disparity map. Next, cost aggregation uses minimum spanning tree (MST) segmentation. Cost 

aggregation is often curial as the initial cost of a support region is aggregated to produce disparity map with 

better accuracy. The initial disparity maps from matching process are often full of noise. In order to produce 

accurate disparity map for cost aggregation technique, comparative study from [4] reveals that adding 

support weight (weight) on the support region (support window) for cost aggregation technique produced 

good disparity map. Besides that, edge-preserving techniques also produce good disparity maps, such as 

bilateral filter (BF), a technique that smooth image and preserving the edges but often cause blurring to the 

image. Vedamurthy et al. [5] reveals that this technique can be traced back to the work of [6] on nonlinear 

gaussian filter. It was later rediscovered by [7] for the SUSAN framework and later reintroduces as BF. 

Another edge preserving technique that performed well is guided filter, introduced by Yang [8]. They 

proposed a new image filter that has edge preserving and smoothing properties like BF, yet avoid gradient 

reversal artefacts. The article also shows that guided filter is both effective and efficient in noise reduction, 

detail smoothing, HDR compression, image feathering, haze removal and joint sampling [9]. The edge 

preserving properties had play an important role in producing good disparity map and hence, the interest 

towards segmentation technique which also provide edge preserving properties [10]. 

The segmentation technique applied in the proposed SVDM algorithm is MST segmentation. 

Segmentation technique work by separating or categorizing the disparity map is into many regions.  

The construction of MST algorithm for this research is based on the implementation of [11]. Here, for the 

proposed SVDM algorithm, only MST clustering method or forest clustering was use during the aggregation 

of the disparity map. Disparity optimization normalized the function by selecting a disparity level and there 

are three approaches, such as local based, global based and semi global approach. Global based algorithm 

defines global energy function using technique such as dynamic programming (DP) [12], scanline 

optimization (SO) [13], simulated annealing (SA) [14] and graph cut (GC) [15]. Although global approach 

often skips cost aggregation, but complexity of the algorithm is the reason it remains unpopular at that time. 

Then, semi-global based algorithm combines both local based technique and global based technique, 

implemented by Hirschmüller et al. [16]. For the proposed SVDM algorithm, winner-take-all (WTA) 

technique is applied on the framework, making this SVDM algorithm local based. The objective of this stage 

is to standardize or normalize the disparity values. By using the WTA approach, the algorithm will assign 

minimum disparity value to each pixel of the disparity map locations [17]. Disparity refinement helps to 

refine the final disparity map thorough peaks removing, consistency checking, interpolating, and increasing 

accuracy [18]. Here, refinement stage started with post-processing, which includes left-right (LR) 

consistency checking process and gap filling-in. These processes are exclusively for invalid pixel detection 

on the occlusion region or due to mismatched process. First, the mismatched invalid pixels are identified 

using LR consistency checking process. Then, gap filling-in is applied to replace the mismatched invalid 

pixel with a valid minimum pixel value. After post processing stage is completed, the SVDM algorithm 

continues with disparity refinement stage, where BF with weighted median (MW) is applied to reduce the 

noise in the disparity maps. The refinement stage starts with an edge preserving filter namely the BF and 

followed by histogram equalization and finally the WM filter. The gaps of experimentations do not end here, 

the proposed SVDM algorithm still can be improved thru parameters optimization process. This process 

manipulates all parameters used in the proposed SVDM algorithm through optimizing their values. At each 

change, the quantitative results; average nonocc (avg nonocc) error and average all (avg all) error are 

obtained by uploading the disparity map results thru the Middlebury Stereo database. This database is a 

standard online benchmarking dataset which have been used widely by the researchers. 

 

 

2. METHOD 

2.1.  Matching cost computation 

The matching cost computation combines two pixel-based matching techniques, AD+GM. First,  

the matching process starts with AD, proposed by [19]. AD technique is introduced in (1), 

 

𝐴𝐷(𝑥, y, 𝑑) = |(𝐼𝑙(𝑥, 𝑦) − 𝐼𝑟(𝑥 − 𝑑, 𝑦)| (1) 

 

where (𝑥, 𝑦) represents the coordinates for pixel of interest and d represents disparity value. Next, 𝐼𝑙  

represents left image and 𝐼𝑟  represents right image. Then, AD matching is enhanced by adding a threshold 

which resulting to truncate the AD, 𝑡𝐴𝐷(𝑥, 𝑦, 𝑑) implemented [19]. 𝑡𝐴𝐷(𝑥, 𝑦, 𝑑) 𝑖𝑠 introduced in (2), 
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𝑡𝐴𝐷(𝑥, 𝑦, 𝑑) = {
𝜏𝐴𝐷     , 𝑖𝑓 𝐴𝐷(𝑥, 𝑦, 𝑑)  > 𝜏𝐴𝐷

 𝐴𝐷(𝑥, 𝑦, 𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

where 𝜏𝐴𝐷 represents the threshold value for AD, often for removing the outlier peak value. The second 

pixel-based matching technique is GM, proposed by [20]. GM matching works by extracting gradient value 

form the pixel of input images (let image and right image). The gradient value of  horizontal direction, 𝐺𝑥 is 

introduced at (3) and the gradient value of vertical direction, 𝐺𝑦 is introduced in (4), 

 

𝐺𝑥 = [1 0 −1] ∗ 𝐼  (3) 

 

𝐺𝑦 = [
1
0

−1 
] ∗ 𝐼  (4) 

 

where the I represents the targeted image and * represents the convolution operation. The gradient values 

from 𝐺𝑥 and 𝐺𝑦 enable the formation of gradient magnitude, 𝑚 and is introduced in (5). 

 

𝑚 = √𝐺𝑥
2 +  𝐺𝑦

2 (5) 

 

Continued from (5), a modulus operation is implemented on the gradient. The gradient displacement 

of x-direction and the static position of y-direction resulted to GM, GM (𝑥, 𝑦, 𝑑) and is introduced in (6), 

 

𝐺𝑀(𝑥, 𝑦, 𝑑) = |𝑚𝑙(𝑥, 𝑦) − 𝑚𝑟(𝑥 − 𝑑, 𝑦)| (6) 

 

where (𝑥, 𝑦) represents the coordinates of pixel of interest, d represents disparity value, 𝑚𝑙 represents 

gradient value for left image and 𝑚𝑟 represents the gradient value for right image. Then GM matching is also 

enhanced by adding a threshold resulting to truncated GM, 𝑔𝐺𝑀(𝑥, 𝑦, 𝑑) and introduced in (7), 

 

𝑔𝐺M(𝑥, 𝑦, 𝑑) = {
𝜏𝐺𝑀        , 𝑖𝑓 𝐺𝑀 > 𝜏𝐺𝑀

𝐺𝑀      , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

 

where 𝜏𝐺𝑀 represents the threshold value, aiding in peaks removing. The combination for 𝑡𝐴𝐷(𝑥, 𝑦, 𝑑) and 

𝐺M(𝑥, 𝑦, 𝑑) , resulted to final form of matching cost function, 𝑀𝐶𝐶(𝑝, 𝑑) and introduce in (8), 

 

𝑀𝐶𝐶(𝑝, 𝑑) = t𝐴D(𝑝, 𝑑) + 𝛼 [𝑔𝐺M(𝑝, 𝑑)] (8) 

 

where p represents (𝑥, 𝑦); the coordinates for pixel of interest and 𝛼 represents the constant value which is 

sensitivity manipulator for illumination differences.  

 

2.2.  Cost aggregation 

The cost aggregation of SVDM algorithm uses MST segmentation, contributed by [21] and well-

known for its edge preserving properties. MST and color image segmentation framework is presented as 

following, 

i) Spanning tree, a non-orientation graph of object has an equation of 𝐺 = [𝑉, 𝐸], where V represents a set 

of vertices that corresponds to the data set, E represents edge that link to the vertices, and  

𝑒𝑚 = (𝑥𝑖  , 𝑥𝑗) represents each edge that connects to a pair of vertices. The MST, G is introduced in (9). 

 

𝑀𝑆𝑇 = (𝐴, 𝑇)|𝐴 = 𝑉, 𝑇 =  {𝑒1, … 𝑒𝑛−1} (9) 

𝑚(𝑀𝑆𝑇) = 𝑚𝑖𝑛{𝑚(𝑡𝑟𝑒𝑒)|𝑡𝑟𝑒𝑒 = (𝑉, 𝑇′)}  

 

ii) By adding dy, a cut-off point, edges where weights are greater than the cut-off point are eliminated from 

MST, forming the forest, F of V and is introduced in (10). 

 

𝐹 = {(𝑉, 𝐸′)|𝐸′ = 𝑇 − {𝑒′|𝑚(𝑒′) > 𝑑𝑦}} (10) 

 

iii) The accumulation for all the trees into F is presented in (11). 
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{(𝑉𝑖  , 𝑇𝑖)|𝑖 = 1,2, … 𝑚}, 𝐹 = ⋃ (𝑉𝑖  , 𝑇𝑖)𝑚
𝑖=1  (11) 

 

where, ⋃ 𝑉𝑖 = 𝑉, ⋃ 𝑇𝑖 = 𝐸′𝑚
𝑖=1

𝑚
𝑖=1  

iv) Each (𝑉𝑖  , 𝑇𝑖) could be assume as a cluster 𝐶𝑖 = 𝑋𝑖 , where 𝑇𝑖 = ⋃ (𝑒𝑘′|𝑒′ < 𝑑𝑦𝑘 ) 

The function of matching cost computation, M𝐶𝐶(𝑝, 𝑑), from matching process will represents the 

set of vertices that corresponds to the data set for spanning tree equation, 𝐺 = [𝑉, 𝐸]. By replacing 

M𝐶𝐶(𝑥, 𝑦, 𝑑) into V, in (12) is introduced.  

 

𝐺 = [𝑀𝐶𝐶(𝑝, 𝑑) , 𝐸] (12) 

 

The spanning tree equation represents the cost aggregation process, hence the cost aggregation equation, 

𝐶𝐴(𝑝, 𝑑) is introduced as (13). 

 

𝐶𝐴(𝑝, 𝑑) = [𝑀𝐶𝐶(𝑝, 𝑑) , 𝐸] (13) 

 

2.3.  Disparity optimization 

The disparity optimization applied the local approach; hence, WTA technique is used. By using 

WTA, implemented by [22], [23], each pixel at disparity map are normalized through minimum disparity 

value. WTA is presented in (14): 

 

𝑑(𝑝, 𝑑) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑑∈𝐷𝐶𝐴(𝑝, 𝑑) (14) 

 

where 𝑑(𝑝) represents disparity value at the coordinate of (𝑥, 𝑦), 𝐷 represents range of disparity on an image 

and 𝐶𝐴(𝑝, 𝑑) represents data obtain from previous stage, cost aggregation for this research. 

 

2.4.  Disparity refinement 

The disparity refinement stage uses BF with WM. There are two processes; post-processing and 

disparity refinement. In general, post processing, implemented by [24] and [25], involves left right (LR) 

consistency checking and gap filling-in. LR checking works by detecting outliner, where the procedure 

begins from left reference disparity map image that coincides with the right reference of disparity map. The 

mismatched values among the two images are declared as invalid pixel. LR checking is introduced in (15). 

 

|𝑑𝐿𝑅(𝑝) − 𝑑𝑅𝐿(𝑝 − 𝑑𝐿𝑅(𝑝))| ≤ 𝜏𝐿𝑅 (15) 

 

where, 𝑑𝐿𝑅(𝑝) represents disparity map with the coordinate of left reference and 𝑑𝑅𝐿(𝑝 − 𝑑𝐿𝑅(𝑝)) represents 

disparity map with the coordinate of right reference. Then, 𝜏𝐿𝑅 represents the cut-off point for 𝑑𝐿𝑅(𝑝).  

The filling-in process interpolated the gaps which contains the invalid pixels with mismatched disparity 

value. Then, the gaps are identified and replaced with the nearest valid disparity value. Furthermore, the valid 

value is set to be position at the same scanning line. The gap filling-in process is introduced in (16), 

 

𝑑(𝑝) = {
𝑑(𝑝 − 𝑖), 𝑑(𝑝 − 𝑖) ≤ 𝑑(𝑝 + 𝑗),

𝑑(𝑝 + 𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16) 

 

where d(p) is disparity value of coordinate p. Next, (𝑝 − 𝑖) is the position of the first valid disparity on the 

left side and (𝑝 + 𝑗) is the coordinate of the first valid disparity on the right side. After post-processing, 

disparity refinement begins with BF. This is often done to remove remaining noises lingering in the disparity 

map., BF (p, q) proposed by [26] is introduced in (17),  

 

𝐵𝐹(𝑝, 𝑞) = 𝑒𝑥𝑝 (−
|𝑝−𝑞|2

𝜎𝑠
2 ) 𝑒𝑥𝑝 (−

|𝑑(𝑝)−𝑑(𝑞)|2

𝜎𝑐
2 ) (17) 

 

where (𝑝, 𝑞) represents the coordinate for target pixel and neighbouring pixels. Next, |p − q| represents 

spatial Euclidean and |d(p) − d(q)|2 represents Euclidean [27]. Then, 𝜎𝑠
2 represents spatial distance and 𝜎𝑐

2 

represents colour similarity. BF also consist of edge preserving properties and this enable further improve on the 

disparity map. The 𝐵𝐹(𝑝, 𝑞) is then transformed into histogram equalization, ℎ(𝑝, 𝑑𝑟 ) and introduced in (18), 

 

ℎ(𝑝, 𝑑𝑟 ) = ∑ 𝐵𝐹(𝑝, 𝑞) 
𝑞𝜖𝑤𝑝|𝑑(𝑞)==𝑑𝑟

 (18) 
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where 𝑑𝑟  represents disparity range and 𝑤𝑝 represents window size with the radius (r × r) at centred pixel of p. 

WM is then implemented for further improvement, proposed by [28]. The final equation for disparity map, 

are WM towards histogram equalization, ℎ(𝑝, 𝑑𝑟) and is introduced in (19).  

 

𝑊𝑀 = 𝑚𝑒𝑑{𝑑|ℎ(𝑝, 𝑑𝑟)} (19) 

 

 

3. RESULTS AND DISCUSSION  

The proposed SVDM algorithm is optimized through manipulating 4 parameters and they are 

𝛼, 𝜎𝑠, 𝜎𝑐  𝑎𝑛𝑑 𝑤𝑝. Table 1 presents the manipulated parameters and their respective equation. At each 

increment or decrement, the final disparity maps are uploaded to Middlebury stereo evaluation system with 

quantitative results; average nonocc (avg nonocc) error and average all (avg all) error. 

 

 

Table 1. Parameters for manipulation in optimizing proposed SVDM algorithm 
Algorithm stage Equation for parameter manipulation Parameters 

Stage 1 Combined matching cost; 𝐶𝑀(𝑝, 𝑑): 

𝑀𝐶𝐶(𝑝, 𝑑) = t𝐴D(𝑝, 𝑑) + 𝛼 [𝑔𝐺M(𝑝, 𝑑)] 
 

𝛼 

Stage 4 Bilateral filter; 𝐵(𝑝, 𝑞): 

𝐵𝐹(𝑝, 𝑞) = 𝑒𝑥𝑝 (−
|𝑝 − 𝑞|2

𝜎𝑠
2

) 𝑒𝑥𝑝 (−
|𝑑(𝑝) − 𝑑(𝑞)|2

𝜎𝑐
2

) 

Histogram equalization; ℎ(𝑝, 𝑑𝑟 ): 

ℎ(𝑝, 𝑑𝑟 ) = ∑ 𝐵𝐹(𝑝, 𝑞)

 

𝑞𝜖𝑤𝑝|𝑑(𝑞)==𝑑𝑟

 

 

𝜎𝑠, 𝜎𝑐  

 

 

𝑤𝑝 

 

 

3.1.  Parameter optimization for 𝜶  

This subsection indicates the impact of varying the α parameter on the results. Building upon the 

previous value, the α value is increased by 0.1 until it reaches at 11.00. Table 2 displays the results, 

indicating that an α value of 10.7at E8 resulted in the highest accuracy. This was accompanied by an average 

nonocc error of 9.46% and an average all error of 12.8%. 

 

 

Table 2. Avg nonocc error and avg all error for further parameter manipulation of 𝛼 
Error (%) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

𝜶 10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90 11.00 

Avg nonocc 9.53 9.49 9.47 9.48 9.49 9.48 9.47 9.46 9.46 9.47 9.46 
Avg all 13.00 12.90 12.90 12.90 12.90 12.90 12.90 12.80 12.90 12.90 12.90 

 

 

3.2.  Parameter optimization for 𝜎𝑠 

Picking up from previous value, 𝜎𝑠 at 16.0 is further manipulated through continuous decrement of 

0.01 until 𝜎𝑠 reaches 15.0. Tabulated results at Table 3 shows 𝜎𝑠 valued at 15.8, that is the first to achieve the 

highest accuracy, when comparing to 𝜎𝑠 at 15.9 and 16.0. The avg nonocc error is 7.65% and the avg all error 

is 10.9%. 

 

 

Table 3. Avg nonocc error and avg all error for further parameter manipulation of 𝜎𝑠 
Error (%) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

𝝈𝒔 15.00 15.10 15.20 15.30 15.40 15.50 15.60 15.70 15.80 15.90 16.00 

Avg nonocc  7.68 7.67 7.67 7.67 7.67 7.67 7.66 7.66 7.65 7.65 7.65 
Avg all  10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 

 

 

3.3.  Parameter optimization for 𝜎𝑐 

This subsection specifies the 𝜎𝑐 values which starts with 0.170 at E1. Table 4 presents the values of 

𝜎𝑐 at different levels with 0.001 increment. Among these values (i.e., specifically 0.175, 0.176, 0.177, 0.178, 

and 0.179), 0.175 is the first to achieve the highest accuracy. The average nonocc error is reported to be 

7.61%, while the average all error is 10.8% at E6. 
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Table 4. Avg nonocc error and avg all error for further parameter manipulation of 𝜎𝑐 
Error (%) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

𝝈𝒄 0.170 0.171 0.172 0.173 0.174 0.175 0.176 0.177 0.178 0.179 0.180 

Avg nonocc  7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 7.61 
Avg all  10.9 10.9 10.9 10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.9 

 

 

3.4.  Parameter optimization for 𝒘𝒑 

The experiment first started by setting 𝑤𝑝 at 11×11 until 39×39, resulting to several samples of data. 

Based on Table 5, 𝑤𝑝 at 1×1 has the highest error, where avg nonocc error is 8.97% and avg all error is 

12.3%. However, by selecting the optimum size for 𝑤𝑝 is slightly different, due to the differences in 

assumption when obtaining the highest accuracy for avg nonocc error and avg all error. For avg nonocc error, 

𝑤𝑝 at 21×21 attained the highest accuracy, 7.53%, but for avg all error, there are multiple options, such as 𝑤𝑝 

at 31×31, 33×33, 37×37, and 39×39. All attained the highest accuracy of 10.6%. Here comes the conflict, as 

the best results for avg nonocc error and avg all error does not tally with each other. Therefore, 𝑤𝑝 at 31×31 

is selected, for first attaining the highest accuracy for avg all error, valued at 7.58% and avg nonocc error at 

7.58%. Then, through Middlebury stereo dataset, Table 6 presents quantitative results, which include the 

nonocc error and all error for the final disparity maps. Furthermore, the avg nonocc error is 7.58% and avg all 

errors 10.6%. 
 

 

Table 5. Avg nonocc error and avg all error for parameter manipulation of 𝑤𝑝 

 

 

Table 6. The nonocc error and all error comparison 

 

 

3.5.  Parameter optimization reduces horizontal streaks 

In stereo matching, common limitations and challenges are the matching on low texture regions, 

repetitive regions, depth discontinuity, illumination difference and occlusion. However, in this article, one of 

the unique challenges encountered, especially pre-optimization process is horizontal streaking problem. 

Figure 1 provides some samples for parameters optimization process. Out of 15 samples from the Middlebury 

Stereo, only three set of results regarding the parameter optimization process are included here, and they are 

from Adirondack, MotorcycleE, and Recycle. The parameter values are optimized values, acquired from the 

finding of parameter optimization process. The qualitative results (disparity maps) and quantitative results 

(all errors) are also presented in Figure 1. The pre-optimization process, where 𝛼 at 1.0, 𝜎𝑠 at 1.0,  𝜎𝑐 at 0.10 

and 𝑤𝑝 at 11×11, shows that the disparity maps are heavily affected by horizontal streaks. The all errors are 

19.3%, 38.1%, and 6.51 % respectively for Adirondack, MotorcycleE, and Recycle. However, by 

manipulating the constant, 𝛼 for GM, from 1.0 to 10.7, there are vivid improvements on the results. The three 

disparity maps (Adirondack, MotorcycleE, and Recycle) show massive reduction on horizontal streaks and in 

correspond, all error is also reduced. The respective all errors are 12.8%, 13.5%, and 5.69% for Adirondack, 

MotorcycleE, and Recycle. Here, quantitatively, MotorcycleE experience the biggest improvement, from 

38.1% to 13.5%, drastically reduced to 24.6%. The parameters optimizing process then continued by 

manipulating the parameter or elements of BF. The first element, 𝜎𝑠 is referring to spatial distance for BF is 

manipulated from 1.0 to 15.8 and there is improvement on the results. Three disparity maps show nearly 

reduction of horizontal streaks and leaving behind salts and peppers of invalid pixels. For upcoming 

development, the vertical streaks which is also accured in disparity map could be resolved if parameter 

optimization process is utilized. 

 

 

𝒘𝒑 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

Avg 

nonocc  

8.97 8.26 7.97 7.81 7.70 7.61 7.59 7.56 7.55 7.56 7.53 7.54 7.54 7.55 7.57 7.58 7.58 7.61 7.61 7.60 

All  12.3 11.5 11.2 11.1 11.0 10.8 10.8 10.8 10.8 10.9 10.7 10.7 10.7 10.7 10.7 10.6 10.6 10.7 10.6 10.6 

Error 

(%) 

Weight 

avg 

Adiron ArtL Jadepl Motor MotorE Piano PianoL Pipes Playrm Playt PlaytP Recyc Shelvs Teddy Vintge 

Nonocc 7.58 4.88 6.81 15.3 4.24 7.42 5.82 12.7 7.26 8.12 17.1 4.12 4.43 11.0 3.38 13.4 
All 10.6 5.92 12.4 30.2 6.52 9.24 6.44 13.0 12.2 13.2 19.5 4.94 4.66 11.2 4.79 14.3 

Nonocc 

[24] 

11.3 18.3 7.45 15.7 3.48 29.1 6.51 38.4 5.37 12.8 13.5 3.24 3.44 15.1 3.00 11.1 

All [24] 18.9 21.1 17.8 38.7 11.0 36.4 11.6 40.0 13.6 25.4 20.0 8.74 5.97 17.6 10.7 18.3 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 35, No. 3, September 2024: 1886-1894 

1892 

 
 

Figure 1. Results of improvement for parameter optimization 

 

 

In addition, all errors also reduce to 6.31%, 9.54%, and 4.98% respectively among the three 

disparity maps. Next, the second element 𝜎𝑐, referring to colour similarity for BF is manipulated from 0.10 to 

0.175. Here there are minor improvement. For three disparity maps, there are minor reduction on invalid 

pixels and validated by the minor reduction in all errors. The respectively all errors are 6.21%, 9.44%, and 

4.97% among the three disparity maps. Lastly, the third element 𝑤𝑝, referring to window size for BF is 

manipulated from 11×11 to 31×31. Here there are also minor improvement with 5.92%, 9.24%, and 4.66% 

for three disparity maps respectively. Hence, the parameter optimization process improved the accuracy of 

the proposed SVDM algorithm. In addition, in this experiment, especially the parameter optimization process 

for 𝛼 and 𝜎𝑠 (constant for GM and spatial distance for BF), contribute greatly to reducing horizontal streaks. 

 

 

4. CONCLUSION 

Based on this study, the parameter optimization process is capable to improve the disparity map 

quality. The horizontal streak or noise on the disparity maps are reduced and the quantitative measurement 

demonstrate the increment of accuracy. Hence, this process is very important which proper selection of a 

constant parameter in every framework stage could produce results that are more accurate. This is proved by 

experimental analysis on matching cost computation and disparity refinement stage with four different 

constant parameter selections. Referring to the experimental results, the Adirondack, Motorcycle, and 

Recycle images show improvement on the horizontal streak from an early stage of parameter settings until at 

the final results. For example, the improvement of Motorcyle image almost 28% of noise reduction.  

It expresses the parameter optimization process that is significant to determine the best results. 
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