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 Smart medical devices and the internet of things (IoT) have enhanced 

healthcare systems by allowing remote monitoring of patient's health. 

Because of the unexpected increase in the number of diabetes patients, it is 

critical to regularly evaluate patients' health conditions before any significant 

illness occurs. As a result of transmitting a large volume of sensitive medical 

data, dealing with IoT data security issues remains a difficult challenge. This 

paper presents a secure remote diabetes monitoring (SR-DM) model that 

uses hybrid encryption, combining the advanced encryption standard and 

elliptic curve cryptography (AES-ECC), to ensure the patients' sensitive data 

is protected in IoT platforms based on the cloud. The health statuses of 

patients are determined in this model by predicting critical situations using 

machine learning (ML) algorithms for analyzing medical data sensed by 

smart health IoT devices. The results reveal that the AES-ECC approach has 

a significant influence on cloud-based IoT systems and the random forest 

(RF) classification method outperforms with a high accuracy of 91.4%. As a 

consequence of the outcomes obtained, the proposed model effectively 

establishes a secure and efficient system for remote health monitoring. 
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1. INTRODUCTION 

Diabetes is a rapidly rising metabolic illness that is also one of the main causes of mortality 

globally. When pancreatic cells fail to generate sufficient insulin, blood sugar levels rise, wreaking havoc on 

most notably the eyes, a variety of organs, nerves, heart, and kidneys [1]. According to research conducted by 

Fitzmaurice et al. [2], the global prevalence of diabetes in 2017 was approximately 8.8%, and it is projected 

to increase to 9.9% by 2045. Furthermore, a recent study reveals the significant impact of diabetes, affecting 

approximately half a billion people worldwide, and estimates suggest that this number will rise by 25.0% to 

51.0% between the years 2030 and 2045 [3]. 

Although there is no long-term treatment available for diabetes, it may be managed and controlled in 

case of early diagnosis. In such scenarios, the utilization of computer-aided technologies plays a crucial and 

beneficial role by facilitating precise medical decisions, thereby recommending timely and early essential 

treatments [4]. As a result, machine learning (ML) based developments make automated diabetes detection 

and diagnosis more likely and successful than the old way of manually diagnosing diabetes. Healthcare 

providers can use these predictions to tailor interventions, recommend lifestyle changes, and initiate early 

treatment strategies [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The advancement of the internet of things (IoT) and sensor technologies connected to medical 

wearable devices in recent years has improved patient care efficiency via intelligent and remote systems for 

health monitoring [6]. The integration of IoT with the cloud provides several resource management 

advantages, including powerful processing, resource distribution, facilitating user mobility in monitoring 

systems, and minimizing data fragmentation across multiple databases [7]. Current remote monitoring for 

healthcare systems in a cloud-based IoT environment comprises a setting in which biological data from 

patients is sent, stored, and shared to collect insights from anywhere and at any time [8]. While transferring 

medical data across IoT and storing it in the cloud, security and privacy issues have become critical concerns 

in these approaches. In general, health data are particularly sensitive to changes, and any changes in their 

contents might lead to mistakes in medical diagnosis [9]. 

Data security approaches such as cryptographic techniques are employed to encrypt data before its 

storage in the cloud, ensuring that even the cloud service provider is unable to access the data [10]. 

Cryptography could be used to ensure the integrity, confidentiality, and availability of data stored or accessed 

via the cloud. It converts plain data into encrypted or unreadable form for undesired users. Cryptographic 

methods involving encryption and decryption using keys. Two main encryption mechanisms are symmetric and 

asymmetric key encryption. In asymmetric encryption a public key is used for encryption and a private key is 

used for decryption, while in asymmetric encryption a single private key is used for both operations [11]. 

Hybrid cryptography refers to the combination of two or more cryptographic techniques to improve 

security that combines the strengths of both symmetric-key and asymmetric-key encryption schemes to 

address the limitations of each individual [12]. This study foresees the early stages of a diabetic patient using 

a strategy that does not need invasive procedures and uses ML approaches via a comprehensive secure 

remote diabetes monitoring (SR-DM) system that leverages both IoT and cloud technologies. This paper's 

primary contributions are as follows points: 

− Propose an innovative hybrid cryptography approach that combines advanced encryption standard with 

elliptic curve cryptography (AES-ECC) to bolster the security of healthcare data during its transmission 

via cloud storage. 

− Outline a methodology for disease prediction that employs various ML techniques and assesses the 

classification outcomes to detect diabetic mellitus at an early stage. 

− The proposed approach results demonstrate that our proposed technique outperforms existing diabetes 

prediction systems in terms of both security and privacy. 
 

 

2. RELATED WORK 

This section reviews current literature on cloud-based IoT environments for health monitoring and 

prediction systems for identifying the health state of patients. Several papers profit from the advantages of 

combining IoT and cloud technology. Rahman et al. [13] developed a system for remote collection and 

analysis of patient physiological data. The smartphone and wearable sensors running the created application 

are used to gather, analyze, and upload data to the cloud server. Hosseinzadeh et al. [14] presented a 

predictive diagnosis framework for chronic kidney disease utilizing multimedia data collected through a 

cloud-based IoT platform. Deepika et al. [15] proposed a disease classification model by combining image 

processing with a secure cloud computing environment and an extended zigzag image encryption system that 

is resistant to various data threats. 

Subashini et al. [16] implemented a smart system for the staging classification of cervical cancer 

images utilizing cloud platform and ML. It is created using real-time cervical images. Talib et al. [17] 

introduced smart records that are shared over the cloud. some sensors have been utilized to detect health data 

and then notify the person monitoring the patient's status via Telegram to the phone (e.g., oxygen percentage, 

heart rate, and body temperature). Kumar et al. [18] implemented an autonomic architecture for smart 

healthcare based on IoT and cloud platforms, which employed a random forest and logistic regression grid 

technique at edge nodes to analyze heart disease. Nigar et al. [19] introduced a hybrid strategy based on IoT 

and ML for monitoring and early detection of six major chronic diseases, including pneumonia, COVID-19, 

heart disease, diabetes, Alzheimer's, and brain tumor. 

Stergiou et al. [20] suggested model employs four essential developing technologies: IoT, wireless 

sensor networks, cloud, and ML to identify harmful forms of viruses that infect humans or animals, 

generating global fear and disrupting human daily life. Paganelli et al. [21] presented an architecture for 

remote COVID-19 patient monitoring. The architecture takes into account data collection from users at home 

as well as hospital wards. Sahu et al. [22] presented a vital sign monitoring system based on a 

microcontroller unit linked to multiple sensors. It collects data from them and sends it to a smartphone 

application. It can analyze data and generate warnings based on sensor values. Security concerns were 

addressed in [15], [20] but not in others. In comparison to the analyzed studies, this paper introduces a secure 
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approach in a cloud-based IoT platform using ML techniques for the early detection of diabetes, which 

employs a hybrid encryption approach and is a suitable solution for medical IoT resources, which has not 

been addressed in the studied publications. 

 

 

3. PROPOSED MODEL 

The suggested system's conceptual structure consists of the following phases. Initially, medical IoT 

devices receive biological data from patients. The medical datasets acquired are subsequently sent to the 

cloud subsystem via IoT and stored in a cloud database. To eliminate security issues, these medical data are 

encrypted before transmission. This encryption is done via a hybrid cryptography technique. Following 

encryption, the medical data will be sent to a cloud platform for disease diagnosis. The medical data 

diagnostic process employs suggested algorithms such as decision tree (DT), support vector machine (SVM), 

random forest (RF), k-nearest neighbors (KNN), and Naïve Bayes (NB). These algorithms classify the 

processed dataset into two categories: diabetic and non-diabetic. The cloud classification results are sent to 

doctors or specialists in the context of a person's health using IoT. Figure 1 depicts the suggested SR-DM 

paradigm in a cloud-based IoT context that takes advantage of a hybrid encryption mechanism. The 

combination of all of these problems is examined in this study when it comes to the progression of diabetic 

disease. As a result, the primary goal of this study is to provide a safe health monitoring model for early 

detection of diabetes based on anticipating the crucial patient's status. 

 

 

 
 

Figure 1. The proposed )SR-DM) model in a cloud-based IoT platform 

 

 

Step 1: the IoT sensor layer integrated into wearable devices gathers information from various 

medical sensors, location sensors, body sensors, and ambient sensors. Depending on the nature of the 

problem statement, wearable devices may include sensors for insulin levels, glucose, body temperature, 

electrocardiograms (ECG), blood pressure, blood oxygen levels, pulse rate, galvanic skin response, and 

electromyography.  Data from these sensors, along with modern data analytics and ML algorithms, can 

improve the accuracy and efficiency of diabetes prediction in IoT devices. Because health IoT sensor 

network devices are more sensitive to security threats than other network devices, an element is built to 

provide security requirements for IoT data. Before uploading the acquired sensitive data to the cloud, the 

obtained IoT data is encrypted using a hybrid manner. Step 2: the medical data of the patients is delivered to 

the cloud storage for diagnosis of the patient's health condition through the data transmission layer. This 

section must supply secret shares to transmit them to cloud servers as part of a distributed data storage 

framework. Step 3: whereas the cloud stores the medical data forwarded by medical IoT sensors to patients. 

This section also works with supplying and providing services to the associated users, which include 

healthcare professionals and doctors. These services can be integrated with predicting potential diseases 

using ML algorithms. Step 4: healthcare providers include physicians, hospitals, and emergency responders. 

Doctors can utilize the transmitted diagnosis results to review and validate them before making any medical 

suggestions to patients. 
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4. METHOD  

The operations outlined above are executed within our proposed model through the procedural flow 

depicted in Figure 1, the collection of sensor data from IoT medical devices and IoT device data occurs 

simultaneously. Subsequently, a hybrid encryption method is applied to the gathered medical data, followed 

by the secure transfer of medical data to communication service providers. The data is then transferred and 

stored in cloud repositories as distributed data storage. Sequentially, the process involves decrypting secured 

data, performing data preprocessing, and ultimately predicting the occurrence of disease. 

 

4.1.  Providing the security of data in the proposed model 

Due to security being a paramount concern in systems established in the IoT environment, sensitive 

patients' medical data is encrypted using performing in order to provide patient anonymity, confidentiality, 

and security needs. AES-ECC hybrid encryption combines the symmetric encryption strength of AES with 

the asymmetric encryption efficiency of ECC. It combines the speed and efficiency of ECC's small key size 

with the robust encryption capabilities of AES, resulting in improved performance and reduced key size for 

data protection in the cloud. ECC employs key standards to secure data with a smaller key size. When used 

alongside AES, it offers effective data protection. ECC determines the key size for generating ciphertext, 

which is then utilized by AES. The use of ECC for key exchange adds an extra layer of security and 

efficiency to the encryption process. The proposed AES-ECC provides secure health data sharing through the 

cloud environment by providing confidentiality, privacy, and integrity. 

The hybrid proposed approach depicted in Figure 2 provides a robust solution for securing IoT-to-

cloud communications by combining AES with ECC. The graphical representation highlights the proposed 

technique, showcasing secure data transfer from IoT devices to the cloud server, followed by secure storage 

of encrypted data. Moreover, the level of innovation can be evaluated based on factors such as computational 

time and cost. The proposed approach also demonstrates strong security measures in preventing attacks. For 

instance, if an attacker tries to access personal information from the user's side, the input file undergoes AES 

encryption, resulting in complete encryption. As a result, even if the attacker successfully acquires the user-

uploaded file, it becomes futile since the information was already encrypted during the upload process. 

Likewise, in the event of an attack, the encrypted file remains incomprehensible to the attacker, thereby 

ensuring the security of the data and protecting it against unauthorized access attempts. 

 

 

 
 

Figure 2. Representation of AES-ECC algorithm 

 

 

The procedures involved in encrypting data from IoT to cloud server using the suggested technique 

AES-ECC hybrid cryptography are as follows: 

− Generate asymmetric key pair (ECC). Start by generating an ECC key pair for each interacting entity, 

specifically the IoT device and cloud server. This pair consists of two keys: one public and one private. 

The public key is publicly shared, whilst the private key is safely stored by the corresponding entity. 

− IoT device initiates communication. When an IoT device wants to communicate with the cloud, it initiates 

the process by requesting the cloud server's ECC public key. This request is made through a secure 

channel to ensure the authenticity of the received public key. 

− Cloud server shares ECC public key. Cloud server responds to IoT device's request by sharing its ECC 

public key. IoT device receives this public key and uses it for the next steps in the encryption process. 

− Generate symmetric key (AES). IoT device generates a random symmetric key for use with AES 

encryption. This key is known as the session key and will be used exclusively for the current 

communication session. 
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− Encrypt data with AES. The actual data that needs to be transmitted from the IoT device to the cloud is 

encrypted using the AES algorithm and the symmetric session key generated in the previous step. AES is 

a symmetric encryption algorithm known for its efficiency and strength. 

− Encrypt the symmetric key with ECC public key. The IoT device then encrypts the symmetric session key 

using the ECC public key obtained from the cloud server. This step is performed using ECC asymmetric 

encryption, ensuring that only the cloud server, with its corresponding private key, can decrypt the 

session key. 

− Transmit encrypted symmetric key. IoT device transmits the encrypted symmetric session key to a cloud 

server. Even if intercepted during transmission, the encrypted symmetric key remains secure because only 

a cloud server can decrypt it using its private key. 

− Cloud server decrypts symmetric key. Upon receiving the encrypted symmetric session key, the cloud 

server uses its private key (ECC asymmetric decryption) to decrypt and obtain the symmetric session key. 

Now both IoT device and cloud server possess the same session key for symmetric encryption and 

decryption. 

− Decrypt data with AES. The cloud server uses the decrypted symmetric session key to decrypt and 

retrieve the original data.  
 

4.1.1. Algorithm for the proposed AES-ECC 

a. Generation of a public key using ECC 
Select an initial number (x). 

Choose another number (x(i)) to generate the public key, where x(i) is less than x. 

Determine a point on the curve, denoted as Q, where Q is greater than x. 

Calculate the public key (P) by multiplying x(i) with Q: P = x(i) × Q. 

After calculation, return the public key P. 

 

b. Data encryption and decryption by AES 
taking the input medical data. 

Add the public key produced by ECC to the input data. 

Encrypt the input data using AES encryption and the ECC-generated public key. 

Upload the encrypted data to the server after AES encryption. 

Upon downloading the data from the server, use the ECC-provided public key to decrypt and 

restore the original data. 

forward the decrypted medical data for storing in the cloud for authorized access. 

 

4.2.  The architecture of the proposed healthcare system's medical data classification module 

Based on their vital signs, ML methods are used to categorize patients as healthy or sick. The cloud 

layer delivers the patient a diagnostic and emergency warning message whenever the patient's health 

condition is diagnosed during classification. The proposed framework to develop the ML model for diabetes 

prediction is shown in Figure 3. It explains the method used to train or update the training model and predict 

the incidence/prevalence of diabetes. The following explains the workflow of the training/update training and 

prediction in detail. 
 
 

 
 

Figure 3. Framework of proposed health condition monitoring 
 

 

4.2.1. Dataset pre-processing  

The proposed algorithm's pre-processing stage includes outlier rejection (P), missing value imputing 

(Q), and feature selection. An outlier refers to an observation that deviates from the rest of the data points in a 

dataset [23]. Classification algorithms are impacted by the distribution of data; hence, data that deviates from 

the distribution must be excluded. To eliminate outliers, we employed the interquartile range (IQR) approach. 

The mathematical formula for outlier rejection is presented in (1). 
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𝑝(𝑥) = {
 𝑥 𝑖𝑓 𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 ≤ 𝑥 ≤ 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅

 𝑟𝑒𝑗𝑒𝑐𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (1) 

 

Where x signifies the dimension space M enrolled feature vector (FV) instances, such as x ∈ 𝑅𝑚. Knowing 

that Q1, Q3, and the IQR belong to 𝑅𝑚, Q1 denotes the initial quartile, Q3 indicates the third quartile, and 

the IQR is the band of interquartile of the utilized qualities. 

After removing outliers, the attributes were further processed to fill in any missing or null values [24]. 

The presence of missing or null values can impact the accuracy of predictions made by any classifier.  

In the proposed framework, instead of dropping the instances with missing values, imputation was performed 

using the mean values of the attributes, as indicated in (2). Replacement by mean is advantageous since it 

allows for the imputation of continuous data without adding outliers. 

 

𝑄(𝑎) = { 𝑚𝑒𝑎𝑛(𝑎) , 𝑖𝑓 𝑎 = 𝑛𝑢𝑙𝑙/𝑚𝑖𝑠𝑠𝑒𝑑
𝑎 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2) 

 

Where a is the number of occurrences of the feature vector in n-dimensional space, a ∈ 𝑅𝑚. 

Feature selection offers the advantage of improving correlation. As the dimension of the features 

increases, the accuracy of classifiers tends to improve as well. However, when the feature domain expands 

without a corresponding increase in the sample size, it becomes necessary to enhance the effectiveness of the 

classifiers to maintain their performance. Because of the curse of dimensionality, the feature space grows 

increasingly crowded, pushing classifiers to become overfitted and lose functional generalizability [25]. This 

literature used methods for the feature selection, namely the correlation-based technique. 

 

4.2.2. Machine learning classification models 

The classification process involves training the model on historical datasets containing labeled 

information about individuals with and without diabetes. The model learns patterns and trends from this data, 

allowing it to generalize and make predictions on new, unseen data [26]. The proposed framework 

incorporates the training and testing of multiple ML models, including KNN, NB, DT, RF, and SVM which 

are employed for their interpretability and effectiveness in capturing relationships between various risk 

factors. 

i) KNN classifies an individual based on the majority class among its k-nearest neighbors in the feature 

space. KNN can be applied to diabetes diagnosis by considering the similarity of an individual's health 

features to those of its nearest neighbors with known diabetes status. 

ii) NB is a probabilistic classifier that calculates the likelihood of a certain class given the observed features, 

assuming feature independence. NB can be used to estimate the probability of diabetes based on the 

observed health features, making it suitable for medical diagnosis. 

iii) DT is a tree-like model where each node represents a decision based on a feature. DTs can be used to 

create a decision-making structure for diabetes diagnosis, splitting the data based on relevant health 

features. 

iv) RF is an ensemble learning method that builds multiple decision trees and combines their predictions. RF 

can be employed for diabetes diagnosis by capturing complex relationships in health data and providing 

robust predictions. 

v) SVM constructs a hyperplane to maximize the margin between different classes in the feature space. 

SVM can be applied to diabetes diagnosis by finding an optimal hyperplane that separates individuals 

with and without diabetes, considering various health features. 

 

 

5. RESULTS AND DISCUSSION  

The essential goal of this study involves accurately categorizing the data based on its health status, 

effectively distinguishing between healthy samples and those indicating the presence of a disease, and 

considering the severity of the disease. Additionally, ensuring secure data transfer is of utmost importance. 

The implementation of this system is carried out using the Python programming language. The experiments 

conducted utilized the pima indian diabetes dataset (PIDD) to evaluate the proposed work based on several 

parameters, namely accuracy (Acc), sensitivity (Sn), precision (P), and area under the receiver operating 

characteristic curve (AUC-ROC). Furthermore, the security of the proposed system is assessed by analyzing 

encryption time and decryption time. Initially, a comparison is made between the security of the proposed 

system and the prevailing methodology. Various experiments employing diverse classification algorithms are 

conducted to classify instances of disease. The resulting experimental outcomes are also tested to evaluate the 

performance of the proposed technique. 
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5.1.  Dataset 

The PIDD was used as the primary dataset in this study, sourced from the University of California, 

Irvine (UCI) machine repository standard dataset. The PIDD consists of records from 768 female diabetic 

patients, encompassing 8 distinct features are pregnancies (C1), glucose (C2), blood pressure (C3), skin 

thickness (C4), insulin (C5), BMI (C6), diabetes pedigree function (C7), and age (C8)]. The dataset is 

divided into two groups for analysis: 500 normal individuals without diabetes (0) and is labeled (1) for 268 

diabetic patients. Figure 4 shows the population distribution of all features in the PIDD where blue denotes 

non-diabetes, and orange color denotes diabetes classification. 

 

 

 
 

Figure 4. The population distribution of all features in the PIDD 

 

 

5.2.  Evaluation of the performance of data security for the proposed system 

Encryption time refers to the duration it takes for the encryption process to complete, measured from 

the start to the end of the process. It represents the time required for the encryption algorithm to convert 

plaintext data into ciphertext. Decryption time is calculated by subtracting the start time from the end time of 

the decryption process. It indicates the time required to decrypt the ciphertext and recover the original 

plaintext. 

Figure 5 illustrates a graphical representation of the performance of the proposed AES-ECC 

algorithm compared to conventional encryption algorithms AES, ECC, and DES in terms of encryption time 

and decryption time. In the analysis, files ranging from 20 KB to 50 KB were evaluated. Figure 5(a) 

demonstrates the encryption time comparison between AES, ECC, and DES approaches. For a 20 KB file, 

the proposed AES-ECC took 0.23 seconds to encrypt, while the existing AES, ECC, and DES algorithms 

took 0.28 seconds, 0.33 seconds, and 0.31 seconds respectively for the same encryption task. Moreover, the 

proposed approach demonstrates superior performance for file sizes of 30 KB and 50 KB as well. Figure 5 (b), 

it can be observed that the proposed technique achieves a decryption time of 0.16 seconds for a file size of  

20 KB. In comparison, the existing methods demonstrate lower performance, requiring more time for 

decryption. For a 30 KB file size, the proposed technique demonstrates a decryption time of 0.27 seconds, 

which is faster than the current methodology. The overall analysis suggests that the proposed technique 

outperforms existing methods in terms of performance. 

 

 

  
(a) (b) 

 

Figure 5. Performance of the proposed AES-ECC (a) encryption time analysis (b) decryption time analysis 
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5.2.1. Comparisons of proposed hybrid approach AES-ECC with various algorithms 

Different algorithms are examined for functionality and space optimization in IoT-cloud platforms. 

Table 1 shows a comparison of several algorithms based on various parameters. Cryptographic algorithms 

have been compared for performance assessment based on the number of keys used, keys in bits, rounds, 

block size, and security. Hybrid encryption AES-ECC offers the advantage of merging the strengths of both 

symmetric and asymmetric encryptions. It combines the swiftness and effectiveness of symmetric encryption 

with the security and adaptability of asymmetric encryption. This approach excels at managing extensive data 

while maintaining security and performance. Additionally, it solves the key distribution challenge of 

symmetric encryption by securely exchanging the symmetric key through asymmetric encryption. 

 

 

Table 1. Cryptography algorithm comparison 
 DES AES RSA ECC Blowfish AES-ECC 

No. of key 1 1 2 2 1 1 
Key length 56 bits 128,192,256 bits 1,024 bits 160 bits 32 to 448 bits 64 to 256 bits 

Cipher type Symmetric Symmetric Asymmetric Asymmetric Symmetric 
Symmetric and 

asymmetric 

Rounds 16 

key:128 bits -10 

key:192 bits -12 

key:256 bits -14 

1 16 16 10 

Block size 64 bits 128 bits Min 512 bits 64 bits 64 bits 128 bits 

Security Not secure enough Adequately secured Least secure Adequately secured Least secure High secure 

 

 

5.3.  Performance analysis of classification module 

Different performance evaluation metrics were employed to evaluate classifier performance [27]. 

The confusion matrix is used to calculate these measures. The binary classification matrix is shown Figure 6. 

We calculated the following performance evaluation metrics from Figure 6 and illustrated them 

mathematically in (4) to (6).  

− Accuracy (Acc): measures the model's percentage of correct predictions. 

 

𝐴𝑐𝑐 =
 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

− Precision (P): measures the proportion of true positives among the instances predicted as positive by the 

model. 

 

=
 𝑇𝑁

𝑇𝑁+𝐹𝑃
 (5) 

 

− Sensitivity (Sn): measures the proportion of true positives among the positive instances. 

 

𝑆𝑛 =
 𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

 

− AUC-ROC: a graphical representation of the model's ability to distinguish between positive and negative 

instances across different thresholds. This assessment metric is commonly used to evaluate binary 

classification models. It measures the area under the ROC curve, which depicts the relationship between 

the true positive rate (TPR) and the false positive rate (FPR) at different classification thresholds. 

 

 

 
 

Figure 6. Confusion matrix 
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5.3.1. Confusion matrix  

The correlation-based confusion matrix as shown in Figure 7 represents the outcomes of outlier 

rejection and missing value imputation. Both qualitative and quantitative analyses of Figure 7(a) and Figure 7(b) 

indicate an enhancement in the correlation between attributes and the target outcome after the application of 

outlier rejection and missing value filling. Notably, the correlation coefficients for attributes C3, C4, and C5 

exhibit significant improvement. This improved correlation is advantageous for correlation-based feature 

selection techniques. 
 
 

  
(a) (b) 

 

Figure 7. The generated confusion matrix depicts the PIDD-based feature correlation 

(a) before data preprocessing and (b) after data preprocessing 
 

 

5.3.2. ROC curve 

The performance variation of the models can be observed in Figure 8, specifically focusing on the 

AUC metric. Figure 8(a) represents the models' performance without any pre-processing, while Figure 8(b) 

illustrates the models' performance with suitable pre-processing techniques applied. It is evident from  

Figure 8(b) that the RF model outperforms the DT, SVM, NB, and KNN models. The AUC values for the RF 

classifier on the test set demonstrate its robustness and effectiveness in utilizing this dataset. 
 

 

  
(a) (b) 

 

Figure 8. ROC curve of the classifiers (a) without data preprocessing and (b) proposed model 
 

 

5.3.3. Comparison of the proposed model for diabetes diagnosis with other works 

Various evaluation criteria are taken into account to analyze ensemble learners and ML models. 

This section of the research involves a comparison of the results obtained by previous authors in the context 

of diabetes classification. The study specifically compares the performance of ML models using the PIDD. 

The findings suggest that RF classifier for the proposed model achieves the highest Acc, P, Sn, and AUC 

values, reaching 91.40%, 89.70%, 85.40%, and 94.80%, respectively, surpassing other ML algorithms. 

Additionally, Table 2 provides a comparative analysis of the results obtained by previous researchers. 
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Table 2. The performance of the proposed model is compared to recent approaches 
Author Classifier Acc (%) P (%) Sn (%) AUC (%) 

Bhoi et al. [28] 

DT 70.80 70.10 70.82 64.80 
SVM 66.50 67.10 66.50 70.70 

KNN 71.11 70.30 71.10 73.70 

NB 73.60 74.50 73.60 81.80 
RF 75.40 75.10 75.40 80.80 

LR 76.80 73.30 76.80 82.50 

Ramesh et al. [29] 

KNN 79.8 - 87.20 - 
LR 73.30 - 70.20 - 

NB 73.10 - 66.60 - 

SVM+RBF 83.20 - 87.30 - 
Perdana et al. [30] KNN 83.12 - 74.19 - 

The proposed model 

SVM 82.70 78.00 78.00 86.60 

DT 88.50 87.20 82.90 87.50 

KNN 86.50 84.60 80.50 91.80 

NB 75.00 72.70 58.50 85.90 
RF 91.40 89.70 85.40 94.80 

 

 

6. CONCLUSION  

Regarding the huge increase in the number of diabetics, the growing requirement for cloud-based 

IoT platforms for healthcare monitoring and disease prediction systems, maintaining patient privacy and 

ensuring the security of sensitive healthcare data have become significant challenges. To address these 

concerns, this study proposes an effective strategy that prioritizes patient privacy while leveraging healthcare 

data for disease prediction within the current healthcare system. The proposed system (SR-DM) incorporates 

a novel approach by integrating AES and ECC techniques. To assess the system's performance, both secure 

data transmission and classification performance analyses were conducted. The proposed AES-ECC 

algorithm's performance was evaluated by comparing it with conventional encryption algorithms like DES, 

AES, and ECC. The evaluation considered factors such as encryption time and decryption time analysis. 

Additionally, the performance of the RF classifier was assessed in comparison to existing classifiers such as 

NB, DT, KNN, and SVM. The RF classifier achieved an impressive performance of the other classifiers with 

91.40% accuracy, 89.70% precision, 85.40% sensitivity, and 94.80% AUC. Experimental results confirm that 

the proposed approach outperforms existing systems in terms of disease prediction accuracy while also 

providing enhanced privacy and security measures. In future work, the model can be further improved by 

incorporating more generalized strategies to handle diverse dataset types beyond those collected by the IoT. 

Deep learning techniques can also be explored to enhance disease prediction outcomes while maintaining 

robust security and privacy measures. 
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