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ABSTRACT

Medical imaging plays a crucial role in diagnosing patient conditions, with
magnetic resonance imaging (MRI) standing as a significant modality for
numerous years. However, leveraging convolutional neural network (CNN)
architectures like U-Net and its variations for anatomical segmentation
demands considerable memory, particularly when working with full 3D im-
age sets. Therefore, downsampling 3D MRIs proves advantageous in reducing
memory consumption. Nevertheless, downsampling leads to a reduction in
voxel count, potentially impacting the performance of commonly used seg-
mentation metrics. The jaccard similarity index (JSI), dice similarity coeffi-
cient (DSC), and structural similarity index (SSIM) are extensively employed in
image segmentation contexts. Hence, this study employs all three metrics to as-
sess downsampled images and evaluate the robustness of the metrics when used
to evaluate the downsampled 3D MRI images. The results show that JSI and
DSC are more robust than SSIM when handling the downsampled data.
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1. INTRODUCTION
Advancements in medical imaging have revolutionized diagnostic procedures, with 3D magnetic

resonance imaging (MRI) becoming an indispensable tool for precise anatomical visualization. However, the
sheer volume and resolution of MRI data present computational challenges, often necessitating downsampling
for efficient storage and processing. Downsampling involves reducing the spatial resolution of images, yet its
impact on the accuracy of subsequent analyses remains a critical concern. In this study, we delve into the reper-
cussions of downsampling on the assessment of 3D MRI images, specifically focusing on the evaluation metrics
of jaccard similarity index (JSI) [1]-[3] , Sorensen dice similarity coefficient (DSC) [4]-[8], and structural sim-
ilarity index (SSIM) [9], [10]. These metrics, widely employed in quantifying similarity between images, serve
as the foundation for assessing the effects of downsampling on image analysis. A study performed by previous
study [11] shows that JSI and DSC can be used as a metric to measure blood vessel segmentation. Another
study performed [12] also proved that JSI and DSC to gauge machine learning segmentation performance.
Other studies only uses DSC as the metric to measure the segmentation results of generalized medical image
[13]. While SSIM are used in other studies to measure the segmentation results [9], [14].
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To predict brain MRI image segments, this research employs convolutional neural network (CNN) ar-
chitectures, namely U-Net, Res U-Net, and Dense U-Net. These architectures and its modifications are chosen
for their proficiency in semantic segmentation tasks, aiming to replicate the delineation established by medical
experts [15]-[18]. All the architecture have been used to segment biomedical images. U-Net have been used
in several studies both as a base model [19] or on its own [20]-[22]. While, Dense U-Net [23] and Res U-Net
[24] as modified architecture of U-Net are also used in various segmentation cases. The CNN-based predic-
tions are then compared with ground truth segments curated by experienced doctors. These comparisons are
performed at three distinct downsampling levels: 100%, 75%, and 50% of the original image resolution. It
is important to note that the datasets utilized in this study are sourced from medical institutions, namely Dr.
Soetomo and National Hospital in Surabaya, Indonesia. These datasets comprise a set of MRI images in the
form of slices, capturing a spectrum of brain anatomical variations. Since the dataset we got is in the form of
2D images, we need to reconstruct each MRI image into 3D MRI image using our previous study [25]. The
primary objective of this research are as follows: i). Testing the robustness of evaluation metrics on different
downsampling level. ii). Testing the evaluation metrics on different segmentation results. This study investi-
gated the effects of downsampling on similarity metrics. While earlier studies have explored the impact of the
use of similarity metrics on segmentation results, they have not explicitly addressed its influence on the down-
sampled image. In the subsequent sections, we outline the methodology employed, including the utilization
of U-Net, Res U-Net, and Dense U-Net architectures, the datasets obtained from Dr. Soetomo and National
Hospital in Surabaya, Indonesia, and the specific experimental setups designed to do a comparison between
CNN-predicted segments and ground truth across varying downsampling levels. This study are organized as
follows: Introduction, Method, Result and Discusssion, and Conclusion.

2. METHOD
In this section we will explain our approach to segment MRI images acquired from the hospitals in

Surabaya, Indonesia. Then, the trained models are used to predict image segments. The segmentation results
are then used to test similarity metrics robustness to downsampled images. Figure 1 shows how this study
performed.

Figure 1. System diagram

Based on Figure 1, this study aims to test the robustness of the similarity metrics, namely, JSI,
Sørensen DSC, and SSIM. The metrics are tested on the downsampled ground truth and segmentation results
of CNN models. This is the contribution of this study compared to those of previous studies.

2.1. Data annotation
To create the ground truth, we created a python program to annotate the 3D image. The doctors from

both hospitals in Surabaya annotate each slice of the 3D image until all images are annotated, then the doctor
will annotate the next image until all 50 images are annotated. Figure 2 shows the annotation result.
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Figure 2(a) shows a slice of the reconstructed 3D image of an MRI sequence, while Figure 2(b) shows
the annotation done by doctors of the National Hospital Surabaya. The segments annotated are Cerebrum,
Cerebellum, Brain stem, Corpus Callosum, and Ventricle. We augment the ground truth along the original
data. Thus, we got the same orientation with the original image. To increase the number of data, we used data
augmentation technique to the original 3D data and the ground truth. We used random flip and random rotate
to increase the numbers of data. The total data we got after the data augmentation process are 200 data.

(a) (b)

Figure 2. The annotation result (a) original image and (b) annotation result

2.2. Data preprocessing
In performing brain anatomy segmentation on 3D images, we utilized 3D images reconstructed from

DICOM data obtained from hospitals in Surabaya using method used in previous study [25]. The reconstruction
process comprises of histogram equalization, 3D reconstruction, trilinear interpolation, and 3D image resizing.
The reconstructed data has a resolution of 240 x 240 x 240. The total data we got from both hospitals are 50
MRI images. These 3D images will be processed using the Python and TensorFlow library. For the hardware
we used, we employed an NVIDIA QUADRO 8000 GPU with GPU memory of 48 GB DDR6. The MRI
images are augmented to increase the amount of data in the dataset using random flip and random rotate. The
final dataset got 200 3D MRI images. Then, each data is divided into 6 images based on the annotated anatomy
along with the background. This is done to make each image a binary image. Figure 3 shows the binary images
produced.

Based on Figure 3, the images are divided into 6 binary images. Figure 3(a) shows the original image.
Figures 3(b) background, (c) cerebrum, (d) cerebellum, (e) corpus callosum, (f) brain stem, and (g) ventricle.
This is needed since we used softmax activation function on the final layer of each of the CNN architectures.

Figure 3. U-Net architecture; (a) shows the original image, (b) background, (c) cerebrum, (d) cerebellum,
(e) corpus callosum, (f) brain stem, and (g) ventricle
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2.3. CNN architectures
The architectures we used in this study are U-Net, Dense U-Net, and Res U-Net. We used DSC as

the loss function since previous studies generally used DSC compared to other metrics. For the optimizer, this
study used Adam with a learning rate of 0.001. All layers used in this study are 3D convolution layers and
3D Maxpooling layers, since the data used in this study are 3D MRI images. The GPU used in this study is
NVIDIA QUADRO 8000 GPU with GPU memory of 48 GB. For the loss function of the CNN architectures,
this study used 1-DSC to get the loss value.

2.3.1. U-Net
The U-Net is one of the deep learning architectures commonly used for image segmentation [20]-

[22]. In this research, the U-Net architecture will be employed for segmenting brain images using 3D image
data created using the proposed methodology. Since the data used is 3D images, the layers used in U-Net
architecture are 3D convolutional and 3D pooling layers. The U-Net architecture consists of downsampling
blocks, a bridge, and upsampling blocks. Figure 4 shows the U-Net architecture.

Figure 4. U-Net architecture

As shown in Figure 4, U-Net architecture comprised of 3 components. Downsampling blocks made
of double convolution layer and maxpooling layer, upsampling blocks comprised of a transpose layer and 2
convolution blocks, and bridge comprised of 2 convolution layers. Each convolution layer in the upsampling
block will be concatenated with the result of the downsampling layer with the same resolution. Thus, doubling
the number of channels before acting as the input of the next convolution layer of the upsampling block.

2.3.2. Res U-Net
The residual U-Net has a similar architecture to the U-Net [24]. However, Res U-Net uses addition

after its second convolutional layer of each convolutional block, creating a residual block. Figure 5 illustrates
the residual block.
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Figure 5. Residual block

Figure 5 shows the residual block used by the Res U-net. By adding an addition layer, the input needs
to be identity mapped. this process ensures the number of channel of the input image is the same with the
number of channel produced by the activation layer of the residual block.

2.3.3. Dense U-Net
Dense U-Net uses dense block which is a convolution block that utilizes the concatenation of the

input image of each of its convolution layers [23]. Figure 6 shows the dense block used by the Dense U-
Net architecture. The Dense U-Net architecture used dense block shown in Figure 6. this block demands
significantly more computational power than the blocks used by previous 2 architectures. This is due to the
concatenation done after each convolutional layer. However, this concatenation helps in retaining the input
image characteristics, theoretically.

Figure 6. Dense block

2.4. 3D MRI downsampling
The downsampling process typically involves mapping each voxel in the output image to a corre-

sponding voxel in the input image. For each voxel in the output image, Iout, find the nearest neighbor in the
input image Iin using Euclidean distance. The nearest neighbor calculation can be represented as shown in (1).

Iout [i, j, k] = argmin(x,y,z)∈Iin

√
(i− x)

2
+ (j − y)

2
+ (k − z)

2 (1)

Where, Iout [i, j, k] = represents the voxel at position (i, j, k) in the output image x, y = voxels in Iin argmin
= voxel in the input image that minimizes the Euclidean distance from the current voxel in the output image.

In (1) describes the process of finding the nearest neighbor in the input image for each voxel in the
output image using Euclidean distance. This method essentially maps each voxel in the output image to the
closest voxel in the input image based on Euclidean distance.
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2.5. Segmentation result evaluation
2.5.1. JSI

JSI, also called intersection over union is one of the most used similarity indexes as shown in previous
study [1]-[3]. In (2) shows the calculation of JSI.

J (A,B) =
|A

⋂
B|

|A ∪B|
=

|A
⋂
B|

|A|+ |B| − |A
⋂

B|
(2)

Where, J = Jaccard similarity index value A,B = Images being measured. Based on (2), JSI considers the total
membership of voxels of both sets compared to the denominator.

2.5.2. Sørensen DSC
DSCs behave in similar ways to JSI. DSC compares the ratio of intersection to the total of both sets.

In (3) shows the calculation of DSC.

DSC (A,B) =
2× |A ∩B|
|A|+ |B|

(3)

As shows in (3), the difference between JSI and DSC is that the denominator of the DSC is the sum of cardi-
nalities, not the union of the sets as those of JSI.

2.5.3. SSIM
The SSIM is a widely used metric in image processing for quantifying the similarity between two

images. SSIM evaluates three key components: luminance, contrast, and structure. Luminance represents
the brightness of the image, while contrast measures the difference in intensity. Structure reflects the spatial
arrangement of image features. SSIM compares corresponding image patches and computes a similarity score
for each component, yielding an overall index that ranges from -1 to 1, with 1 indicating identical images. In
(4) shows how to calculate SSIM.

SSIM (x, y) =
(
2µxµy + c1

) (
2σxy + c2

)
/
((
µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
))

(4)

Where, x, y = the compared images. µx, µy = the means of x and y, respectively. σ2
x, σ

2
y = the variances of x

and y, respectively. σxy = is the covariance between x and y. c1, c2 = constants added to stabilize the division
when the denominator is close to zero. In (4) yields an SSIM value between -1 and 1, where 1 denotes identical
images and values closer to 1 indicate higher similarity between the images. Adjusting the constants fine-tunes
the formula.

3. RESULTS AND DISCUSSION
This section focuses on the results of the study. This section shows the results of training process and

the downsampling results. Then, the results are presented and discussed to provide insights.

3.1. Data preprocessing
To produce the segments of the brain anatomy, this study trained the CNN models with the architec-

tures mentioned. Since the image obtained from the hospitals is in the form of 2D images, the images need
to be reconstructed to 3D images using our previous study and resize the image into 240 x 240 x 240 for the
resolution.

3.2. Training results
The model training processes produces loss graphs. Each of the architecture produce a loss graph.

The loss graphs of all of the architecture are shown in Figure 7. Figure 7 shows the loss graphs of all the
architectures with different training length to achieve convergence. the result of U-Net as shown in Figure 7(a)
shows that the architecture is not the fastest to converge. Figure 7(b) shows that Res U-Net is the fastest to
reach convergence, while Dense U-Net as shown in Figure 7(c) needs much longer to achieve it. This is might
due to the size of the architecture that employs dense blocks. Thus, harder to train and much slower. Res U-Net
being the fastest might be due to the efficient use of concatenation in the architecture. The training time of each
of the architecture are shown in Table 1.
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(a) (b)

(c)

Figure 7. Loss graph of; (a) U-Net, (b) Res U-Net, and (c) Dense U-net

As shown in Table 1, Res U-Net is significantly faster compared to the other architecture. Res U-Net
almost twice as fast as U-Net and almost 4 times faster than Dense U-Net. The loss value produced by each
architecture during the training process are shown in Table 2.

Based on the results of the training process as shown in Table 2, we can conclude that U-Net produce
the lowest loss value both in the training and validation set. Then, followed by Dense U-Net and Res U-Net.
This might indicate that this dataset does not need to retain the information from the input image through
concatenation. This is due to the results of the architectures utilizing concatenation results in higher loss value.

Table 1. Length of model training of each architecture
Architecture Epoch to convergence

U-Net 836
Res U-Net 485

Dense U-Net 1721

Table 2. Length of model training of each architecture
Architecture Loss value

Training Validation
U-Net 0.1242 0.1661

Res U-Net 0.1337 0.1819
Dense U-Net 0.1264 0.1813
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3.3. Downsampling results
Since we already trained the model, we could predict the segments using the trained model. Since

we trained all the architectures to segment each of the anatomy using softmax on the final layer, the model
produces 6 images, namely, Cerebrum, Cerebellum, Brain Stem, Corpus Callosum, and Ventricle. Figures 8-10
shows some of the predicted MRI slices using different architectures.

As shown in Figure 9 and Figure 10, the downsampled images loses its resolution and made the images
more pixelated compared to the full resolution shown in Figure 8. This is due to the reduced number of voxels.
The ground truth shown in (a) Figure 8, in are compared to the segmentation result of (b) U-Net, (c) Res U-Net,
and (d) Dense U-Net in different voxel counts as described in Figures 8(a)-(d), Figures 9(a)-(d), and Figures
10(a)-(d). The original image has 240 x 240 x 240 resolution. However, for the images with the number of
voxels reduced to 75% of the original images, the resolution is 180 x 180 x 180. while, images which are 50%
of the original images have resolution of 120 x 120 x 120.

(a) (b) (c) (d)

Figure 8. Full resolution of; (a) ground truth, (b) U-Net, and (c) Res U-net, and (d) Dense U-net

(a) (b) (c) (d)

Figure 9. Downsampled; (a) ground truth, (b) U-Net, and (c) Res U-net, and (d) Dense U-net to 75% of
original resolution

(a) (b) (c) (d)

Figure 10. Downsampled; (a) ground truth, (b) U-Net, and (c) Res U-net, and (d) Dense U-net to 50% of
original resolution
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3.4. Metrics comparison
The full image and the downsampled images can be calculated for its metrics by comparing the pre-

dicted images to the ground truth made by doctors. Since in this study we used JSI, DSC, and SSIM as the
similarity metrics, the predicted images with both full resolution and the downsampled images will be com-
pared to those of the ground truth with similar resolutions. Table 3 shows how the metric perform on full and
downsampled images

Table 3. Results of evaluation of similarity metrics on full and downsampled images
Architecture Resolution JSI DSC SSIM

U-Net
100% 0.497 0.854 0.887
75% 0.497 0.855 0.881
50% 0.498 0.856 0.887

Res U-Net
100% 0.498 0.842 0.886
75% 0.498 0.842 0.879
50% 0.499 0.843 0.860

Dense U-Net
100% 0.498 0.846 0.887
75% 0.498 0.846 0.880
50% 0.498 0.846 0.860

Our experimentation involved downsampling images to 75% and 50% of their original resolution.
Based on Table 3, the downsampling process exhibited minimal alteration in the computed similarity metrics,
indicating robustness to downsampling. The JSI values remained largely consistent, showcasing high image
fidelity despite resolution reduction. Similarly, the DSC, used notably in image segmentation, showcased sta-
bility even at reduced resolutions. Comparatively, the SSIM, even if not by much, exhibits higher inconsistency
in its measurements when contrasted with the DSC and JSI in this study. These findings imply that downsam-
pling images to 75% and 50% of their original resolution does not significantly impact the computed similarity
metrics. Therefore, while achieving computational efficiency and reduced memory footprint, downsampling
maintains fidelity in similarity assessments, underscoring its viability in various image processing applications.

4. CONCLUSION
In this study we used several CNN architectures, namely, U-Net, Res U-Net, and Dense U-Net to

produce predicted 3D MRI images. Since this study focuses on testing the robustness of the metrics such as
JSI, DSC, and SSIM, the results shows that downsampling the images and the ground truth to 75% and 50%
for images produced by the same architecture does not affect the similarity metrics results by much. However,
when compared to JSI and DSC, SSIM exhibits higher inconsistency. This is due to SSIM which use not
only spatial similarity like the other metrics, since SSIM also consider luminance and contrast of the compared
images. Thus, using JSI and DSC on downsampled image might be a better options. Future studies may explore
the effects of other similarity metrics or modify available metric to be more resilient on downsampled images.
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