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 Chronic obstructive pulmonary disease (COPD) is a progressive lung 

dysfunction that can be triggered by exposure to chemicals. This disease can 

be identified with spirometry, but the patient feels uncomfortable, affecting 

the diagnosis results. Other disease markers are being investigated, including 

exhaled breath. This method can be applied easily, is non-invasive, has 

minimal side effects, and provides accurate results. This study applies the 

electronic nose method to distinguish healthy people and COPD suspects 

using exhaled breath samples. Twenty semiconductor gas sensors combined 

with machine learning algorithms were employed as an electronic nose 

system. Experimental results show that the frequency feature of the sensor 

responses used by the principal component analysis (PCA) method combined 

with graph convolutional network (GCN) can provide the highest accuracy 

value of 97.5% in distinguishing between healthy and COPD subjects. This 

method can improve the detection performance of electronic nose systems, 

which can help diagnose COPD. 
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1. INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) can be triggered chiefly by chemical exposure to 

cigarette smoke [1]. This impulse permanently wounds the lung due to inflammation indicated by airflow 

restriction. Therefore, COPD sufferers often have difficulty breathing [2]. COPD is not a contagious disorder. 

This disease occurs in men over 40 years old and is influenced by long-term vulnerability substances [3]. COPD 

is similar to asthma despite progressive and can worsen [1], [2]. In 2019, COPD has affected 3.23 million 

people [4]. For this reason, the issue needs immediate awareness. 

Spirometry can identify COPD, which is still impractical and uncomfortable, influencing the results. 

Other disease markers are being investigated, including exhaled breath [5]. This non-invasive method provides 

more comfort to the patient and accurate results [6]. Exhaled breath contains chemicals that can be used for 

analytical purposes, especially volatile organic compounds [7]. Gas chromatography can assess these 

compounds but is still limited and costly. An electronic nose comprises chemical gas sensors, offering an odor-

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Identification of chronic obstructive pulmonary disease using graph convolutional network … (Dava Aulia) 

265 

detection means inspired by the human nose function. This approach is an alternative way to detect human 

body abnormalities [8]–[11]. 

The electronic nose reliability can be defined by its effectiveness in extracting relevant features from 

the sensor signal response. An electronic nose has organized healthy and asthmatic subjects with the support 

vector machine (SVM), supplying an accuracy of 89.5% [12]. Data is extracted in a time range between 30-49 

seconds to obtain an average value. Another study categorizes different lung diseases, with 50-second sampling 

and kernel principal component analysis combined with extreme gradient boosting (KPCA-XGBoost) as 

feature extraction and classifier strategies yielding 89.84% for COPD [9]. Tuberculosis was also examined 

using an artificial neural network (ANN) along with standardization with an accuracy of 94.87% [8]. However, 

these studies only use standard features in the time domain. More information on transient signals is needed to 

improve classification performance. 

The transient response before reaching a steady state can be considered as a characteristic for 

classification purposes [13]. Fast fourier transform (FFT) is a signal preprocessing technique for efficiently 

analyzing frequency elements in discrete signals [14]. With its computational efficiency capabilities, FFT can 

process faster than discrete Fourier transform (DFT), simplifying the DFT time complexity to minimize 

computational costs [15]. FFT can be applied in transient signal events, such as in electronic noses [16]. 

Graph convolutional network (GCN) employs convolution operations on graph structures. One is 

spatial graph convolution, which uses adjacency matrix computation, focusing on the neighboring nodes' 

affinity and justifying the nodes' representation based on information from their neighbors [17]. This approach 

captures local dependencies and relationships within the data, effectively handles large-dimensional graphs, 

controls irregular data structures, and apprehends complex relationships [18]. Entities linked by edge 

demonstrate the main attribute of GCN; they are non-Euclidean and primary learning sources for GCN. The 

graph representation is the input of the GCN and can be represented as an adjacency matrix. This matrix can 

be obtained by calculating the relationship between attributes, one of which is using correlation techniques 

[19]. Another study gave sufficient results using this approach with an electronic nose [19]. 

The main contribution of this study is to develop a method to differentiate healthy people and COPD 

suspects based on exhaled breath samples using an electronic nose and the GCN algorithm. The adjacency 

matrix is calculated with the Pearson correlation coefficient (PCC) to construct the GCN feature map. 

Frequency elements of sensor response and principal component analysis (PCA) data preprocessing are 

involved in increasing the distinguishing accuracy. 

The novelty of this study includes implementing a GCN method with frequency feature to achieve a 

reliable electronic nose indicating healthy and COPD subjects. This article is systematized as follows.  

The research background is described in section 1. Section 2 presents the materials and methods of the 

experiments. In section 3 explains the experimental results and their analysis. In section 4 outlines influential 

outcomes and forthcoming studies. 

 

 

2. MATERIALS AND METHODS 

2.1.  Subjects and research design 
Exhaled breath data was collected at Airlangga University General Hospital, East Java, Surabaya, 

Indonesia. The subjects included 30 healthy people and 40 COPD suspects, as confirmed by pulmonologists, 

comprised of men aged between 50 and 70 years without acute or chronic conditions and healthy non-smokers. 

Pulmonary function tests diagnosed COPD with a CONTEC SP70B digital spirometer, where a ratio between 

forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) below 70% is verified as 

a suspect. Experts have examined further through clinical analysis, including COPD assessment test (CAT) 

and pulmonary medical history and assessment (PUMA). 

The study design is presented in Figure 1. All participants supplied a breath sample in a 2-liter Tedlar 

bag. The electronic nose is a measuring device, producing different curves for each sensor response.  

Signal preprocessing involves the sensor signal response, including time and frequency domains as features. 

The sensor response is divided into four segments for the classification dataset. Random forest (RF), ANN, 

convolutional neural network (CNN), gated recurrent unit (GRU), and GCN are machine learning algorithms 

and are optimized with various architectures. The adjacency matrix describes the graph representation as GCN 

input determined through the PCC. The PCA is involved for comparison purposes. The models’ classifier 

appraisal has accuracy, precision, recall, and F1 measurements.  

 

2.2.  Electronic nose 
Figure 2 shows the equipment setup used in this experiment. Figure 2(a) describes the design of the 

electronic nose. Electronic parts are mounted on a printed circuit board (PCB), making the sensors’ responses 

more stable [20]. Metal oxide semiconductor gas sensors are utilized for their advantages: cheapness, durability, 

and high sensitivity [21], [22], as depicted in Table 1. Twenty gas sensors will contribute to measuring gas content 
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in exhaled breath related to healthy and COPD subjects, and some sensors can detect biomarkers associated with 

lung disease effectively [8]–[10]. The sensor array is installed in the 150 mL chamber. Flowmeter allows for 

monitoring airflow speed. Meanwhile, Figure 2(b) depicts the implementation of the system. 

The sampling steps are as follows. The sample in the Tedlar bag is measured for 100 seconds, followed 

by cleaning the sensors with dry air at the recovery stage. The sensor’s analog voltage is converted to digital 

using the microcontroller’s data converter. Data is transmitted to a computer and managed in a spreadsheet 

program. The dataset consists of response curves for the subsequent analysis of signal processing. 

 

 

 
 

Figure 1. The proposed research diagram 
 

 

  
(a) (b) 

 

Figure 2. The electronic nose setup in the investigation (a) system design and (b) implementation 
 

 

Table 1. Types of gas sensors on electronic nose 
Sensor Sensitivity 

MQ-2 Hydrogen, LPG, and propane 
MQ-3 Benzene and alcohol 

MQ-4 LPG and methane 

MQ-5 Methane, LPG, and carbon monoxide 
MQ-6 Butane, propane, and LPG 

MQ-7 Carbon monoxide and hydrogen 

MQ-8 Hydrogen 
MQ-9 Methane, carbon monoxide, and LPG 

MQ-131 Nitrogen dioxide, ozone, and chlorine 

MQ-135 Ammonium, acetone, and toluene 
MQ-136 Ammonium, hydrogen sulfide 

MQ-137 Ammonia 

TGS813 Isobutane, hydrogen, ethanol, and methane 
TGS822 Hexane, benzene, and ethanol 

TGS2600 Ethanol, hydrogen, and isobutane 

TGS2602 Hydrogen sulfide, ammonia, and ethanol 
TGS2610 Methane, hydrogen, isobutane, and ethanol 

TGS2611 Isobutane, methane, ethanol, and hydrogen 

TGS2620 Isobutane, hydrogen, and ethanol 
TGS4161 Carbon dioxide 

 

 

2.3.  Signal processing 
Two features, including time and frequency elements, are used for comparison purposes. The feature 

extraction procedure is as follows: 

 Transient is a region of interest, starting in the 10th second until before reaching a steady state. 

 The signal is divided into four parts, each 20 seconds long. 

 Each signal section will provide both time and frequency elements. 

The time average value of each sensor data can be represented in (1). 
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�̅�𝑠 = 
∑ 𝑥𝑠

𝑛𝑁−1
𝑛=0

𝑁
 (1) 

 

Where 𝑁 denotes the number of samples, 𝑠 describes the sensor number, and 𝑥𝑠
𝑛 represents the sensor response 

at time 𝑛 for sensor 𝑠. The frequency elements can be expressed in (2). 

 

𝑋𝑠
𝑘 = ∫ 𝑥𝑠

𝑛𝑁−1

𝑛=0
. 𝑒−𝑗

2𝜋

𝑁
𝑘𝑛

 (2) 

 

Where 𝑒 is the base of the natural logarithm, and 𝑗 is the imaginary unit. 

 

2.4.  Machine learning algorithms 

2.4.1. RF 
The RF algorithm is often combined with the electronic nose method with satisfactory results [23], 

[24]. With bagging systems, RF combines multiple decision trees to build respective outputs and draw 

conclusions through majority voting [25]. RF criteria, including the Gini index and entropy, decide the optimal 

splitting nodes for forming the finest decision tree, clarified in (3) and (4). 

 

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = 1 − ∑ (𝑝𝑗)
2𝑁

𝑗=1  (3) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ (𝑝𝑗 ∗ 𝑙𝑜𝑔2(𝑝𝑗)
𝑁
𝑗=1  (4) 

 

Where 𝑁 designates the number of categories and 𝑝𝑗 means the data portion in class 𝑗. In this study, the RF 

parameters include criterion: Gini index and entropy, max_features: 𝑙𝑜𝑔2 and sqrt, max_depth: none, tress:  

1-200, min_samples_split: 2-6, and min_samples_leaf: 2-4. 

 

2.4.2. ANN 
ANN is a pattern recognition technique encouraged by the human brain function, which involves three 

main layers: input, hidden, and output [26]. The number of nodes in the input layer follows the number of 

sensor features. The hidden layers comprise neurons by calculating the weighted sum through the rectified linear 

unit (ReLU) activation function. The output layer contains neurons that use softmax activation to represent the 

number of class data. ANN offers feed-forward and back-propagation processes, where the former confines 

decisions, and the latter revises the weights based on the error value. Table 2 reveals the ANN configuration. 

 

 

Table 2. The configurable ANN and CNN layer settings 

Model 
Hidden layers  

Model 
Filters Kernels 

Neurons 
1 2 3  Conv 1 Conv 2 Conv 1 Conv 2 

ANN 1 5 
- 

- 

 CNN 1 5 

- 

2 

- 

5 
ANN 2 30  CNN 2 30 30 

ANN 3 55  CNN 3 55 55 

ANN 4 5 5  CNN 4 5 
3 

5 
ANN 5 30 5  CNN 5 30 30 

ANN 6 30 30  CNN 6 55 55 

ANN 7 55 30  CNN 7 5 5 

2 

2 

5 
ANN 8 55 55  CNN 8 30 5 30 

ANN 9 5 5 5  CNN 9 30 30 30 

ANN 10 30 5 5  CNN 10 55 30 55 
ANN 11 30 30 5  CNN 11 55 55 55 

ANN 12 30 30 30  CNN 12 5 5 

3 

5 

ANN 13 55 30 30  CNN 13 30 5 30 
ANN 14 55 55 30  CNN 14 30 30 30 

ANN 15 55 55 55  CNN 15 55 30 55 

     CNN 16 55 55 55 

 

 

2.4.3. CNN 
1D CNN is specialized for sequential data due to its mechanism involving convolutional layers called 

conv. This layer contains filters and kernels to extract patterns or features from the input dataset [11].  

This model presents feed-forward and backpropagation approaches similar to ANN [27]. CNN has proved to 

better distinguish between healthy and asthmatic subjects [10]. The number of neurons in the fully connected 

layer is also considered to determine the level of accuracy. Table 2 characterizes the CNN architectural format, 

consisting of the number of convs, filters, kernels, and neurons. 
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2.4.4. GRU 
GRU has different means than long short-term memory (LSTM), including the simpler architecture 

by eliminating forget gates to improve computational efficiency [28]. The update and reset gates, the primary 

gates of GRU, are presented to analyze the data flow within the unit, authorizing it to keep and discard data 

adaptively over various periods [29]. This study involves five GRU algorithms, including GRU 1, GRU 2, 

GRU 3, GRU 4, and GRU 5, with memory cells of 5, 30, 55, 80, and 105, respectively. 
 

2.4.3. GCN 
GCN analyzes the input graph of sensor features to provide classification results. Each sensor's time 

and frequency elements represent nodes; each node is only connected to its neighboring nodes with its edges. 

Therefore, this dataset is an undirected graph. The undirected graph is expressed in (5). 
 

𝐺 = {𝑉, 𝐸, 𝐴} (5) 
 

Where 𝑉 is the vertices or nodes defining sensor features, 𝐸 represents the set of edges, and 𝐴 is the adjacency 

matrix expressing the connection among all features. PCC values replace the adjacency matrix elements 

between sensor features [19], represented in (6). Therefore, the adjacency matrix can be described in (7). 
 

𝑟 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2 ∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 (6) 

 

𝐴 =

[
 
 
 

0 𝑟1,2 … 𝑟1,𝑛

𝑟2,1 0 … 𝑟2,𝑛

⋮ ⋮ ⋱ ⋮
𝑟𝑛,1 𝑟𝑛,2 … 0 ]

 
 
 
 (7) 

 

The propagation of the convolution layer is depicted in (8). 
 

𝐻(𝑙+1) = 𝑓(�̂�−
1

2�̂��̂�−
1

2𝐻(𝑙)𝑊(𝑙))  (8) 
 

Where 𝑓 is the activation function, 𝐻(𝑙) and 𝑊(𝑙) are the node feature matrix and weights at layer (𝑖), respectively. 

Figure 3 and Table 3 illustrate the feature graph construction and the GCN configuration, respectively. 
 
 

 
 

Figure 3. The feature graph construction of the GCN 
 

 

Table 3. GCN layer configuration 

Model 
Convs 

Fully connected 
1 2 3 

GCN 1 5 

- 

- 

5, 30, 55 

GCN 2 30 

GCN 3 55 
GCN 4 5 5 

GCN 5 30 5 

GCN 6 30 30 
GCN 7 55 30 

GCN 8 55 55 

GCN 9 5 5 5 
GCN 10 30 5 5 

GCN 11 30 30 5 

GCN 12 30 30 30 
GCN 13 55 30 30 

GCN 14 55 30 30 

GCN 15 55 55 55 
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2.5.  Classifier performance evaluation 

The confusion matrix assesses the classifier’s performance by approximating the classified data with 

the actual truth through accuracy, precision, recall, and F1-score. These metrics are based on several indicators, 

such as true positive (TP), false positive (FP), true negative (TN), and false negative (FN). The performance 

evaluations can be acquired in (9) to (12). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (9) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

 

2.6.  PCA 

PCA is a technique for dimensionality reduction, summarizing extensive datasets into simpler ones 

while retaining important information. PCA transforms data with a linear orthogonal transformation to form 

new coordinates into PCA space [30]. This transformation is achieved by selecting principal components with 

a high contribution to the linear combination of the original features. This study applies this technique to 

visualize and preprocess the sensor features. 

 

 

3. EXPERIMENTAL RESULTS 

3.1.  Dataset preparation 
All exhaled breath samples stored in the Tedlar bags were acquired by electronic nose. Figure 4 

depicts the sensor response in the time domain. The response at 0 to 10 seconds is the initial cleaning or baseline 

determination, while the points at 11 to 100 seconds are used as sample recording data. The sensor responses 

for healthy and COPD subjects are shown in Figures 4(a) and 4(b), respectively. These show that each class 

has a distinctive curve pattern, making it manageable to analyze. Figure 5 demonstrates the feature extraction 

strategy. Most of these regions are transient and used as features for time and frequency extraction. As a result, 

four regions were confirmed to represent four samples, starting from 20, 40, 60, and 80 seconds, as shown in 

Figure 5(a). Each region has 8 data points (e.g., seconds 20, 22, 24, 26, 28, 30, 32, and 34). For this result, the 

total sample is 280. This purpose avoids errors in the training phase, comprising over and underfitting [31]. 

Then, the time average of these data is calculated to become a time dataset. Meanwhile, the FFT method creates 

a four-component frequency spectrum dataset for each region, as shown in Figure 5(b). Figure 6 shows a PCA 

visualization of the time dataset. The data distribution has a variance of 93.8% for PC1 and 3.8% for PC2, 

resulting in a total variance of 97.6%. The data distribution for frequency elements is similar to that of the time 

average, with a total variance of 96.9%. These values will be used as features for sensors. It can be seen that 

all classes are separated. However, there is a slight overlap, which needs to be more distinguished by applying 

machine learning. 

 

 

  
(a) (b) 

 

Figure 4. Gas sensor response of (a) healthy and (b) COPD subjects 
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(a) (b) 

 

Figure 5. The gas sensor array responses of (a) time and (b) frequency elements 
 

 

 
 

Figure 6. The data distribution of the gas sensor array visualized by PCA 

 

 

3.2.  Optimizing machine learning 
CNN, GRU, and GCN, were optimized with their respective compositions by evaluating the entire 

dataset. Specifically for RF, assisted by GridSearchCV, an optimization technique from the scikit-learn library, 

determines acceptable parameters based on the most elevated results. This technique has three parameters: 

sample split, random state, and shuffle. The sample split employs stratified k-fold cross-validation, dividing 

the samples into the same portions, and is set at 5. The remaining parameters are set to “None” for the random 

state and “True” for the shuffle, making the randomization more varied to learn unseen data. 

Table 4 illustrates the RF parameter optimization results according to GridSearchCV. Figure 7 shows 

a comparison of the classification performance of RF, ANN, CNN, GRU, and GCN. Figure 7(a) exhibits the 

RF performance results. For the time dataset, RF 4 achieved the highest accuracy, i.e., 81.1%. Meanwhile, for 

the frequency dataset, RF 6 has the highest accuracy, i.e., 79.9%. Figure 7(b) illustrates the ANN classification 

results for each dataset. ANN 14 gave the highest results for both time and frequency datasets of 87.1% and 

87.4%, respectively. Meanwhile, ANN 15 experienced a decrease in performance, indicating this model 

experienced overfit. In addition, most of the ANNs provide good contributions to the frequency dataset 

compared to the time dataset. The performance of all CNNs can be seen in Figure 7(c). The highest CNN was 

achieved on the time dataset on CNN 15 with an accuracy of 86.6%. Meanwhile, on the frequency dataset, 

CNN 10 had an accuracy of 85.4%. However, this configuration has the lowest architecture which has 

implications for simple calculations. Figure 7(d) shows the performance of the cell-based memory of the GRU 

model. The contribution of the model is outstanding on the time dataset, with the highest accuracy of 84.9% 

achieved by GRU 3. Meanwhile, on the frequency dataset, all GRUs tended to have an accuracy below 70%. 

Figure 7(e) shows the performance of GCN variations. Compared with time dataset, GCN can differentiate 

between healthy and COPD subjects with high accuracy for frequency dataset. There are four GCN 

configurations that have an accuracy above 92%, namely GCN 5, GCN 8, GCN 9, and GCN 14. In the next 

stage, all these configurations will be re-evaluated with varying numbers of neurons. 
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Table 4. The RF parameters determined by GridSearchCV 
Dataset Model 

Time RF 1  

 Criterion = Gini 

 Max features = sqrt 

 Min samples leaf = 3 

 Min samples split = 2  

 Trees = 29 

RF 2  

 Criterion = Gini 

 Max features = log2 

 Min samples leaf = 2 

 Min samples split = 2  

 Trees = 62 

RF 3  

 Criterion = Entropy 

 Max features = sqrt 

 Min samples leaf = 4 

 Min samples split = 4  

 Trees = 71 

RF 4  

 Criterion = Entropy 

 Max features = log2 

 Min samples leaf = 3 

 Min samples split = 2  

 Trees = 93 

Frequency RF 5  

 Criterion = Gini 

 Max features = sqrt 

 Min samples leaf = 3 

 Min samples split = 3 

 Trees = 6 

RF 6  

 Criterion = Gini 

 Max features = log2 

 Min samples leaf = 3 

 Min samples split = 6  

 Trees = 56 

RF 7  

 Criterion = Entropy 

 Max features = sqrt 

 Min samples leaf = 2 

 Min samples split = 2  

 Trees = 69 

RF 8 

 Criterion = Entropy 

 Max features = log2 

 Min samples leaf = 3 

 Min samples split = 5  

 Trees = 29 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

 
(e) 

 

Figure 7. The classification performances of; (a) RF, (b) ANN, (c) CNN, (d) GRU, and (e) GCN 
 

 

Table 5 shows a comparison of the classification performance of the modified GCN. This concludes 

that GCN 5 with 55 neurons provides accuracy results of 94.8%. Of all the machine learning algorithm 

configurations used in this experiment, GCN with a frequency spectrum dataset had the highest ability to 

differentiate between healthy people and COPD suspects. Figure 8 presents the performance of the electronic 

nose equipped with the GCN model. Figure 8(a) shows the data distribution generated by the convolution layer 

in the GCN with a total variance of 99.6%, which illustrates that the two classes can be separated significantly. 

This may fortify the reason why GCN has the highest accuracy. The selected model will be more challenging 

to combine with data preprocessing. Meanwhile, Figure 8(b) illustrates the loss curve during the training phase 

on GCN for 500 epochs. This shows that the performance of this model has a high loss value, i.e. around 10%. 
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Essential information extraction in PCA output can be combined with the GCN 5 configuration to be 

tested for its performance level. Figure 9 shows the performance of an electronic nose employing a GCN model 

combined with PCA data preprocessing. Figure 9(a) depicts the distribution of data produced by the 

convolution layer in GCN combined with PCA data preprocessing with a total variance of 99.8%, 

demonstrating that the two classes can be more significantly separated. Figure 9(b) illustrates the loss curve 

during the training phase on GCN combined with PCA for 150 epochs, which reaches an error value of 0.0053. 

 

 

Table 5. The modified GCN classification performance. 
Model Neurons Accuracy (%) 

GCN 5 5 93.4 

30 93.0 

55 94.8 
GCN 8 5 92.7 

30 92.2 

55 92.2 
GCN 9 5 92.7 

30 90.6 

55 90.6 
GCN 14 5 92.2 

30 92.6 

55 91.8 

 

 

  
(a) (b) 

 

Figure 8. The GCN performance (a) the data distribution of the convolution layer and  

(b) the training loss curve 

 

 

  
(a) (b) 

 

Figure 9. The performance of GCN combined with PCA data preprocessing (a) the data distribution of the 

convolution layer and (b) the training loss curve 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Identification of chronic obstructive pulmonary disease using graph convolutional network … (Dava Aulia) 

273 

This shows that combining PCA data preprocessing with GCN will accelerate achieving convergence in 

the training phase. Figure 10 shows the prediction of the GCN combined with PCA data preprocessing for healthy 

and COPD subjects. In ten tests, the combination of PCA and GCN produces an average accuracy of 97.5%, 

precision of 97.2%, recall of 97.4%, and F1-score of 97.5%. Therefore, this method can be used in electronic nose 

systems, especially those involving high-dimensional features, to improve their classification performance. 

 

 

 
 

Figure 10. The prediction of the GCN combined with PCA data preprocessing for healthy and COPD subjects 

 

 

4. CONCLUSION 

This research developed an electronic nose method and a pattern recognition algorithm to identify 

COPD suspects through exhaled breath. The electronic nose consists of twenty semiconductor gas sensors.  

The FFT method plays a role in assessing the frequency element in the gas sensor response. Five machine 

learning algorithms, including RF, ANN, CNN, GRU, and GCN, were employed in this study. The GCN model 

that applies a frequency dataset has the highest accuracy of 94.8%. The GCN model combined with PCA data 

preprocessing provides a more satisfactory accuracy of 97.5%, precision of 97.2%, recall of 97.4%, and  

F1-score of 97.5%. Further research will develop a more portable and compact system with an optimal number 

of sensors and lower power consumption. 
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