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 Hadoop MapReduce (HMR) provides the most common MapReduce 

(MR) framework, and it is available as open source. MR is a famous 

computational framework for evaluating unstructured, and semi-

structured big data and executing applications in the past ten years. 

Memory and input/output (I/O) overhead are just two of the many 

problems affecting the current HMR scheduler system. This study aims to 

improve systems resource use including the processing of data in real-

time by creating a memory I/O optimized scheduler (MIOOS) for HMR. 
The disk I/O seek can be reduced by using MIOOS, which analyzes the 

entire memory management. Additionally, the MIOOS makespan 

approach is used to reduce the occurrence of problems in intermediary 

tasks. Both the MIOOS approach and the current approach are assessed 
by using complex scientific workflow applications with extreme task 

inter-dependencies. Further, the comparison study demonstrates that the 

MIOOS framework outdoes the current approach regarding makespan and 

overall memory usage.  
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1. INTRODUCTION  

Many businesses, including educational institutions, government departments, and industries, amass 

substantial quantities of unorganized information from multiple places like the World Wide Web, computational 

biology, social media platforms, wireless sensor networks, and more, with distinct objectives in mind. In 

addition, the analysis of complex data-intensive and scientific workflow has emerged as a highly sought-after 

task for numerous organizations [1]. Nevertheless, it is worth noting that existing state-of-the-art approaches 

often struggle to effectively handle real-time scenarios involving direct acyclic graph (DAG) workflow 

applications with high interdependence among intermediate tasks [2]. In the context of real-time scenarios, it is 

noteworthy to mention that data-driven platforms such as Google have come up with a parallel computation 

method known as the MapReduce (MR) framework [3]. This framework, specifically aimed at enabling parallel 

processing in a distributed approach, holds significant relevance. Hadoop MapReduce (HMR) [3] is a widely 

accepted and extensively utilized method in the field of data processing and analysis. One of the key factors 

contributing to its widespread adoption is its open-source nature, allowing for greater accessibility and 

community-driven development. The HMR approach encompasses several different stages, namely Setup, 

Mapping, Reduce, and Shuffling and Sorting. These stages are visually represented in Figure 1. 

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1. The architecture of standard Hadoop MapReduce framework 

 

 

The Azure-HDInsight structure offers a high degree of adaptability to accomplish maximum 

efficiency by allowing the workflow to be deployed in large-scale clusters in the cloud platform. However, 

the current cloud-based computational model fails to workflow application task deadline requirements. 

Furthermore, it remains the responsibility of the consumer to determine the appropriate resource allocation to 

fulfill task deadlines, which is widely recognized as a difficult task. Moreover, the consideration of Hadoop 

processing time is of utmost importance in determining the necessary resources for meeting task deadlines.  

It has been noticed that Hadoop tasks consist of multiple processing stages, specifically the Reduce, 

Shuffling, and Mapping phases, which are intricately interconnected. In this context, it is important to note 

that every stage necessitates both input/output (I/O) operations [4] alongside memory operations [5]. 

Additionally, during the shuffle stage, the first sub-stage is executed concurrently alongside the Mapping 

stage, which can be regarded as a kind of overlapping stage. Conversely, the remaining sub-stages within the 

shuffle stage are executed following the conclusion of the mapping stage, which is deemed to be a non-

overlapping stage [6]. Furthermore, to optimize the utilization of cloud resources, several makespan 

approaches have been established and discussed in [7]-[9]. While these approaches demonstrate potential, 

they suffer from inefficiency and high computational overhead [10]. This is primarily due to their failure to 

consider the scenarios of non-overlapping and overlapping shuffling stages. Thus, the proposed work is 

focused on addressing the different scheduling problems from memory resources, I/O, and computational 

resources to reduce the overall makespan of workflow execution in the cloud-based Map-Reduce framework [11]. 

The scientific workflow applications have grown exponentially in recent years due to the availability 

of parallel and distributed computing platforms, and their efficiency has improved as a result. There have 

been many ways for modeling Hadoop, among which some of the most efficient methods have been 

discussed in [12]. Methods created in [13] for a homogeneous framework execute unsatisfactorily in a 

heterogeneous framework due to the need for the I/O and memory optimization method, despite providing 

lockless first in first out (FIFO) which incorporates HMR and other applications. In the HMR system, the 

scheduler technique used during the shuffling stage is the primary determinant of the makespan for 

completing tasks [14], [15]. In [16], a combined scheduling strategy has been offered to shorten the time it 

takes to complete tasks by taking into account the overlap between the mapping and shuffling stages.  

A topology-aware hierarchy MapReduce (MR) scheduling was introduced for lowering I/O overhead [17]. 

Reduced I/O demands mean less time spent waiting for tasks to finish. For quicker stage reshuffling 

operation, [18] introduced a system for planning called shadow. Both spatial awareness in Map task 

completion and load-balancing during the shuffling stage benefit from the approaches' tradeoffs. As 

demonstrated in [19], prior approaches to performing heterogeneous tasks have not taken task dependence 

models into account, leading to inefficient use of available resources. So, they devised a new yet another 

resource negotiator (YARN) scheduling scheme that cuts down the makespan of various industrial tasks. 

Makespan efficiency, particularly when dealing with complicated repetitive applications, is negatively 

impacted by the fact that the models described in [20], and [21] don't account for failures at intermediary 

tasks. This increases the difficulty of coming up with a workable scheduler plan for the MR framework for 

effective scientific workflow execution [22], [23] in a heterogeneous cloud platform [24]. 
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2. METHOD 

The present study aims to propose a novel approach for scheduling tasks in the cloud-based MR 

framework leveraging the principle of HMR, with an emphasis on optimizing resources and memory 

management. Our proposed method, memory I/O optimized scheduler (MIOOS), introduces a thread-based 

approach to execution to enhance memory usage and reduce I/O overhead. Furthermore, this research 

endeavor emphasizes the development of a memory dynamic distribution mechanism for tasks across threads 

within a single virtual machine in the cloud platform. In addition, this study aims to enhance the utilization of 

memory for the central processing unit (CPU) and I/O by developing an I/O approach. Additionally, the 

memory optimization technique is employed to prevent redundant data re-reading before transfer, thereby 

reducing the workload by caching the final output of an operation in memory. In conclusion, we provide a 

comprehensive makespan approach that incorporates data dependence for the execution of complex scientific 

workflows. The proposed MIOOS approach can reduce overall makespan with minimal memory usage in 

comparison with current methodologies.  

 

2.1.  Memory I/O optimized scheduler for complex scientific execution in cloud MapReduce framework  

Here, we introduce an entirely novel architecture called MIOOS which is presented in Figure 2. The 

overall framework of MIOOS is initially examined in this discussion. Next, the discussion of the input/output 

(I/O) optimization method that has been implemented in the MIOOS framework to minimize the hard drive 

search time. In this context, it is significant to discuss the memory scheduling method employed to achieve 

universal memory management. Finally, this section presents a makespan approach that aims to address the 

issue of intermediate task execution efficiency and its impact on the whole scheduling performance. 

 

 

 

Figure 2. Memory and I/O optimization scheduler for cloud-based MapReduce framework 

 

 

2.2.  System model 

The mathematical representation of MIOOS is presented in this section. In the conventional 

Hadoop-MR structure, the execution of tasks occurs in a distributed manner across multiple nodes. In the 

MIOOS structure, the execution of the task is facilitated by employing MIOOS in conjunction with the 

memory-schedular. Memory management is handled by the memory scheduler, which schedules the 

release of tasks and new allocations. The memory levels of individual tasks may vary, and these details 

regarding memory resource availability are easily obtained through the global list. The input/output (I/O) 

planner initiates communication with the read-worker component to retrieve data stored on disk. 

Simultaneously, the clean-worker component is responsible for removing information stored in the global list 

data structure. The MIOOS system implements global allocation of memory by utilizing the global-list data 
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arrangement framework. In the global list framework, the intermediary information generated by various 

tasks is systematically organized and stored. The I/O scheduler employs a technique known as multiple-

buffers to facilitate the cleaning and reading of data stored on disk. The utilization of memory resources in 

this manner results in increased efficiency, thereby contributing to the decreased amount of processing time.  

 

2.3.  I/O optimization 

The I/O scheduler has been specifically developed to enhance parallelization efficiency while 

minimizing the hard drive seek period through the optimization of Merge-Sort activities. The utilization of 

conventional I/O scheduling mechanisms can result in elevated I/O latency due to the independent execution 

of tasks on individual computing nodes with no intercommunication. This work presents a novel approach 

to executing sequential I/O operations by integrating both central processing unit (CPU) along hard drive I/O 

functionalities. The I/O planner consists of two main components: the Reader-Worker, responsible for 

executing reading activities, and the Cleaner-Worker, responsible for executing writing activities. Both the 

Cleaner-Worker and Reader-Worker components consist of several buffers that possess distinct goals, 

enabling the effective organization and management of both writing and reading activities. In the present 

study, we investigate the distinction between dynamic and static I/O, with a particular emphasis on the 

prioritization of dynamic I/O. The rationale behind this prioritization stems from the fact that dynamic I/O 

necessitates prompt memory allocations. In contrast, it is observed that dynamic I/O is generally assigned 

higher priorities than static I/O. The initiation of static I/O occurs exclusively under the circumstance where 

the buffer being used is incapable of accommodating intermediate information, necessitating the temporary 

cleansing of the disk. The dynamic I/O response of a buffer that operates using a higher priority is 

characterized by a higher emphasis on reading activities and a lower emphasis on cleaning activities. 

 

2.4.  Memory optimization scheduler 

The MIOOS memory scheduler was developed with the following requirements in mind. The 

allocation of memory resources to buffers of varying sizes necessitates the development of an optimized 

design to effectively manage this task. Furthermore, it is important to note that various Map-Reduce tasks 

may exhibit varying memory requirements. Consequently, it becomes imperative to incorporate a structure 

that facilitates flexible memory allocation. The estimation of the overall size 𝑈𝑇 of various buffers is 

conducted utilizing the Cache-List methodology.  

 

𝑢𝑇 = 𝑇↑ − 𝐸𝑙𝑖𝑠𝑡𝑇
− 𝑁𝐷𝑇

 (1) 

 

The variable 𝑇↑ denotes the upper bound on the memory size allocated for archiving intermediate 

information. 𝐸𝑙𝑖𝑠𝑡𝑇
 represents the total size of the Data-Pair-List, while 𝑁𝐷𝑇

 represents the total memory 

consumption of the I/O Scheduler. Identically, the Map-Controller utilizes a memory allocation denoted as 

𝑀𝐶𝑇 to carry out the mapping task. The computation of this memory allocation is determined by the 

subsequent as: 

 

𝑀𝐶𝑇 = (𝑃𝐷 𝑇
+ 𝑄𝑡𝑟𝑛𝑠𝑚𝐷 𝑇

, 𝑈𝑇) (2) 

 

The variable 𝑃𝐷 𝑇
 denotes the size of the Map-Sort buffer, while 𝑄𝑡𝑟𝑛𝑠𝑚𝐷 𝑇

 represents the I/O buffer-size. 

The computation of the Map-Sort buffer capacity is determined by (3). The user inquiries about the location 

of 𝑁𝑃↑. The Map-Sort maximum capacity for carrying out every task is denoted as 𝑀𝑆𝑜𝑟𝑡𝑚𝑎𝑥 . The present 

MSort buffer size is represented by 𝑄𝑃𝐷 𝑇
, while 𝑀𝑛 signifies the overall number of Map tasks presently 

handled. The computation of the memory capacity 𝑅𝐶𝑇 for carrying out a given task is determined by (4). 

 

𝑃𝐷 𝑇
= {𝑁𝑃↑ ∗ 𝑁𝑜  𝑁𝑃↑ ≠ 0 𝑄𝑃𝐷 𝑇

          𝑁𝑃↑ = 0 (3) 

 

𝑅𝐶𝑇 = 𝑇𝑆 − 𝑀𝑀𝐶𝑆 (4) 

 

The MIOOS approach incorporates a memory management strategy that ensures a sufficient amount 

of memory is reserved for carrying out tasks. This approach effectively mitigates the need for frequently 

recycling and reusing memory and I/O resources. Upon the successful execution of specific tasks, the system 

initiates the process of either logging or deregistering from the Map-Controller component. This action 

facilitates the acquisition of the value denoted as 𝑁𝑜. The Merge-Sorter component is responsible for 

providing caching data to be stored in the Sort-Buffer, which is obtained through the Map-Controller. On the 

other hand, the M-Transmit-Worker component is responsible for releasing the cached data that is currently 
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being shuffled within the Transmit-Buffer and reallocating it back to the Map-Controller. Additionally, it 

assesses the performance metrics 𝑃𝐷𝑇
 and 𝑄𝑡𝑟𝑛𝑠𝑚𝐷𝑇

. Each task employs an adaptive strategy for 

determining its non-parametric upper bound (𝑁𝑃↑) before its completion. The estimated 𝑁𝑃↑ data is then 

transmitted through the Map-Controller. Upon the establishment of any modifications to in-memory data, the 

Map-Controller proceeds to transmit said data through the central controller. Subsequently, the central-

controller assumes the responsibility of determining the appropriate heap length for both the Reduce-

Controller and Memory-Controller.  

In an approach analogous to the Map-task, the reduce-task initiates the process by either logging or 

unregistering themselves through the Reduce-Controller. The Reduce-Controller is responsible for 

segmenting the Reduce-Controller-Task (𝑅𝐶𝑇) within an even way among the running Reduce-tasks. The 

Collector-Worker is responsible for retrieving the memory resources associated with the Collection-Memory 

through the Reduce-Controller. At the same time, the Pusher-Worker releases the storage resources coming 

from the Collector-Memory, while the Reduce-Controller maintains possession of the resource. The Reduce-

Controller component communicates with the Central-Controller component to provide improvements on its 

stored memory stages. These memory stages are capable of being employed for the execution of map tasks in 

situations where there are limitations on available memory resources. Throughout every stage of task 

execution, the memory consumption structure of the central controller exhibits variability, indicating the 

potential for continuous optimization of memory utilization. In instances where the modified heap length 

of Map-Controller exceeds that of the previous cycle, it can be inferred that no memory limitations are 

impeding the execution of tasks. Alternatively, in the absence of sufficient resources, it becomes necessary to 

promptly release memory from its disk. In the present study, we establish a specific threshold value, denoted 

as Map-Controller 𝑀𝐶𝑇, which is precisely defined in (2). When the memory demand of specific 

task executions exceeds the threshold value 𝑀𝐶𝑇, specific memory resources are released. 

 

2.5.  Makespan model for memory and I/O optimization scheduler 

A comprehensive makespan approach is presented to address the issue of improving task execution 

efficiency in the MIOOS framework. The computation of the makespan 𝐶 for carrying out a task is easily 

achieved by utilizing the equation shown in (5). The variable 𝐶𝑇 represents the makespan for the beginning 

worker considering both I/O and memory optimization, while 𝐶𝑀 denotes the makespan for carrying out map 

tasks, and 𝐶𝑅 represents the makespan for carrying out reduced tasks. The MIOOS framework has been 

observed to exhibit superior performance in terms of minimizing makespan and reducing costs for the 

execution of text and data mining and continuous applications, in comparison with current HMR scheduling 

techniques. This is achieved through the effective allocation of processing core and memory resources, as 

illustrated by the experimental findings presented in result section. 

 

𝐶 = 𝐶𝑇 + 𝐶𝑀 + 𝐶𝑅 . (5) 

 

3. RESULTS AND DISCUSSION  

The following part focuses on the evaluation of performance metrics, namely makespan, and 

memory efficiency, in the context of the suggested MIOOS framework compared to the existing reliable 

workflow scheduling (RWS) approach [24]. MIOOS and RWS have been developed and deployed through 

the utilization of the Java programming language. The CloudSimSDN‐NFV simulator [25] has been 

employed as the underlying platform for the implementation of these systems. The Cybershake scientific 

workflow is used for verifying the proposed MIOOS framework. The mathematical complexity of the tasks at 

hand involves a significant amount of computational processing and input/output operations. The Cybershake 

structure is known for its computationally demanding nature, particularly concerning CPU and memory 

usage. 

 

3.1.  Makespan performance 

The following part addresses the analysis regarding the makespan required to complete the 

execution of Cybershake workflows with sizes ranging from 30, 50, 100, and 1000. Figure 3 illustrates a 

visual representation of the makespan achieved over the execution of the Cybershake application employing 

the MIOOS and RWS scheduling algorithms while considering a diverse range of workflow scenarios such 

as 30, 50, and 100. Similarly, for a Cybershake workflow size of 1000, the visual representation of the 

makespan is given in Figure 4. The utilization of MIOOS, as compared to RWS, results in a notable 

enhancement in average makespan efficiency, with an observed increase of 78.84%. 
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Figure 3. Makespan efficiency with different Cybershake workflow sizes 

 

 

 
 

Figure 4. Makespan efficiency with Cybershake workflow size of 1000 

 

 

3.2.  Memory usage 

The following part addresses the analysis regarding the memory needed to complete the execution 

of Cybershake workflows with sizes ranging from 30, 50, 100, and 1000. Figure 5 illustrates a visual 

representation of the memory efficiency achieved over the execution of the Cybershake application 

employing the MIOOS and RWS scheduling algorithms while considering a diverse range of workflow 

scenarios such as 30, 50, and 100. Similarly, for a Cybershake workflow size of 1000, the visual 

representation of memory usage is given in Figure 6. The utilization of MIOOS, as compared to RWS, results 

in a notable enhancement in average memory efficiency, with an observed increase of 83.12%. 

 

 

 
 

Figure 5. Memory usage with different Cybershake workflow sizes 
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Figure 6. Memory usage with Cybershake workflow size of 1000 

 

 

4. CONCLUSION 

The current identifies the limitation of the current scheduling strategy to meet the strict QoS and 

SLA requirements of modern scientific workflows. The work addressed major issues such as the I/O 

scheduler and memory scheduler; the work developed a novel global cache management mechanism to 

improve workflow execution efficiency. A makespan model considering initializing both I/O and memory 

scheduler using a thread-based execution model to develop a cloud-based MR model for the execution of 

scientific workflows. The experimental results demonstrate that the MIOOS system exhibits a high level of 

makespan and energy efficiency for the execution of Cybershake workflows. Specifically, when compared to 

the RWS system, MIOOS showcases an impressive increase of 78.84% and 83.12% for energy and memory 

efficiency, respectively. In the future, it is anticipated that the suggested scheduling approach will undergo 

testing using a broader dataset of workloads. In addition, it is worth exploring the potential benefits of 

utilizing an edge-cloud structure to potentially achieve cost reduction and minimize execution delays.  
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