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1. INTRODUCTION

In the last twenty years, applications based on brain computer interface (BCI) have been attracting a
lot of research work [1], [2]. Using brain waves as a biometric is one of the important applications of BCI.
Electroencephalographic (EEG) signals offers high degree of stability, universality, uniqueness and are very
difficult to be spoofed, which makes them a suitable biometric trait. Recently, the interest in investigating the
impact of using EEG signals as a biometric trait has shown great rise. Most of the existing EEG based personal
authentication systems can be categorized into three types: unsupervised, supervised and similarity based
learning. Similarity based methods relay on measuring the distances among the features for decision making.
Different similarity metrics have been investigated including; cross-correlation (CC), cosine similarity (CS),
euclidean distance (ED), and mahalanobis distance (MD) [3]], [4]. However, as the sample size increases, the
computation efficiency and the biometric system accuracy decreases significantly.

In the supervised learning based methods, features are first extracted from the EEG signals, then
supervised learning algorithms are deployed to train the model to perform prediction. Various features have
been extracted including; power spectral density (PSD), sample entropy (SE), auto-regressive (AR) reflection
coefficients, and others. For classification various machine learning techniques have been adopted including;
support vector machines (SVM), random forest (RF), gaussian Naive Bayes (GNB), hidden markov model
(HMM), and frequency-weighted power (FWP) [5]-[9]. Although supervised learning based methods have
shown excellent performance with respect to fair computation times, their performance is remarkably impacted
by the selected features quality. As, EEG signals are non-stationary, complex, affected by human emotions and
brain activities. If the feature does not accurately represent the data, the results will be unsatisfactory.
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Recently, unsupervised learning-based methods are being used. The great success achieved by those
models in the computer vision domain is now adopted in many BCI applications including brain biometric.
Deep learning (DL) models are capable of automatically learning from raw EEG signals without the need for
manually extracted features [LO]-[12]. An extensive survey on the use of EEG signals for personal authenti-
cation can be found in [13]-[15]. In the last few decades, using Riemannian geometry (RG) in studying brain
disorders and BCI applications attracted wide attention due to its robustness, simplicity and accuracy. Rie-
mannian geometry have been used in different applications including; human emotion recognition [[16]-[18]],
cryptographic key generation [[19]], and detecting brain disorders [20]-[22]. A thorough review on applying
Riemannian geometry on BCI [23]], [24]. The principal goal of the work at hand is to, build a personal identi-
fication system using multidimensional EEG signals as a biometric trait. In the proposed system, we avoided
the effect of the quality of chosen features on the system performance, by using raw EEG signals without fea-
ture extraction. EEG signals recorded from N electrodes are represented as symmetric positive-definite (SPD)
matrices on a Riemannian manifold. Two experiments are performed in the first; we use minimum distance
to Riemannian mean (MDRM) as a classifier. In the second experiment; SPD matrices are vectorized, and the
generated vectors are used to train various machine learning classifiers.

2. METHOD

The principal goal of the work at hand, is to build a personal identification system using multidimen-
sional EEG signals as a biometric trait, based on Riemannian geometry. The basic concepts of Riemannian
geometry are introduced in section[2.1] Section[2.2] gives an overview on DEAP dataset used in our study. Our
personal identification experiments are introduced in section[2.3]

2.1. Riemannian geometry

Consider brain signals recorded from N channels. Let x5 (¢), k = 1, ..., N be the time series obtained
from each electrode. Each individual time series x(¢) is broken up into m diminutive windows, a vector
of n samples is enclosed in every window. Let W, refers to each window, where £k = 1,..., N and i =
1,...,m. m covariance matrices C;, i = 1,..,m are generated by convoluting each individual window with
its corresponding windows from the IV electrodes. The symmetric positive-definite matrices (C;, i = 1,..,m)
forms a non-positive curvature smooth Riemannian manifold in the N (N + 1)/2 dimensional Euclidean space.

Let X be the EEG signals obtained from N channels, each have n samples (X € RY*" ). The
covariance matrix C' € RY*) is given by (1).

1 N
C:m;(xi—f)(xi—f)T (1)

—_ 1 N )
Where T = & >, .

2.1.1. Geodesic distance
The shortest distance between two points C;, C'; on the SPD manifold, is measured using the geodesic
distance [23]], [25]]:

n 1/2
-1 -1
A, C5) = log (0% ;0. ) |1 = (Z log%) @
i=1
—1 -1
where \;, ..., A\, are the eigenvalues of (CiT C; C’i7> ,and || - ||r is the Frobenius norm.

2.1.2. The geometric mean
Geometric mean between m points (C1, . .., C},) on the SPD manifold is called Karcher mean and it
is defined as [25], [26]:

m

G(Cy,...,Cp) :argminZdQ (Y, C)) 3)
CeP(n) ;3
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where d is the geodesic distance calculated using (2), P(n) is the SPD matrices space. In (3) there is a unique
point(Y) that represents the minimum, this point is the geometric mean that represents the solution for the (4):

i log (G2 ¥CF) =0 @)
=1

for m > 2 iterative algorithms should be used as their is no closed-form solution for (4) [27], [28].

2.1.3. MDRM classifier

SPD matrices space is non-linear, so using most of the standard classifiers is not feasible. MDRM is
a very simple and efficient classifier that can be used in SPD manifold. MDRM is based on nearest neighbor
classifier. The number of classes and dimension of data do not have any effect on the way the MDRM operates.

Let z be the set of all labeled classes z; € (21, 22, . . ., 2k ), k indicates the number of classes. The
class mean M (z;) is generated in the coarse of the training phase. During the test phase, we obtain M which
is the new observation mean. calculating the distance between M and each class mean M (z;) is performed.
Based on the beneath classification rule (5), the class z to which the new observation belongs is determined.

z = argmin {d(M,M(z))} 5)

ZEZ1,22,.-,2k
where 7 is the predicted class label.

2.1.4. Vectorization
Each element ¢; ; in the square covariance matrix C' € P(N) represents the covariance value between

the signal recorded from the it" electrode and the jth electrode.
C1,1 C1,N
C=1|: - (6)
CN,1 CN,N

As (C € RN*N) is a symmetric matrix. C' is flattened into an {w X 1} vector [29]:

Vo = [01,1; V2¢1 952,25 V2¢1 33V 2¢03,¢3.35 - -5 CN.,N} @)

where, |C||r = ||Vo||2. To preserves the equality of norm non-diagonal elements has a coefficient of /2.

2.2. Dataset

Our proposed system is examined using DEAP dataset [30]] which is a publicly available dataset used
to analyze the affective state of humans. EEG signals of 32 persons as well as their physiological signals were
recorded when each individual was watching 40 videos. Recording was done using 32 electrodes at 512 Hz
as a sampling rate. Placing the electrodes was done according the 10-20 international positioning system [31]].
There exists pre-processed version of the dataset in which; artifacts were removed, down sampling to 128 Hz,
and filtering (from 4-45 Hz) were performed. Every trial (observation) lasted 63 s. The first 3 s of the trial
had been recorded before the participant began to engage in the trial experiment. In the work at hand the
prepossessed version of DEAP dataset is used and the first 3 s are removed.

2.3. Personal identification experiment

In this work we propose a personal identification system using multidimensional EEG signals as a bio-
metric trait. In the proposed system we use raw EEG signals without feature extraction. Brain signals recorded
from N channels are represented as points on a Riemannian manifold. Two experiments are performed. In the
first; we use MDRM as a classifier. In the second, SPD matrices are vectorized, and the generated vectors are
used to train various machine learning classifiers. The proposed EEG based identification system consists of
two stages; the training stage (enrollment stage) and the testing stage (identification stage).
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During the enrollment stage Figure[T] Each participant offers his ID, and M trials (each trial is recorded
from N-electrodes). Each channel signal is broken up into 1s windows. Using 2.T] covariance matrix is
calculated. Those covariance matrices are used to calculate the geometric mean for each trial (see section
[212)). The M geometric mean from the M trials offered during enrollment are used to calculate one common
reference point (G) for each user using (3). G is placed in the user template in the system dataset. Then, G is
vectorized (7) to form the participant common vector (V). Then, V; (where ¢ = 1, ..., P, P is the participants
number) are used to train a ML classifier. Figure[2]is t-SNE figure, that shows the 32 participants vectors V;
(wherei =1,...,32).
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Figure 1. Enrollment stage in which, the identification system is trained
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Figure 2. Participants common vectors V; (where ¢ = 1, ..., P, P is the number of participants). For 32 users
in DEAP dataset. Visualization produced through t-SNE method
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During the identification stage presented in Figure [3] each user offers an observation (N-channels
EEG signals). Signal obtained from every channel is broken up into windows 1 s each. Covariance matrix
is generated by convoluting each individual window with its corresponding windows from the N electrodes.
A common geometric mean (G) is generated from the covariance matrices. (G) is vectorized using m
generate (V).

In the first experiment, MDRM classifier is used, the distance between the new generated mean (G‘)
and participants means (G; ,i = 1,..., P, P is the participants number) stored in the system database will be
computed. The new observation belongs to the user with the minimum distance. In the second experiment, the
participant to which 1% belongs is decided by testing the ML classifiers trained using (V; ,¢ = 1, ..., P) during
the enrollment stage.
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Figure 3. Identification stage in which, each participant provides an observation (/V-channels EEG signals)

3.  RESULTS AND DISCUSSION

This study investigated the effect of using raw-multidimensional-EEG signals as a biometric trait.
In the proposed system, we used raw EEG signals without feature extraction to avoid the impact of the selected
features quality on the performance of the system. Brain signals recorded from N channels are represented as
points on a Riemannian manifold.

3.1. Results

In the course of this work, two experiments were carried out. In one experiment, we use MDRM clas-
sifier to determine the participant to which G belongs. In the second experiment, we use different ML classifiers
to determine the participant for which 1% belongs. We used five popular ML classifiers; K-nearest neighbours
(KNN), SVM, RF, decision trees (DT), multi-layer perceptron (MLP). Data was splitted into training (70%)
and testing (30%) using the train-test-split method in sklearn library, 10-fold cross validation was performed
in both experiments. Multiple metrics can be used in evaluating biometric identification system performance;
correct recognition rate (CRR) is the most commonly used metric [[15]. The proposed system CRR is shown in
Table The MDRM achieved a CRR of 96.92%, while the best ML classifier is RF achiving CRR of 99.453%.

Table 1. Proposed system performance (CRR =+ std)
Classifier
MDRM KNN SVM DT MLP RF
96.92 +£0.002  99.296 +0.004  99.299 4+ 0.004  95.391 £ 0.014 97.578 £0.013  99.453 £ 0.004

3.2. Performance comparison

A comparison between our proposed system, which is based on representing multi-channel raw EEG
signals as SPD matrices on a Riemannian manifold and other EEG based biometric identification systems is
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shown in Table 2] Our study suggests that, the proposed system CRR is comparable to other existing EEG-
based personal identification systems. When using raw EEG signals, our system CRR (with RF classifier)
outperformed unsupervised supervised and similarity based learning systems.

Table 2. Proposed system performance compared to other existing systems

Reference Sbj Chs EEG-protocols Features Classifier Performance (CRR)
[6] 54 62 Motor im (MI) CSP, ERD/S, FFT, AR SVM and GNB SVM: 98.97%
olorimagery ’ S A GNB: 97.47%
[7] 5 4 Photo stimuli Hjorth descriptor NNT up to 100%
Eye open (EO) and L EO: 99.7%
18] 109 64 Eye close(EC) PSD, SE Mabhalanobis distance EC: 98.6%

MFCC: 95.87% - 96.0%

132] 25 19 Visual evoked potentials MFCCs, AR Manhattan distance AR: 91.47% - 94.53%
T HMM: 97.5%

133] 60 14 Audio stimuli WPD HMM and SVM SVM: 93.83%

134] 50 1 Event-related potential Raw signals Cross-correlation 60% - 90%

135] 25 14 Event-related potential Raw signals k-NN, SVM, LDA, DNN 72% - 96.7%

(L] 40 17  Visually evoked potential Raw signals CNN 80.649% - 98.81%

[36] 120 64 EEG in resting state Raw signals DNN 81.6% - 99.2%

Proposed . - . MDRM MDRM: 96.92%

system o2 32 Video stimuli Raw signals k-NN, MLP, SVM, DT, RF  ML: 95.39% - 99.45%

3.3. Limitations and future research

Our study demonstrated that the proposed system offers a strong personal identification system based
on multidimensional-raw-EEG signals. However, further studies are needed to explore the effect of human
emotional state, and EEG signals recorded in temporally separated sessions on the EEG-based identification
system performance.

4. CONCLUSION

In this work we offer a personal identification system based on multidimensional-raw- EEG signals.
Brain signals recorded from N channels are represented as points on a Riemannian manifold. First we use
MDRM as a classifier. Then to enhance the system performance, we used the vectorized geometric mean to
train various machine learning classifiers. MDRM achieved a CRR of 96.92% , while ML classifiers achieved
CRR from 95.39% to 99.45% the best ML classifier was RF. When using Raw EEG signals, our system CRR
(with RF classifier) outperformed unsupervised, supervised and similarity based learning systems.
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